organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 10| October 2010| Pages o2669-o2670

(Z)-3-(Anthracen-9-yl)-1-(2-eth­­oxy­phen­yl)prop-2-en-1-one

aCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: suchada.c@psu.ac.th

(Received 14 September 2010; accepted 24 September 2010; online 30 September 2010)

The mol­ecule of the title chalcone, C25H20O2, consisting of 2-eth­oxy­phenyl and anthracene rings bridged by a prop-2-en-1-one unit, is twisted and exists in the Z configuration with respect to the central C=C bond. The dihedral angle between the benzene and anthracene rings is 78.17 (9)°. The propene unit makes dihedral angles of 44.5 (2) and 81.1 (2)° with the benzene and anthracene rings, respectively. The eth­oxy substituent is almost coplanar with the attached benzene ring [C—O—C—C torsion angle = 178.57 (19)°]. In the crystal, mol­ecules are linked into chains along the a axis by weak C—H⋯O inter­actions. The crystal structure is further stabilized by C—H⋯π inter­actions.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For related structures, see: Chantrapromma et al. (2009[Chantrapromma, S., Horkaew, J., Suwunwong, T. & Fun, H.-K. (2009). Acta Cryst. E65, o2673-o2674.], 2010[Chantrapromma, S., Suwunwong, T., Boonnak, N. & Fun, H.-K. (2010). Acta Cryst. E66, o312-o313.]); Suwunwong et al. (2009[Suwunwong, T., Chantrapromma, S., Karalai, C., Pakdeevanich, P. & Fun, H.-K. (2009). Acta Cryst. E65, o420-o421.]). For background to and applications of chalcones, see: Kobkeatthawin et al. (2010[Kobkeatthawin, T., Chantrapromma, S. & Fun, H.-K. (2010). Acta Cryst. E66, o254-o255.]); Nowakowska (2007[Nowakowska, Z. (2007). Eur. J. Med. Chem. 42, 125-137.]); Oliveira et al. (2007[Oliveira, E., Vicente, M., Valencia, L., Macías, A., Bértolo, E., Bastida, R. & Lodeiro, C. (2007). Inorg. Chim. Acta, 360, 2734-2743.]); Patil & Dharmaprakash (2008[Patil, P. S. & Dharmaprakash, S. M. (2008). Mater. Lett. 62, 451-453.]); Saydam et al. (2003[Saydam, G., Aydin, H. H., Sahin, F., Kucukoglu, O., Erciyas, E., Terzioglu, E., Buyukkececi, F. & Omay, S. B. (2003). Leuk. Res. 27, 57-64.]); Svetlichny et al. (2007[Svetlichny, V. Y., Merola, F., Dobretsov, G. E., Gularyan, S. K. & Syrejshchikova, T. I. (2007). Chem. Phys. Lipids, 145, 13-26.]); Tewtrakul et al. (2003[Tewtrakul, S., Subhadhirasakul, S., Puripattanavong, J. & Panphadung, T. (2003). Songklanakarin J. Sci. Technol. 25, 503-508.]). For the stability of the temperature controller used in the data collection, see Cosier & Glazer, (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C25H20O2

  • Mr = 352.41

  • Orthorhombic, P 21 21 21

  • a = 5.4442 (1) Å

  • b = 10.7665 (2) Å

  • c = 32.2160 (7) Å

  • V = 1888.34 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.47 × 0.16 × 0.07 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.964, Tmax = 0.995

  • 18936 measured reflections

  • 3190 independent reflections

  • 2632 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.102

  • S = 1.04

  • 3190 reflections

  • 245 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C6 and C10–C11/C16–C18/C23 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3A⋯O1i 0.93 2.59 3.205 (3) 124
C8—H8A⋯O1ii 0.93 2.35 3.093 (2) 136
C9—H9ACg2ii 0.93 2.88 3.7609 (19) 160
C24—H24ACg1ii 0.97 2.86 3.739 (2) 151
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) x+1, y, z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Chalcones are an interesting class of compounds which have been reported to posses various useful properties. They have been studied for non-linear optical (Patil & Dharmaprakash, 2008), biological activities including anti-inflammatory, antileishmanial, antimicrobial, antioxidant (Nowakowska, 2007; Oliveira et al., 2007; Saydam et al., 2003) and HIV-1 protease inhibitory (Tewtrakul et al., 2003) as well as fluorescence properties (Kobkeatthawin et al., 2010; Svetlichny et al., 2007). We have previously reported the crystal structures of several chalcone derivatives containing the anthracene moiety which show interesting fluorescence properties (Suwunwong et al., 2009; Chantrapromma et al., 2009, 2010). Due to its various interesting properties the title chalcone derivative (I) was synthesized in order to study its NLO and fluorescence properties. The title compound crystallizes in the orthorhombic noncentrosymmetric space group P212121 and therefore it should exhibit second-order non-linear optic properties. In addition our experiment shows that (I) has fluorescence property. Herein the crystal structure of (I) is reported.

The molecule of (I) (Fig. 1) exists in an Z configuration respected to the C8C9 double bond [1.331 (3)°] and the C7–C8–C9–C10 torsion angle is 4.2 (3)°. The anthracene unit is essentially planar with the maximum deviation of -0.049 (2) Å for atom C10 [r.m.s. 0.0125 (2) Å]. The total molecule is twisted with the dihedral angle between benzene and anthracene rings of 78.17 (9)°. The mean plane through the propene unit (C7–C9) makes dihedral angles of 44.5 (2) and 81.1 (2)° with the benzene and anthracene rings, respectively. Atom O1 of the pro-2-en-1-one moiety is deviated from the propene plane as indicated by the torsion angle O1–C7–C8–C9 = 19.0 (3)°. The ethoxy substituent is coplanar with the attached benzene ring with the torsion angle C1–O2–C24–C25 = 178.57 (19)°. The bond distances are of normal values (Allen et al., 1987) and are comparable with those found in related structures (Chantrapromma et al., 2009; 2010; Suwunwong et al., 2009).

In the crystal packing, the molecules are linked into chains along the a axis through the prop-2-en-1-one unit by weak C—H···O interactions (Fig. 2). The crystal structure is further stabilized by C—H···π interactions (Table 1); Cg1 and Cg2 are the centroids of the C1–C6 and C10–C11/C16–C18/C23 rings, respectively.

Related literature top

For bond-length data, see: Allen et al. (1987). For related structures, see: Chantrapromma et al. (2009, 2010); Suwunwong et al. (2009). For background to and applications of chalcones, see: Kobkeatthawin et al. (2010); Nowakowska (2007); Oliveira et al. (2007); Patil & Dharmaprakash (2008); Saydam et al. (2003); Svetlichny et al. (2007); Tewtrakul et al. (2003). For the stability of the temperature controller used in the data collection, see Cosier & Glazer, (1986).

Experimental top

The title compound was synthesized by the condensation of anthracene-9-carbaldehyde (2 mmol, 0.41 g) with 2-ethoxyacetophenone (2 mmol, 0.33 g) in ethanol (40 ml) in the presence of NaOH(aq) (5 ml, 20%). After stirring for 4 hr at room temperature, a yellow solid appeared and was then collected by filtration, washed with distilled water and dried in air. Yellow plate-shaped single crystals of the title compound suitable for X-ray structure determination were recrystalized from methanol by slow evaporation of the solvent at room temperature after several days, Mp. 419–421 K.

Refinement top

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(C—H) = 0.93 Å for aromatic and CH, 0.97 Å for CH2 and 0.96 Å for CH3 atoms. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 0.80Å from atom C8 and the deepest hole is located at 0.76 Å from atom C10. A total of 2321 Friedel pairs were merged before final refinement as there is no large anomalous dispersion for the determination of the absolute configuration.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the b axis, showing chains running along the a axis. C—H···O weak interactions are shown as dashed lines.
(Z)-3-(Anthracen-9-yl)-1-(2-ethoxyphenyl)prop-2-en-1-one top
Crystal data top
C25H20O2Dx = 1.240 Mg m3
Mr = 352.41Melting point = 419–421 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3190 reflections
a = 5.4442 (1) Åθ = 2.0–30.0°
b = 10.7665 (2) ŵ = 0.08 mm1
c = 32.2160 (7) ÅT = 100 K
V = 1888.34 (6) Å3Plate, yellow
Z = 40.47 × 0.16 × 0.07 mm
F(000) = 744
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3190 independent reflections
Radiation source: sealed tube2632 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
ϕ and ω scansθmax = 30.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 77
Tmin = 0.964, Tmax = 0.995k = 1315
18936 measured reflectionsl = 3845
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.042P)2 + 0.4942P]
where P = (Fo2 + 2Fc2)/3
3190 reflections(Δ/σ)max = 0.001
245 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C25H20O2V = 1888.34 (6) Å3
Mr = 352.41Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.4442 (1) ŵ = 0.08 mm1
b = 10.7665 (2) ÅT = 100 K
c = 32.2160 (7) Å0.47 × 0.16 × 0.07 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3190 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2632 reflections with I > 2σ(I)
Tmin = 0.964, Tmax = 0.995Rint = 0.055
18936 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.04Δρmax = 0.29 e Å3
3190 reflectionsΔρmin = 0.19 e Å3
245 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 120.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0044 (2)0.12896 (14)0.83325 (4)0.0251 (3)
O20.5039 (3)0.11326 (13)0.80475 (4)0.0281 (3)
C10.3555 (4)0.08224 (18)0.77249 (6)0.0222 (4)
C20.3530 (4)0.1433 (2)0.73429 (6)0.0290 (5)
H2A0.46650.20570.72880.035*
C30.1806 (4)0.1105 (2)0.70459 (6)0.0311 (5)
H3A0.18050.15080.67910.037*
C40.0084 (4)0.0187 (2)0.71237 (6)0.0290 (4)
H4A0.10930.00130.69250.035*
C50.0135 (4)0.04316 (19)0.75010 (6)0.0242 (4)
H5A0.10190.10480.75540.029*
C60.1884 (3)0.01477 (17)0.78025 (5)0.0187 (4)
C70.1887 (3)0.08877 (17)0.81949 (6)0.0174 (4)
C80.4287 (3)0.11964 (17)0.83872 (6)0.0175 (4)
H8A0.56980.10840.82290.021*
C90.4541 (3)0.16241 (17)0.87726 (6)0.0193 (4)
H9A0.61140.18430.88580.023*
C100.2511 (3)0.17797 (19)0.90773 (5)0.0194 (4)
C110.1582 (3)0.07403 (18)0.92908 (6)0.0207 (4)
C120.2619 (4)0.04731 (19)0.92423 (6)0.0261 (4)
H12A0.39570.05850.90670.031*
C130.1672 (5)0.1464 (2)0.94501 (7)0.0326 (5)
H13A0.23860.22430.94190.039*
C140.0399 (5)0.1318 (2)0.97134 (7)0.0352 (5)
H14A0.10490.20060.98490.042*
C150.1435 (4)0.0192 (2)0.97689 (6)0.0317 (5)
H15A0.27870.01150.99430.038*
C160.0488 (4)0.0885 (2)0.95640 (6)0.0244 (4)
C170.1518 (4)0.2059 (2)0.96189 (6)0.0264 (4)
H17A0.28690.21470.97930.032*
C180.0574 (3)0.3102 (2)0.94196 (6)0.0239 (4)
C190.1629 (4)0.4308 (2)0.94695 (6)0.0304 (5)
H19A0.29900.44060.96410.036*
C200.0687 (4)0.5313 (2)0.92721 (7)0.0337 (5)
H20A0.14170.60870.93060.040*
C210.1408 (4)0.5188 (2)0.90134 (6)0.0301 (5)
H21A0.20720.58870.88860.036*
C220.2456 (4)0.40556 (19)0.89496 (6)0.0243 (4)
H22A0.38040.39880.87740.029*
C230.1515 (3)0.29688 (19)0.91489 (6)0.0211 (4)
C240.6799 (4)0.2118 (2)0.79972 (7)0.0326 (5)
H24A0.79190.19320.77710.039*
H24C0.59730.28960.79370.039*
C250.8164 (5)0.2200 (2)0.84010 (8)0.0457 (6)
H25C0.94910.27820.83740.069*
H25A0.70660.24730.86160.069*
H25B0.88100.13970.84720.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0146 (5)0.0381 (8)0.0226 (7)0.0038 (6)0.0007 (5)0.0056 (6)
O20.0291 (7)0.0251 (7)0.0299 (7)0.0092 (6)0.0045 (6)0.0046 (6)
C10.0216 (8)0.0224 (9)0.0226 (9)0.0010 (7)0.0011 (8)0.0015 (8)
C20.0299 (10)0.0262 (10)0.0310 (11)0.0021 (9)0.0050 (9)0.0109 (9)
C30.0395 (11)0.0340 (12)0.0199 (10)0.0130 (10)0.0033 (9)0.0074 (9)
C40.0300 (10)0.0369 (11)0.0200 (9)0.0085 (10)0.0058 (8)0.0006 (9)
C50.0207 (8)0.0299 (10)0.0221 (9)0.0045 (8)0.0010 (8)0.0010 (8)
C60.0161 (8)0.0231 (9)0.0170 (8)0.0028 (7)0.0015 (7)0.0006 (7)
C70.0150 (7)0.0214 (9)0.0160 (8)0.0003 (7)0.0002 (7)0.0013 (7)
C80.0119 (7)0.0207 (9)0.0198 (9)0.0012 (6)0.0013 (6)0.0015 (8)
C90.0127 (7)0.0260 (9)0.0190 (9)0.0005 (7)0.0004 (7)0.0010 (7)
C100.0157 (7)0.0304 (10)0.0122 (8)0.0002 (7)0.0028 (6)0.0014 (8)
C110.0188 (8)0.0299 (10)0.0133 (8)0.0035 (8)0.0024 (7)0.0004 (7)
C120.0255 (9)0.0312 (11)0.0216 (10)0.0014 (8)0.0018 (8)0.0027 (8)
C130.0406 (12)0.0299 (11)0.0272 (11)0.0053 (10)0.0069 (10)0.0046 (9)
C140.0441 (13)0.0390 (13)0.0226 (10)0.0184 (11)0.0001 (10)0.0055 (9)
C150.0301 (10)0.0476 (13)0.0173 (9)0.0124 (10)0.0012 (9)0.0003 (9)
C160.0213 (9)0.0395 (12)0.0123 (8)0.0058 (8)0.0012 (7)0.0020 (8)
C170.0181 (8)0.0472 (13)0.0138 (8)0.0011 (9)0.0001 (7)0.0051 (9)
C180.0199 (8)0.0377 (11)0.0141 (8)0.0039 (8)0.0037 (7)0.0066 (8)
C190.0267 (10)0.0450 (13)0.0195 (10)0.0115 (10)0.0039 (8)0.0102 (9)
C200.0374 (11)0.0362 (12)0.0275 (11)0.0151 (10)0.0078 (9)0.0084 (10)
C210.0365 (11)0.0303 (11)0.0234 (10)0.0042 (10)0.0066 (9)0.0016 (9)
C220.0256 (9)0.0307 (11)0.0165 (9)0.0025 (8)0.0031 (7)0.0003 (8)
C230.0186 (8)0.0304 (10)0.0143 (8)0.0012 (8)0.0047 (7)0.0026 (7)
C240.0318 (10)0.0232 (10)0.0427 (13)0.0091 (9)0.0012 (10)0.0019 (9)
C250.0477 (14)0.0398 (14)0.0496 (15)0.0210 (12)0.0065 (13)0.0051 (12)
Geometric parameters (Å, º) top
O1—C71.220 (2)C13—C141.420 (3)
O2—C11.358 (2)C13—H13A0.9300
O2—C241.438 (2)C14—C151.349 (3)
C1—C21.395 (3)C14—H14A0.9300
C1—C61.407 (3)C15—C161.430 (3)
C2—C31.386 (3)C15—H15A0.9300
C2—H2A0.9300C16—C171.394 (3)
C3—C41.386 (3)C17—C181.392 (3)
C3—H3A0.9300C17—H17A0.9300
C4—C51.386 (3)C18—C191.429 (3)
C4—H4A0.9300C18—C231.440 (3)
C5—C61.394 (3)C19—C201.356 (3)
C5—H5A0.9300C19—H19A0.9300
C6—C71.494 (3)C20—C211.419 (3)
C7—C81.483 (2)C20—H20A0.9300
C8—C91.331 (3)C21—C221.362 (3)
C8—H8A0.9300C21—H21A0.9300
C9—C101.488 (2)C22—C231.430 (3)
C9—H9A0.9300C22—H22A0.9300
C10—C111.408 (3)C24—C251.501 (3)
C10—C231.409 (3)C24—H24A0.9700
C11—C121.432 (3)C24—H24C0.9700
C11—C161.438 (3)C25—H25C0.9600
C12—C131.361 (3)C25—H25A0.9600
C12—H12A0.9300C25—H25B0.9600
C1—O2—C24119.44 (16)C15—C14—H14A119.6
O2—C1—C2124.38 (18)C13—C14—H14A119.6
O2—C1—C6115.55 (16)C14—C15—C16121.1 (2)
C2—C1—C6120.01 (18)C14—C15—H15A119.4
C3—C2—C1119.7 (2)C16—C15—H15A119.4
C3—C2—H2A120.2C17—C16—C15122.11 (18)
C1—C2—H2A120.2C17—C16—C11119.38 (19)
C4—C3—C2121.02 (19)C15—C16—C11118.5 (2)
C4—C3—H3A119.5C18—C17—C16121.65 (18)
C2—C3—H3A119.5C18—C17—H17A119.2
C5—C4—C3119.2 (2)C16—C17—H17A119.2
C5—C4—H4A120.4C17—C18—C19122.20 (18)
C3—C4—H4A120.4C17—C18—C23119.37 (19)
C4—C5—C6121.3 (2)C19—C18—C23118.42 (19)
C4—C5—H5A119.3C20—C19—C18121.36 (19)
C6—C5—H5A119.3C20—C19—H19A119.3
C5—C6—C1118.72 (17)C18—C19—H19A119.3
C5—C6—C7118.25 (16)C19—C20—C21120.3 (2)
C1—C6—C7123.03 (16)C19—C20—H20A119.9
O1—C7—C8121.85 (16)C21—C20—H20A119.9
O1—C7—C6119.69 (16)C22—C21—C20120.7 (2)
C8—C7—C6118.27 (15)C22—C21—H21A119.7
C9—C8—C7123.95 (16)C20—C21—H21A119.7
C9—C8—H8A118.0C21—C22—C23120.98 (19)
C7—C8—H8A118.0C21—C22—H22A119.5
C8—C9—C10125.25 (16)C23—C22—H22A119.5
C8—C9—H9A117.4C10—C23—C22122.13 (17)
C10—C9—H9A117.4C10—C23—C18119.57 (18)
C11—C10—C23120.25 (16)C22—C23—C18118.26 (18)
C11—C10—C9119.99 (17)O2—C24—C25106.01 (18)
C23—C10—C9119.76 (17)O2—C24—H24A110.5
C10—C11—C12122.03 (17)C25—C24—H24A110.5
C10—C11—C16119.65 (18)O2—C24—H24C110.5
C12—C11—C16118.32 (18)C25—C24—H24C110.5
C13—C12—C11120.80 (19)H24A—C24—H24C108.7
C13—C12—H12A119.6C24—C25—H25C109.5
C11—C12—H12A119.6C24—C25—H25A109.5
C12—C13—C14120.5 (2)H25C—C25—H25A109.5
C12—C13—H13A119.7C24—C25—H25B109.5
C14—C13—H13A119.7H25C—C25—H25B109.5
C15—C14—C13120.7 (2)H25A—C25—H25B109.5
C24—O2—C1—C22.8 (3)C12—C13—C14—C151.3 (3)
C24—O2—C1—C6179.74 (18)C13—C14—C15—C160.2 (3)
O2—C1—C2—C3174.88 (19)C14—C15—C16—C17179.5 (2)
C6—C1—C2—C32.0 (3)C14—C15—C16—C110.9 (3)
C1—C2—C3—C40.7 (3)C10—C11—C16—C171.1 (3)
C2—C3—C4—C51.6 (3)C12—C11—C16—C17179.48 (18)
C3—C4—C5—C60.0 (3)C10—C11—C16—C15178.43 (17)
C4—C5—C6—C12.6 (3)C12—C11—C16—C150.9 (3)
C4—C5—C6—C7177.64 (18)C15—C16—C17—C18179.67 (18)
O2—C1—C6—C5173.54 (17)C11—C16—C17—C180.8 (3)
C2—C1—C6—C53.6 (3)C16—C17—C18—C19179.27 (18)
O2—C1—C6—C76.2 (3)C16—C17—C18—C230.1 (3)
C2—C1—C6—C7176.71 (18)C17—C18—C19—C20179.9 (2)
C5—C6—C7—O132.2 (3)C23—C18—C19—C200.7 (3)
C1—C6—C7—O1147.54 (19)C18—C19—C20—C210.8 (3)
C5—C6—C7—C8142.93 (18)C19—C20—C21—C222.0 (3)
C1—C6—C7—C837.4 (3)C20—C21—C22—C231.5 (3)
O1—C7—C8—C919.0 (3)C11—C10—C23—C22177.84 (18)
C6—C7—C8—C9166.01 (18)C9—C10—C23—C222.6 (3)
C7—C8—C9—C104.2 (3)C11—C10—C23—C184.4 (3)
C8—C9—C10—C1178.2 (2)C9—C10—C23—C18175.19 (16)
C8—C9—C10—C23101.4 (2)C21—C22—C23—C10177.78 (18)
C23—C10—C11—C12176.92 (18)C21—C22—C23—C180.0 (3)
C9—C10—C11—C123.5 (3)C17—C18—C23—C102.5 (3)
C23—C10—C11—C163.7 (3)C19—C18—C23—C10176.73 (17)
C9—C10—C11—C16175.84 (16)C17—C18—C23—C22179.67 (18)
C10—C11—C12—C13179.47 (19)C19—C18—C23—C221.1 (3)
C16—C11—C12—C130.1 (3)C1—O2—C24—C25178.57 (19)
C11—C12—C13—C141.2 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C10–C11/C16–C18/C23 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C3—H3A···O1i0.932.593.205 (3)124
C8—H8A···O1ii0.932.353.093 (2)136
C9—H9A···Cg2ii0.932.883.7609 (19)160
C24—H24A···Cg1ii0.972.863.739 (2)151
Symmetry codes: (i) x, y1/2, z+3/2; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC25H20O2
Mr352.41
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)5.4442 (1), 10.7665 (2), 32.2160 (7)
V3)1888.34 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.47 × 0.16 × 0.07
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.964, 0.995
No. of measured, independent and
observed [I > 2σ(I)] reflections
18936, 3190, 2632
Rint0.055
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.102, 1.04
No. of reflections3190
No. of parameters245
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.19

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C10–C11/C16–C18/C23 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C3—H3A···O1i0.932.593.205 (3)124
C8—H8A···O1ii0.932.353.093 (2)136
C9—H9A···Cg2ii0.932.883.7609 (19)160
C24—H24A···Cg1ii0.972.863.739 (2)151
Symmetry codes: (i) x, y1/2, z+3/2; (ii) x+1, y, z.
 

Footnotes

This paper is dedicated to the late His Royal Highness Prince Mahidol of Songkla for his contributions to the development of medical education in Thailand on the occasion of Mahidol Day which falls on the 24th September.

Thomson Reuters ResearcherID: A-5085-2009.

§Additional correspondence author, e-mail: hkfun@usm.my. Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

JJ thanks the Development and Promotion of Science and Technology Talents Project (DPST) for a study grant. The authors thank the Prince of Songkla University for financial support and Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChantrapromma, S., Horkaew, J., Suwunwong, T. & Fun, H.-K. (2009). Acta Cryst. E65, o2673–o2674.  Web of Science CrossRef IUCr Journals Google Scholar
First citationChantrapromma, S., Suwunwong, T., Boonnak, N. & Fun, H.-K. (2010). Acta Cryst. E66, o312–o313.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKobkeatthawin, T., Chantrapromma, S. & Fun, H.-K. (2010). Acta Cryst. E66, o254–o255.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNowakowska, Z. (2007). Eur. J. Med. Chem. 42, 125–137.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOliveira, E., Vicente, M., Valencia, L., Macías, A., Bértolo, E., Bastida, R. & Lodeiro, C. (2007). Inorg. Chim. Acta, 360, 2734–2743.  Web of Science CrossRef CAS Google Scholar
First citationPatil, P. S. & Dharmaprakash, S. M. (2008). Mater. Lett. 62, 451–453.  Web of Science CrossRef CAS Google Scholar
First citationSaydam, G., Aydin, H. H., Sahin, F., Kucukoglu, O., Erciyas, E., Terzioglu, E., Buyukkececi, F. & Omay, S. B. (2003). Leuk. Res. 27, 57–64.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuwunwong, T., Chantrapromma, S., Karalai, C., Pakdeevanich, P. & Fun, H.-K. (2009). Acta Cryst. E65, o420–o421.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSvetlichny, V. Y., Merola, F., Dobretsov, G. E., Gularyan, S. K. & Syrejshchikova, T. I. (2007). Chem. Phys. Lipids, 145, 13–26.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTewtrakul, S., Subhadhirasakul, S., Puripattanavong, J. & Panphadung, T. (2003). Songklanakarin J. Sci. Technol. 25, 503–508.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 10| October 2010| Pages o2669-o2670
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds