organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Phenyl-2-(1H-tetra­zol-1-yl)propanoic acid monohydrate

aSchool of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: zhaohong@seu.edu.cn

(Received 13 September 2010; accepted 26 September 2010; online 30 September 2010)

In the title compound, C10H10N4O2·H2O, the dihedral angle between the tetra­zole and benzene rings is 63.24 (11)°. The crystal structure is stabilized by intra­molecular O—H⋯N and O—H⋯O hydrogen bonds.

Related literature

For background to the applications of tetra­zole metal derivatives, see: Gaponik et al. (2006[Gaponik, P. N., Voitekhovich, S. V. & Ivashkevich, O. A. (2006). Russ. Chem. Rev. 75, 507-540.]); Zhao et al. (2008[Zhao, H., Qu, Z. R., Ye, H. Y. & Xiong, R. G. (2008). Chem. Soc. Rev. 37, 84-100.]); Xiao et al. (2009[Xiao, J., Wang, W. X., Lin, J. R. & Zhao, H. (2009). J. Mol. Struct. 933, 98-103.]).

[Scheme 1]

Experimental

Crystal data
  • C10H10N4O2·H2O

  • Mr = 236.24

  • Orthorhombic, P c a 21

  • a = 24.001 (4) Å

  • b = 8.3769 (19) Å

  • c = 5.7455 (11) Å

  • V = 1155.1 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.40 × 0.25 × 0.10 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.972, Tmax = 0.987

  • 11450 measured reflections

  • 1461 independent reflections

  • 1237 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.098

  • S = 1.11

  • 1461 reflections

  • 155 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1Wi 0.82 1.74 2.552 (2) 174
O1W—H1B⋯N4ii 0.92 1.98 2.903 (4) 177
O1W—H1A⋯N3iii 0.89 2.12 3.003 (3) 171
Symmetry codes: (i) x, y+1, z; (ii) [-x+{\script{1\over 2}}, y, z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y, z-{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL/PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL/PC.

Supporting information


Comment top

Recently tetrazoles have been area of interest of coordination chemistry because of various applications of their metal derivatives (Gaponik et al., 2006; Zhao et al., 2008). A great variety of tetrazoles, especially substituted ones, are investigated as ligands. Recently, we have reported a few tetrazole compounds (Xiao et al., 2009). As an extension of our work on the structural characterization of tetrazole compounds, the structure of the title compound is reported here.

In the molecule of the title compound (Fig. 1) bond lengths and angles have normal values. The dihedral angle between the planes of the tetrazole and phenyl rings is 63.24 (0.11)°. The crystal structure (Fig. 2) is stabilized by intramolecular O—H···N and O—H···O hydrogen bonds (Table 1).

Related literature top

For background to the applications of tetrazole metal derivatives, see: Gaponik et al. (2006); Zhao et al. (2008); Xiao et al. (2009).

Experimental top

2-Amino-3-phenylpropanoic acid (1.65 g, 10 mmol) and triethoxymethane (2.96 g, 20 mmol) was added to a mixture of sodium azide (0.65 g, 10 mmol) in acetic acid. After 3 h at 80°C, the mixture was cooled to room temperature and poured into 50 ml HCl (30%) to afford a white precipitate of the title compound. Colourless crystals suitable for X-ray diffraction were obtained after 3 days by slow evaporation of an ethanol solution.

Refinement top

All H atoms were detected in a difference map, but were placed in calculated positions and refined using a riding motion approximation, with C—H = 0.93–0.97 Å, O—H = 0.82–0.92 Å, and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O). In the absence of significant anomalous dispersion effects, Friedel pairs were merged.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: SHELXTL/PC (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atomic numbering scheme. The displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Packing diagram of the title compound, showing the structure down the c axis. Intermolecular hydrogen bonds are shown as dashed lines.
3-Phenyl-2-(1H-tetrazol-1-yl)propanoic acid monohydrate top
Crystal data top
C10H10N4O2·H2OF(000) = 496
Mr = 236.24Dx = 1.358 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 2576 reflections
a = 24.001 (4) Åθ = 2.4–27.5°
b = 8.3769 (19) ŵ = 0.10 mm1
c = 5.7455 (11) ÅT = 293 K
V = 1155.1 (4) Å3Prism, colourless
Z = 40.40 × 0.25 × 0.10 mm
Data collection top
Rigaku SCXmini
diffractometer
1461 independent reflections
Radiation source: fine-focus sealed tube1237 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 2.4°
ω scansh = 3031
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1010
Tmin = 0.972, Tmax = 0.987l = 77
11450 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.045P)2 + 0.0812P]
where P = (Fo2 + 2Fc2)/3
1461 reflections(Δ/σ)max < 0.001
155 parametersΔρmax = 0.15 e Å3
1 restraintΔρmin = 0.17 e Å3
Crystal data top
C10H10N4O2·H2OV = 1155.1 (4) Å3
Mr = 236.24Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 24.001 (4) ŵ = 0.10 mm1
b = 8.3769 (19) ÅT = 293 K
c = 5.7455 (11) Å0.40 × 0.25 × 0.10 mm
Data collection top
Rigaku SCXmini
diffractometer
1461 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1237 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.987Rint = 0.049
11450 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0451 restraint
wR(F2) = 0.098H-atom parameters constrained
S = 1.11Δρmax = 0.15 e Å3
1461 reflectionsΔρmin = 0.17 e Å3
155 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.17744 (13)0.5430 (3)0.8029 (6)0.0523 (7)
H10.18490.58340.65530.063*
C20.22253 (10)0.8730 (3)0.9938 (5)0.0370 (5)
C30.16456 (9)0.8029 (3)1.0194 (5)0.0385 (6)
H30.15230.82341.17930.046*
C40.12188 (11)0.8794 (3)0.8571 (6)0.0494 (7)
H4A0.12150.99370.88340.059*
H4B0.13320.86120.69720.059*
C50.06378 (11)0.8150 (3)0.8910 (5)0.0466 (6)
C60.03288 (12)0.8572 (4)1.0852 (6)0.0605 (8)
H60.04800.92581.19570.073*
C70.02045 (13)0.7972 (4)1.1151 (7)0.0738 (11)
H70.04100.82641.24550.089*
C80.04305 (13)0.6958 (4)0.9550 (8)0.0714 (10)
H80.07870.65510.97670.086*
C90.01295 (13)0.6545 (4)0.7634 (8)0.0728 (10)
H90.02820.58580.65350.087*
C100.03997 (12)0.7138 (4)0.7312 (6)0.0617 (8)
H100.06000.68500.59910.074*
N10.16699 (8)0.6303 (2)0.9891 (4)0.0398 (5)
N20.15902 (10)0.5316 (3)1.1690 (5)0.0540 (7)
N30.16442 (12)0.3885 (3)1.0871 (5)0.0611 (7)
N40.17577 (12)0.3922 (3)0.8561 (5)0.0594 (7)
O10.26404 (6)0.79317 (19)0.9755 (4)0.0431 (4)
O20.22055 (7)1.02860 (19)0.9997 (5)0.0489 (4)
H20.25221.06470.99090.073*
O1W0.31635 (8)0.1603 (2)0.9820 (4)0.0574 (5)
H1A0.31910.23410.87100.086*
H1B0.31950.23131.10330.086*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0678 (18)0.0421 (16)0.0470 (17)0.0014 (14)0.0082 (15)0.0055 (13)
C20.0443 (12)0.0387 (12)0.0281 (11)0.0003 (9)0.0035 (12)0.0023 (13)
C30.0404 (12)0.0343 (11)0.0408 (15)0.0011 (9)0.0001 (11)0.0066 (11)
C40.0468 (14)0.0435 (14)0.0579 (17)0.0004 (11)0.0052 (13)0.0097 (14)
C50.0420 (14)0.0426 (14)0.0553 (16)0.0051 (11)0.0044 (13)0.0077 (13)
C60.0555 (18)0.0553 (17)0.071 (2)0.0057 (14)0.0008 (17)0.0098 (16)
C70.058 (2)0.081 (2)0.082 (3)0.0169 (17)0.0193 (19)0.001 (2)
C80.0429 (15)0.074 (2)0.098 (3)0.0014 (14)0.000 (2)0.004 (2)
C90.055 (2)0.078 (2)0.086 (3)0.0076 (16)0.012 (2)0.012 (2)
C100.0507 (17)0.072 (2)0.0621 (19)0.0008 (15)0.0013 (16)0.0097 (17)
N10.0407 (10)0.0357 (10)0.0429 (11)0.0008 (8)0.0012 (11)0.0081 (11)
N20.0709 (17)0.0437 (14)0.0473 (13)0.0007 (12)0.0061 (13)0.0108 (12)
N30.0820 (18)0.0393 (14)0.0619 (16)0.0022 (12)0.0129 (15)0.0076 (13)
N40.0760 (17)0.0398 (14)0.0624 (17)0.0014 (12)0.0127 (14)0.0033 (13)
O10.0433 (10)0.0469 (9)0.0391 (9)0.0032 (7)0.0022 (9)0.0037 (9)
O20.0489 (9)0.0371 (9)0.0607 (11)0.0051 (7)0.0016 (12)0.0002 (11)
O1W0.0674 (12)0.0484 (10)0.0564 (11)0.0175 (8)0.0066 (13)0.0071 (12)
Geometric parameters (Å, º) top
C1—N41.301 (4)C6—H60.9300
C1—N11.320 (4)C7—C81.365 (5)
C1—H10.9300C7—H70.9300
C2—O11.205 (3)C8—C91.362 (6)
C2—O21.305 (3)C8—H80.9300
C2—C31.517 (3)C9—C101.376 (4)
C3—N11.457 (3)C9—H90.9300
C3—C41.526 (4)C10—H100.9300
C3—H30.9800N1—N21.337 (3)
C4—C51.508 (4)N2—N31.294 (4)
C4—H4A0.9700N3—N41.355 (4)
C4—H4B0.9700O2—H20.8200
C5—C101.374 (4)O1W—H1A0.8904
C5—C61.385 (4)O1W—H1B0.9193
C6—C71.385 (4)
N4—C1—N1110.0 (3)C5—C6—H6119.9
N4—C1—H1125.0C7—C6—H6119.9
N1—C1—H1125.0C8—C7—C6120.6 (3)
O1—C2—O2126.0 (2)C8—C7—H7119.7
O1—C2—C3123.48 (19)C6—C7—H7119.7
O2—C2—C3110.55 (18)C9—C8—C7119.5 (3)
N1—C3—C2109.64 (18)C9—C8—H8120.3
N1—C3—C4111.7 (2)C7—C8—H8120.3
C2—C3—C4113.2 (2)C8—C9—C10120.4 (3)
N1—C3—H3107.3C8—C9—H9119.8
C2—C3—H3107.3C10—C9—H9119.8
C4—C3—H3107.3C5—C10—C9121.1 (3)
C5—C4—C3113.1 (2)C5—C10—H10119.4
C5—C4—H4A109.0C9—C10—H10119.4
C3—C4—H4A109.0C1—N1—N2108.12 (19)
C5—C4—H4B109.0C1—N1—C3130.9 (2)
C3—C4—H4B109.0N2—N1—C3121.0 (2)
H4A—C4—H4B107.8N3—N2—N1106.1 (2)
C10—C5—C6118.2 (3)N2—N3—N4110.8 (3)
C10—C5—C4121.2 (3)C1—N4—N3105.0 (3)
C6—C5—C4120.5 (3)C2—O2—H2109.5
C5—C6—C7120.1 (3)H1A—O1W—H1B95.0
O1—C2—C3—N17.0 (4)C4—C5—C10—C9179.6 (3)
O2—C2—C3—N1174.4 (2)C8—C9—C10—C50.3 (5)
O1—C2—C3—C4132.5 (3)N4—C1—N1—N20.8 (3)
O2—C2—C3—C448.9 (3)N4—C1—N1—C3179.4 (2)
N1—C3—C4—C558.4 (3)C2—C3—N1—C168.8 (3)
C2—C3—C4—C5177.2 (2)C4—C3—N1—C157.5 (3)
C3—C4—C5—C10106.6 (3)C2—C3—N1—N2109.7 (3)
C3—C4—C5—C673.5 (3)C4—C3—N1—N2124.0 (3)
C10—C5—C6—C70.3 (5)C1—N1—N2—N30.4 (3)
C4—C5—C6—C7179.9 (3)C3—N1—N2—N3179.2 (2)
C5—C6—C7—C80.3 (5)N1—N2—N3—N40.0 (3)
C6—C7—C8—C90.6 (6)N1—C1—N4—N30.8 (4)
C7—C8—C9—C100.3 (6)N2—N3—N4—C10.5 (4)
C6—C5—C10—C90.6 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1Wi0.821.742.552 (2)174
O1W—H1B···N4ii0.921.982.903 (4)177
O1W—H1A···N3iii0.892.123.003 (3)171
Symmetry codes: (i) x, y+1, z; (ii) x+1/2, y, z+1/2; (iii) x+1/2, y, z1/2.

Experimental details

Crystal data
Chemical formulaC10H10N4O2·H2O
Mr236.24
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)293
a, b, c (Å)24.001 (4), 8.3769 (19), 5.7455 (11)
V3)1155.1 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.40 × 0.25 × 0.10
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.972, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
11450, 1461, 1237
Rint0.049
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.098, 1.11
No. of reflections1461
No. of parameters155
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.17

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL/PC (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1Wi0.821.742.552 (2)173.9
O1W—H1B···N4ii0.921.982.903 (4)177.3
O1W—H1A···N3iii0.892.123.003 (3)171.3
Symmetry codes: (i) x, y+1, z; (ii) x+1/2, y, z+1/2; (iii) x+1/2, y, z1/2.
 

Acknowledgements

This work was supported by the Young Researchers fund of Southeast University (grant No. 4007041027).

References

First citationGaponik, P. N., Voitekhovich, S. V. & Ivashkevich, O. A. (2006). Russ. Chem. Rev. 75, 507–540.  CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXiao, J., Wang, W. X., Lin, J. R. & Zhao, H. (2009). J. Mol. Struct. 933, 98–103.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhao, H., Qu, Z. R., Ye, H. Y. & Xiong, R. G. (2008). Chem. Soc. Rev. 37, 84–100.  Web of Science CrossRef PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds