metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 10| October 2010| Pages m1318-m1319

Bis(9-amino­acridinium) bis­­(pyridine-2,6-di­carboxyl­ato)cuprate(II) trihydrate

aFaculty of Chemistry, Islamic Azad University, North Tehran Branch, Tehran, Iran, bDepartment of Chemistry, School of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran, and cDepartement of Chemistry, Shahid Beheshti University, G. C., Evin, Tehran 1983963113, Iran
*Correspondence e-mail: haghabozorg@yahoo.com

(Received 6 August 2010; accepted 19 September 2010; online 30 September 2010)

The asymmetric unit of the title compound, (C13H11N2)2[Cu(C7H3NO4)2]·3H2O or (9-aminoAcr)[Cu(pydc)2]·3H2O, contains a Cu(pydc)2 (pydc = pyridine-2,6-dicarboxyl­ate) anion, two protonated 9-amino­acridine (9-aminoAcr)+ counter-ions and three uncoordinated water mol­ecules. The anion contains a six-coordinated Cu(II) atom within a distorted octa­hedral geometry. Non-covalent inter­actions i.e. N—H⋯O and O—H⋯O hydrogen bonds and inter­molecular ππ contacts between the pyridine rings [centroid–centroid distance = 3.7773 (13) Å] and acridine rings [centroid–centroid distance = 3.4897 (13), 3.7784 (14) and 3.8627 (15) Å] result in the formation of a three-dimensional network.

Related literature

For related structures, see: Aghabozorg et al. (2008[Aghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc. 5, 184-227.], 2010[Aghabozorg, H., Eshtiagh-Hosseini, H., Salimi, A. R. & Mirzaei, M. (2010). J. Iran. Chem. Soc. 7, 289-300.]); Eshtiagh-Hosseini et al. (2010[Eshtiagh-Hosseini, H., Aghabozorg, H. & Mirzaei, M. (2010). Acta Cryst. E66, m882.]); Tabatabaee et al. (2009[Tabatabaee, M., Aghabozorg, H., Attar Gharamaleki, J. & Sharif, M. A. (2009). Acta Cryst. E65, m473-m474.]). An independent determination of the title compound is reported in the preceeding paper by Derikvand et al. (2010[Derikvand, Z., Attar Gharamaleki, J. & Stoeckli-Evans, H. (2010). Acta Cryst. E66, m1316-m1317.]).

[Scheme 1]

Experimental

Crystal data
  • (C13H11N2)2[Cu(C7H3NO4)2]·3H2O

  • Mr = 838.27

  • Triclinic, [P \overline 1]

  • a = 10.921 (2) Å

  • b = 13.299 (3) Å

  • c = 14.008 (3) Å

  • α = 102.09 (3)°

  • β = 103.96 (3)°

  • γ = 105.38 (3)°

  • V = 1820.6 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.67 mm−1

  • T = 298 K

  • 0.38 × 0.30 × 0.25 mm

Data collection
  • STOE IPDS II diffractometer

  • Absorption correction: numerical [shape of crystal determined optically (X-RED32 and X-SHAPE; Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA, X-SHAPE and X-RED32. Stoe & Cie, Darmstadt, Germany.])] Tmin = 0.787, Tmax = 0.849

  • 21686 measured reflections

  • 9767 independent reflections

  • 7989 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.094

  • S = 1.03

  • 9767 reflections

  • 571 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O7 0.87 (4) 1.98 (4) 2.832 (2) 167 (4)
O1W—H1WB⋯O4i 0.74 (4) 2.14 (4) 2.877 (3) 175 (4)
O2W—H2WA⋯O8ii 0.84 (3) 1.98 (3) 2.820 (3) 174 (3)
O2W—H2WB⋯O8 0.84 (4) 1.98 (4) 2.810 (3) 174 (4)
O3W—H3WA⋯O2iii 0.79 (3) 2.01 (3) 2.787 (3) 169 (3)
O3W—H3WB⋯O2Wiv 0.84 (3) 1.89 (3) 2.730 (3) 175 (3)
N3—H3B⋯O6 0.83 (2) 1.88 (2) 2.716 (2) 179 (3)
N4—H4B⋯O1Wv 0.89 (3) 2.09 (3) 2.938 (3) 158 (2)
N4—H4C⋯O8v 0.77 (3) 2.27 (3) 2.972 (2) 152 (3)
N5—H5B⋯O3W 0.80 (2) 1.91 (2) 2.703 (2) 173 (2)
N6—H6A⋯O2vi 0.87 (2) 1.97 (2) 2.819 (2) 164 (2)
N6—H6B⋯O5 0.83 (3) 2.11 (3) 2.888 (2) 158 (2)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y+2, -z+1; (iii) x, y, z+1; (iv) -x+2, -y+2, -z+2; (v) x+1, y, z+1; (vi) -x+2, -y+1, -z+1.

Data collection: X-AREA (Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA, X-SHAPE and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

PydcH2 as achelating ligand with steric hindrance and weak stacking interactions can offer possibilities to form coordination polymers or dimers through carboxylate bridging. It is known that this ligand exhibits various coordination modes with possible monodentate, bidentate, tridentate, or bridging in transitionmetal-pydc complexes, depending on the prescence of whether the divalent anionic (pydc)2-, protonated anionic (pydcH)- or fully protonated (pydcH2). In recent years, our research group has been interested in the synthesis of proton transfer compounds including different dicarboxylic acid especially pydcH2 bearing a number of organic donor ligands containing N, S, and O atoms and in the study of their behavior with diverse metal ions. In this regard, we have reported some proton transfer compounds with acridine (Tabatabaee et al., 2009, Eshtiagh-Hosseini et al., 2010) and proton transfer compounds with various donor and acceptor fragments (further details and related literature see Aghabozorg et al., 2008). We describe here the crystal structure of a new coordination compound based upon CuII atom, pydcH2, and 9-aminoAcr. The title compound contains a [Cu(pydc)2]2- anion, two (9-aminoAcr)+ and three uncoordinated water molecules (Fig. 1). In the anion fragment, the CuII atom is six-coordinated by two N atoms (N1 and N2) and four O atoms (O1, O3, O5 and O7) from the carboxylate groups of two (pydc)2- ligands, with bond length ranges of 1.9128 (15)–2.3509 (16) Å. The N1—Cu1—N2 [174.31 (6)°], O1—Cu1—O3 [159.47 (5)°] and O5—Cu1—O7 [151.61 (5)°] angles show that the four carboxylate groups of the two (pydc)2- ligands orient in a flattened tetrahedral arrangement around the central atom. The coordination environment around CuII is distorted octahedral.

In the crystal structure, intermolecular O—H···O and N—H···O hydrogen bonds (Table 1) and π···π contacts between pyridine rings Cg1···Cg1i [symmetry code: (i) 2 - x, 2 - y,1 - z, where Cg1 is the centroid of ring N2/C9—C13] and between adjacent acridine rings with centroid-centroid distances between 3.4897 (13) and 3.8627 (15) Å (Fig. 2) stabilize the structure. Furthermore water molecules acting as good gluing factors increase the stability of the crystalline network; further details and related literature about water clusters has been presented in a review article (Aghabozorg et al., 2010).

Related literature top

For related structures, see: Aghabozorg et al. (2008, 2010); Eshtiagh-Hosseini et al. (2010); Tabatabaee et al. (2009). An independent determination of the title compound is reported in the preceeding paper by Derikvand et al. (2010).

Experimental top

The reaction of copperII nitrate trihydrate (241 mg, 1 mmol), 9-aminoAcr (389 mg, 2 mmol) and pydcH2 (334 mg, 2 mmol) in a 1:2:2 molar ratio in aqueous/ethanolic solution resulted in the formation of green block (9-aminoAcr)+2.[Cu(pydc)2].3H2O crystals.

Refinement top

C-bound H-atoms were positioned geometrically, with C—H=0.93Å and constrained to ride on their parent atoms with Uiso(H)=1.2Ueq. N-H and O-H (water) H-atoms were located in a difference Fourier map and then refined isotropically.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA (Stoe & Cie, 2005); data reduction: X-AREA (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Extensive π···π stacking interaction between aromatic rings of 9-aminoAcr ions, (9-aminoAcr)+, with centroid-centroid distances ranging from 3.4897 (13)–3.8627 (15) Å. Cg denotes the ring centroid; Cg1=N2/C9-C13, Cg2=C15-C20, Cg3=N3/C15/C20-C22/C27, Cg4=C22-C27, Cg5=C35-C40, Cg6=N5/C28/C33-C35/C40, Cg7=C28-C33. [Symmetry codes : (i) 2-x, 2-y, 1-z; (ii) 2-x, 1-y, 2-z]
Bis(9-aminoacridinium) bis(pyridine-2,6-dicarboxylato)cuprate(II) trihydrate top
Crystal data top
(C13H11N2)2[Cu(C7H3NO4)2]·3H2OZ = 2
Mr = 838.27F(000) = 866
Triclinic, P1Dx = 1.529 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.921 (2) ÅCell parameters from 342 reflections
b = 13.299 (3) Åθ = 1.7–29.3°
c = 14.008 (3) ŵ = 0.67 mm1
α = 102.09 (3)°T = 298 K
β = 103.96 (3)°Block, green
γ = 105.38 (3)°0.38 × 0.30 × 0.25 mm
V = 1820.6 (9) Å3
Data collection top
STOE IPDS II
diffractometer
9767 independent reflections
Radiation source: fine-focus sealed tube7989 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 0.15 mm pixels mm-1θmax = 29.3°, θmin = 1.7°
rotation method scansh = 1414
Absorption correction: numerical
[shape of crystal determined optically (X-RED32 and X-SHAPE; Stoe & Cie, 2005)]
k = 1817
Tmin = 0.787, Tmax = 0.849l = 1919
21686 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0426P)2 + 0.6394P]
where P = (Fo2 + 2Fc2)/3
9767 reflections(Δ/σ)max = 0.009
571 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
(C13H11N2)2[Cu(C7H3NO4)2]·3H2Oγ = 105.38 (3)°
Mr = 838.27V = 1820.6 (9) Å3
Triclinic, P1Z = 2
a = 10.921 (2) ÅMo Kα radiation
b = 13.299 (3) ŵ = 0.67 mm1
c = 14.008 (3) ÅT = 298 K
α = 102.09 (3)°0.38 × 0.30 × 0.25 mm
β = 103.96 (3)°
Data collection top
STOE IPDS II
diffractometer
9767 independent reflections
Absorption correction: numerical
[shape of crystal determined optically (X-RED32 and X-SHAPE; Stoe & Cie, 2005)]
7989 reflections with I > 2σ(I)
Tmin = 0.787, Tmax = 0.849Rint = 0.027
21686 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.25 e Å3
9767 reflectionsΔρmin = 0.38 e Å3
571 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.92667 (19)0.60711 (13)0.42626 (12)0.0349 (3)
C20.82734 (19)0.52885 (13)0.45838 (12)0.0336 (3)
C30.7771 (2)0.41642 (14)0.42011 (14)0.0434 (4)
H30.80500.37970.36990.052*
C40.6839 (2)0.36009 (15)0.45865 (16)0.0518 (5)
H40.64830.28440.43380.062*
C50.6433 (2)0.41524 (15)0.53371 (16)0.0479 (5)
H50.57930.37770.55860.057*
C60.70022 (19)0.52775 (14)0.57088 (13)0.0365 (4)
C70.6773 (2)0.60503 (15)0.65600 (14)0.0405 (4)
C81.12179 (19)0.88335 (15)0.73752 (13)0.0374 (4)
C91.05336 (17)0.95035 (13)0.68217 (12)0.0300 (3)
C101.11455 (18)1.06105 (14)0.69997 (13)0.0359 (4)
H101.20071.09690.74560.043*
C111.04499 (19)1.11726 (13)0.64861 (14)0.0375 (4)
H111.08441.19140.65850.045*
C120.91678 (18)1.06222 (13)0.58267 (13)0.0333 (3)
H120.86811.09900.54850.040*
C130.86124 (17)0.95140 (12)0.56785 (12)0.0289 (3)
C140.72275 (18)0.88280 (14)0.49429 (13)0.0347 (3)
C151.37185 (16)0.95961 (13)1.07213 (13)0.0324 (3)
C161.32913 (19)1.05136 (15)1.07799 (16)0.0418 (4)
H161.29231.06731.01820.050*
C171.3422 (2)1.11666 (16)1.17189 (18)0.0495 (5)
H171.31371.17691.17560.059*
C181.3977 (2)1.09398 (18)1.26218 (17)0.0540 (5)
H181.40551.13891.32550.065*
C191.4404 (2)1.00637 (17)1.25805 (15)0.0478 (5)
H191.47770.99241.31880.057*
C201.42907 (17)0.93619 (14)1.16281 (13)0.0356 (3)
C211.46778 (17)0.84053 (14)1.15464 (13)0.0341 (3)
C221.45007 (16)0.77425 (13)1.05444 (13)0.0312 (3)
C231.48653 (18)0.67858 (15)1.03790 (15)0.0387 (4)
H231.52440.65731.09390.046*
C241.4666 (2)0.61789 (16)0.94107 (16)0.0437 (4)
H241.48930.55470.93130.052*
C251.4119 (2)0.64989 (16)0.85545 (15)0.0441 (4)
H251.40050.60840.78960.053*
C261.37570 (19)0.74056 (15)0.86782 (14)0.0386 (4)
H261.33900.76070.81070.046*
C271.39373 (16)0.80415 (13)0.96740 (13)0.0308 (3)
C281.17771 (16)0.58124 (14)1.05864 (13)0.0338 (3)
C291.23228 (18)0.51486 (17)1.10920 (16)0.0436 (4)
H291.25970.53321.18060.052*
C301.24485 (19)0.42350 (17)1.05313 (18)0.0492 (5)
H301.27950.37891.08660.059*
C311.2062 (2)0.39600 (16)0.94593 (19)0.0476 (5)
H311.21610.33360.90870.057*
C321.15397 (18)0.46015 (14)0.89518 (15)0.0384 (4)
H321.12940.44150.82380.046*
C331.13709 (16)0.55450 (13)0.95054 (13)0.0308 (3)
C341.08234 (16)0.62463 (12)0.90149 (12)0.0288 (3)
C351.06314 (16)0.71546 (13)0.96518 (12)0.0302 (3)
C360.99460 (19)0.78033 (14)0.92334 (14)0.0368 (4)
H360.96280.76630.85240.044*
C370.9746 (2)0.86353 (15)0.98634 (17)0.0467 (5)
H370.92810.90520.95810.056*
C381.0236 (2)0.88633 (16)1.09302 (17)0.0517 (5)
H381.01170.94471.13510.062*
C391.0883 (2)0.82497 (16)1.13650 (15)0.0455 (4)
H391.12000.84091.20770.055*
C401.10684 (17)0.73667 (14)1.07256 (13)0.0339 (3)
N10.78860 (15)0.57997 (11)0.53151 (10)0.0326 (3)
N20.93015 (14)0.89696 (10)0.61670 (10)0.0279 (3)
N31.35654 (15)0.89429 (12)0.97868 (11)0.0333 (3)
H3B1.318 (2)0.9069 (17)0.9258 (18)0.042 (6)*
N41.51724 (19)0.81276 (16)1.23737 (14)0.0467 (4)
H4B1.528 (2)0.748 (2)1.2318 (19)0.057 (7)*
H4C1.528 (3)0.850 (2)1.291 (2)0.067 (8)*
N51.16460 (15)0.67181 (13)1.11570 (12)0.0373 (3)
H5B1.176 (2)0.6785 (19)1.1757 (19)0.048 (6)*
N61.04770 (17)0.60697 (13)0.80144 (12)0.0378 (3)
H6A1.054 (2)0.5511 (19)0.7603 (17)0.044 (6)*
H6B1.030 (2)0.654 (2)0.7758 (19)0.054 (7)*
O10.95524 (15)0.70686 (9)0.47217 (10)0.0418 (3)
O20.97283 (16)0.57032 (11)0.35961 (11)0.0493 (3)
O30.74543 (16)0.70499 (11)0.67476 (11)0.0478 (3)
O40.59948 (17)0.56796 (13)0.70047 (12)0.0566 (4)
O51.06120 (15)0.78245 (10)0.70856 (10)0.0442 (3)
O61.22946 (16)0.93578 (13)0.80681 (12)0.0601 (4)
O70.69467 (15)0.78226 (10)0.47402 (11)0.0497 (3)
O80.64709 (14)0.93215 (11)0.45968 (11)0.0454 (3)
O1W0.5812 (2)0.62222 (17)0.27969 (14)0.0649 (5)
H1WA0.618 (3)0.663 (3)0.343 (3)0.082 (10)*
H1WB0.538 (3)0.574 (3)0.288 (3)0.085 (12)*
O2W0.61462 (19)1.13490 (14)0.52765 (15)0.0605 (4)
H2WA0.536 (3)1.119 (2)0.531 (2)0.069 (9)*
H2WB0.627 (3)1.075 (3)0.512 (3)0.091 (11)*
O3W1.1854 (2)0.70163 (17)1.31659 (12)0.0679 (5)
H3WA1.132 (3)0.668 (2)1.337 (2)0.063 (8)*
H3WB1.248 (3)0.749 (2)1.366 (2)0.066 (8)*
Cu10.85947 (2)0.735741 (15)0.580449 (16)0.03269 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0476 (10)0.0303 (7)0.0268 (7)0.0145 (7)0.0114 (7)0.0070 (6)
C20.0465 (10)0.0275 (7)0.0262 (7)0.0145 (7)0.0087 (7)0.0069 (6)
C30.0631 (12)0.0274 (8)0.0353 (9)0.0142 (8)0.0131 (9)0.0040 (7)
C40.0692 (14)0.0252 (8)0.0489 (11)0.0057 (8)0.0124 (10)0.0064 (7)
C50.0574 (12)0.0342 (9)0.0487 (11)0.0061 (8)0.0179 (10)0.0156 (8)
C60.0449 (10)0.0332 (8)0.0330 (8)0.0125 (7)0.0117 (7)0.0144 (7)
C70.0496 (11)0.0411 (9)0.0363 (9)0.0173 (8)0.0176 (8)0.0153 (7)
C80.0445 (10)0.0427 (9)0.0312 (8)0.0203 (8)0.0099 (7)0.0182 (7)
C90.0377 (8)0.0313 (7)0.0243 (7)0.0147 (6)0.0103 (6)0.0098 (6)
C100.0358 (9)0.0340 (8)0.0330 (8)0.0080 (7)0.0057 (7)0.0102 (6)
C110.0452 (10)0.0275 (7)0.0399 (9)0.0103 (7)0.0131 (8)0.0125 (7)
C120.0421 (9)0.0297 (7)0.0338 (8)0.0179 (7)0.0118 (7)0.0134 (6)
C130.0368 (8)0.0278 (7)0.0258 (7)0.0158 (6)0.0105 (6)0.0079 (5)
C140.0388 (9)0.0341 (8)0.0302 (8)0.0141 (7)0.0078 (7)0.0088 (6)
C150.0272 (8)0.0317 (7)0.0355 (8)0.0074 (6)0.0078 (6)0.0098 (6)
C160.0402 (10)0.0376 (9)0.0483 (10)0.0147 (7)0.0123 (8)0.0139 (8)
C170.0500 (12)0.0358 (9)0.0604 (13)0.0164 (8)0.0178 (10)0.0059 (8)
C180.0597 (13)0.0473 (11)0.0450 (11)0.0165 (10)0.0130 (10)0.0011 (9)
C190.0531 (12)0.0484 (11)0.0329 (9)0.0151 (9)0.0063 (8)0.0039 (8)
C200.0327 (8)0.0362 (8)0.0331 (8)0.0085 (7)0.0068 (7)0.0081 (7)
C210.0269 (8)0.0380 (8)0.0327 (8)0.0073 (6)0.0045 (6)0.0110 (7)
C220.0256 (7)0.0339 (8)0.0339 (8)0.0097 (6)0.0075 (6)0.0120 (6)
C230.0327 (9)0.0425 (9)0.0452 (10)0.0172 (7)0.0105 (8)0.0173 (8)
C240.0392 (10)0.0427 (9)0.0541 (11)0.0202 (8)0.0176 (9)0.0124 (8)
C250.0465 (11)0.0472 (10)0.0386 (9)0.0188 (8)0.0157 (8)0.0059 (8)
C260.0394 (9)0.0441 (9)0.0321 (8)0.0153 (8)0.0097 (7)0.0107 (7)
C270.0251 (7)0.0333 (7)0.0329 (8)0.0081 (6)0.0083 (6)0.0103 (6)
C280.0247 (8)0.0403 (8)0.0370 (8)0.0071 (6)0.0103 (7)0.0168 (7)
C290.0315 (9)0.0562 (11)0.0479 (10)0.0122 (8)0.0106 (8)0.0303 (9)
C300.0346 (10)0.0521 (11)0.0726 (14)0.0173 (8)0.0172 (10)0.0382 (11)
C310.0388 (10)0.0374 (9)0.0721 (14)0.0165 (8)0.0181 (10)0.0214 (9)
C320.0366 (9)0.0340 (8)0.0459 (10)0.0139 (7)0.0129 (8)0.0119 (7)
C330.0274 (8)0.0309 (7)0.0359 (8)0.0089 (6)0.0112 (6)0.0126 (6)
C340.0276 (7)0.0285 (7)0.0297 (7)0.0082 (6)0.0105 (6)0.0076 (6)
C350.0304 (8)0.0289 (7)0.0313 (8)0.0085 (6)0.0122 (6)0.0077 (6)
C360.0413 (9)0.0339 (8)0.0383 (9)0.0145 (7)0.0157 (8)0.0110 (7)
C370.0541 (12)0.0359 (9)0.0586 (12)0.0215 (8)0.0256 (10)0.0137 (8)
C380.0686 (14)0.0380 (9)0.0547 (12)0.0198 (9)0.0348 (11)0.0055 (8)
C390.0558 (12)0.0419 (9)0.0355 (9)0.0106 (8)0.0217 (9)0.0033 (7)
C400.0319 (8)0.0351 (8)0.0319 (8)0.0062 (6)0.0128 (7)0.0072 (6)
N10.0453 (8)0.0257 (6)0.0286 (6)0.0130 (6)0.0116 (6)0.0098 (5)
N20.0364 (7)0.0258 (6)0.0236 (6)0.0139 (5)0.0095 (5)0.0069 (5)
N30.0337 (7)0.0358 (7)0.0306 (7)0.0125 (6)0.0070 (6)0.0125 (6)
N40.0556 (11)0.0490 (10)0.0319 (8)0.0210 (8)0.0027 (7)0.0129 (7)
N50.0361 (8)0.0462 (8)0.0268 (7)0.0098 (6)0.0092 (6)0.0106 (6)
N60.0538 (10)0.0346 (7)0.0295 (7)0.0224 (7)0.0134 (7)0.0085 (6)
O10.0649 (9)0.0268 (5)0.0394 (7)0.0151 (6)0.0258 (6)0.0101 (5)
O20.0661 (9)0.0417 (7)0.0405 (7)0.0155 (6)0.0283 (7)0.0026 (6)
O30.0672 (9)0.0363 (6)0.0461 (7)0.0177 (6)0.0302 (7)0.0097 (6)
O40.0685 (10)0.0577 (9)0.0557 (9)0.0193 (8)0.0371 (8)0.0230 (7)
O50.0600 (9)0.0390 (7)0.0414 (7)0.0248 (6)0.0132 (6)0.0202 (5)
O60.0558 (9)0.0604 (9)0.0535 (9)0.0176 (7)0.0084 (7)0.0267 (7)
O70.0516 (8)0.0318 (6)0.0496 (8)0.0099 (6)0.0026 (7)0.0055 (6)
O80.0411 (7)0.0431 (7)0.0471 (7)0.0201 (6)0.0009 (6)0.0107 (6)
O1W0.0835 (13)0.0531 (10)0.0467 (9)0.0119 (9)0.0106 (9)0.0166 (8)
O2W0.0492 (10)0.0411 (8)0.0809 (12)0.0085 (7)0.0180 (9)0.0082 (8)
O3W0.0691 (12)0.0796 (12)0.0318 (8)0.0060 (10)0.0135 (8)0.0114 (8)
Cu10.04830 (13)0.02337 (9)0.02931 (10)0.01400 (8)0.01495 (9)0.00781 (7)
Geometric parameters (Å, º) top
C1—O21.238 (2)C24—H240.9300
C1—O11.264 (2)C25—C261.356 (3)
C1—C21.515 (2)C25—H250.9300
C2—N11.327 (2)C26—C271.409 (2)
C2—C31.382 (2)C26—H260.9300
C3—C41.385 (3)C27—N31.355 (2)
C3—H30.9300C28—N51.361 (2)
C4—C51.384 (3)C28—C291.405 (3)
C4—H40.9300C28—C331.408 (2)
C5—C61.386 (3)C29—C301.361 (3)
C5—H50.9300C29—H290.9300
C6—N11.334 (2)C30—C311.396 (3)
C6—C71.519 (3)C30—H300.9300
C7—O41.231 (2)C31—C321.370 (3)
C7—O31.275 (2)C31—H310.9300
C8—O61.242 (2)C32—C331.412 (2)
C8—O51.255 (2)C32—H320.9300
C8—C91.522 (2)C33—C341.437 (2)
C9—N21.334 (2)C34—N61.312 (2)
C9—C101.386 (2)C34—C351.439 (2)
C10—C111.384 (3)C35—C401.405 (2)
C10—H100.9300C35—C361.411 (2)
C11—C121.378 (3)C36—C371.365 (2)
C11—H110.9300C36—H360.9300
C12—C131.386 (2)C37—C381.396 (3)
C12—H120.9300C37—H370.9300
C13—N21.344 (2)C38—C391.357 (3)
C13—C141.518 (3)C38—H380.9300
C14—O71.243 (2)C39—C401.413 (2)
C14—O81.256 (2)C39—H390.9300
C15—N31.355 (2)C40—N51.353 (2)
C15—C201.410 (2)N1—Cu11.9128 (15)
C15—C161.411 (2)N2—Cu11.9818 (14)
C16—C171.367 (3)N3—H3B0.83 (2)
C16—H160.9300N4—H4B0.89 (3)
C17—C181.395 (3)N4—H4C0.78 (3)
C17—H170.9300N5—H5B0.80 (2)
C18—C191.361 (3)N6—H6A0.87 (2)
C18—H180.9300N6—H6B0.83 (3)
C19—C201.415 (3)O1—Cu12.0680 (14)
C19—H190.9300O3—Cu12.0529 (15)
C20—C211.434 (2)O5—Cu12.3150 (18)
C21—N41.324 (2)O7—Cu12.3509 (16)
C21—C221.430 (2)O1W—H1WA0.87 (3)
C22—C271.412 (2)O1W—H1WB0.74 (3)
C22—C231.422 (2)O2W—H2WA0.85 (3)
C23—C241.358 (3)O2W—H2WB0.84 (3)
C23—H230.9300O3W—H3WA0.79 (3)
C24—C251.407 (3)O3W—H3WB0.84 (3)
O2—C1—O1125.65 (17)C26—C27—C22120.30 (16)
O2—C1—C2119.24 (15)N5—C28—C29119.02 (17)
O1—C1—C2115.11 (15)N5—C28—C33120.47 (16)
N1—C2—C3120.24 (17)C29—C28—C33120.51 (17)
N1—C2—C1112.35 (14)C30—C29—C28119.69 (19)
C3—C2—C1127.41 (16)C30—C29—H29120.2
C2—C3—C4118.10 (18)C28—C29—H29120.2
C2—C3—H3120.9C29—C30—C31120.72 (18)
C4—C3—H3120.9C29—C30—H30119.6
C5—C4—C3120.66 (17)C31—C30—H30119.6
C5—C4—H4119.7C32—C31—C30120.51 (19)
C3—C4—H4119.7C32—C31—H31119.7
C4—C5—C6118.41 (18)C30—C31—H31119.7
C4—C5—H5120.8C31—C32—C33120.44 (19)
C6—C5—H5120.8C31—C32—H32119.8
N1—C6—C5119.60 (17)C33—C32—H32119.8
N1—C6—C7112.28 (15)C28—C33—C32118.12 (16)
C5—C6—C7128.11 (17)C28—C33—C34118.97 (15)
O4—C7—O3126.43 (18)C32—C33—C34122.91 (16)
O4—C7—C6119.43 (17)N6—C34—C33122.09 (15)
O3—C7—C6114.13 (16)N6—C34—C35119.76 (15)
O6—C8—O5128.25 (17)C33—C34—C35118.14 (14)
O6—C8—C9115.80 (16)C40—C35—C36118.52 (15)
O5—C8—C9115.94 (16)C40—C35—C34119.16 (15)
N2—C9—C10121.76 (15)C36—C35—C34122.21 (15)
N2—C9—C8116.30 (14)C37—C36—C35120.43 (18)
C10—C9—C8121.93 (16)C37—C36—H36119.8
C11—C10—C9118.74 (16)C35—C36—H36119.8
C11—C10—H10120.6C36—C37—C38120.26 (19)
C9—C10—H10120.6C36—C37—H37119.9
C12—C11—C10119.29 (16)C38—C37—H37119.9
C12—C11—H11120.4C39—C38—C37121.25 (18)
C10—C11—H11120.4C39—C38—H38119.4
C11—C12—C13119.24 (16)C37—C38—H38119.4
C11—C12—H12120.4C38—C39—C40119.34 (18)
C13—C12—H12120.4C38—C39—H39120.3
N2—C13—C12121.16 (15)C40—C39—H39120.3
N2—C13—C14115.54 (14)N5—C40—C35120.55 (15)
C12—C13—C14123.27 (15)N5—C40—C39119.33 (17)
O7—C14—O8125.93 (17)C35—C40—C39120.11 (17)
O7—C14—C13116.55 (16)C2—N1—C6122.94 (15)
O8—C14—C13117.52 (15)C2—N1—Cu1118.54 (12)
N3—C15—C20120.58 (16)C6—N1—Cu1118.50 (12)
N3—C15—C16119.34 (17)C9—N2—C13119.80 (14)
C20—C15—C16120.07 (17)C9—N2—Cu1119.28 (11)
C17—C16—C15119.72 (19)C13—N2—Cu1120.54 (11)
C17—C16—H16120.1C27—N3—C15122.43 (15)
C15—C16—H16120.1C27—N3—H3B118.2 (15)
C16—C17—C18120.81 (19)C15—N3—H3B119.2 (15)
C16—C17—H17119.6C21—N4—H4B121.0 (16)
C18—C17—H17119.6C21—N4—H4C119 (2)
C19—C18—C17120.29 (19)H4B—N4—H4C119 (3)
C19—C18—H18119.9C40—N5—C28122.49 (15)
C17—C18—H18119.9C40—N5—H5B118.6 (17)
C18—C19—C20121.1 (2)C28—N5—H5B117.4 (17)
C18—C19—H19119.4C34—N6—H6A122.4 (15)
C20—C19—H19119.4C34—N6—H6B120.2 (17)
C15—C20—C19117.99 (17)H6A—N6—H6B117 (2)
C15—C20—C21118.98 (16)C1—O1—Cu1114.16 (11)
C19—C20—C21122.98 (17)C7—O3—Cu1115.04 (12)
N4—C21—C22120.31 (17)C8—O5—Cu1111.55 (11)
N4—C21—C20121.26 (17)C14—O7—Cu1111.16 (12)
C22—C21—C20118.43 (15)H1WA—O1W—H1WB99 (3)
C27—C22—C23117.95 (16)H2WA—O2W—H2WB105 (3)
C27—C22—C21119.13 (15)H3WA—O3W—H3WB110 (3)
C23—C22—C21122.92 (16)N1—Cu1—N2174.31 (6)
C24—C23—C22120.64 (17)N1—Cu1—O379.84 (6)
C24—C23—H23119.7N2—Cu1—O3104.50 (6)
C22—C23—H23119.7N1—Cu1—O179.84 (6)
C23—C24—C25120.51 (18)N2—Cu1—O195.97 (6)
C23—C24—H24119.7O3—Cu1—O1159.47 (5)
C25—C24—H24119.7N1—Cu1—O5107.30 (7)
C26—C25—C24120.74 (18)N2—Cu1—O576.29 (6)
C26—C25—H25119.6O3—Cu1—O594.39 (6)
C24—C25—H25119.6O1—Cu1—O588.91 (6)
C25—C26—C27119.86 (18)N1—Cu1—O7101.06 (7)
C25—C26—H26120.1N2—Cu1—O775.34 (6)
C27—C26—H26120.1O3—Cu1—O791.72 (6)
N3—C27—C26119.27 (16)O1—Cu1—O794.95 (6)
N3—C27—C22120.43 (15)O5—Cu1—O7151.61 (5)
O2—C1—C2—N1178.92 (17)C34—C35—C36—C37177.81 (17)
O1—C1—C2—N10.9 (2)C35—C36—C37—C381.0 (3)
O2—C1—C2—C31.3 (3)C36—C37—C38—C392.0 (3)
O1—C1—C2—C3178.93 (18)C37—C38—C39—C400.3 (3)
N1—C2—C3—C41.4 (3)C36—C35—C40—N5175.36 (16)
C1—C2—C3—C4178.39 (19)C34—C35—C40—N50.9 (2)
C2—C3—C4—C50.3 (3)C36—C35—C40—C393.3 (2)
C3—C4—C5—C61.4 (3)C34—C35—C40—C39179.61 (16)
C4—C5—C6—N12.2 (3)C38—C39—C40—N5176.33 (18)
C4—C5—C6—C7176.8 (2)C38—C39—C40—C352.4 (3)
N1—C6—C7—O4178.97 (18)C3—C2—N1—C60.7 (3)
C5—C6—C7—O40.0 (3)C1—C2—N1—C6179.14 (16)
N1—C6—C7—O30.0 (2)C3—C2—N1—Cu1179.19 (14)
C5—C6—C7—O3179.0 (2)C1—C2—N1—Cu10.6 (2)
O6—C8—C9—N2171.91 (16)C5—C6—N1—C21.1 (3)
O5—C8—C9—N26.9 (2)C7—C6—N1—C2177.94 (16)
O6—C8—C9—C107.0 (3)C5—C6—N1—Cu1177.36 (15)
O5—C8—C9—C10174.13 (16)C7—C6—N1—Cu13.6 (2)
N2—C9—C10—C110.4 (3)C10—C9—N2—C131.5 (2)
C8—C9—C10—C11178.49 (16)C8—C9—N2—C13177.47 (14)
C9—C10—C11—C120.9 (3)C10—C9—N2—Cu1171.40 (13)
C10—C11—C12—C131.1 (3)C8—C9—N2—Cu19.66 (18)
C11—C12—C13—N20.1 (2)C12—C13—N2—C91.2 (2)
C11—C12—C13—C14177.93 (16)C14—C13—N2—C9179.38 (13)
N2—C13—C14—O710.9 (2)C12—C13—N2—Cu1171.55 (12)
C12—C13—C14—O7167.20 (17)C14—C13—N2—Cu16.61 (18)
N2—C13—C14—O8168.95 (15)C26—C27—N3—C15179.52 (16)
C12—C13—C14—O812.9 (2)C22—C27—N3—C150.4 (2)
N3—C15—C16—C17178.92 (17)C20—C15—N3—C270.5 (2)
C20—C15—C16—C170.7 (3)C16—C15—N3—C27179.13 (16)
C15—C16—C17—C180.2 (3)C35—C40—N5—C283.1 (3)
C16—C17—C18—C190.3 (4)C39—C40—N5—C28175.61 (16)
C17—C18—C19—C200.4 (3)C29—C28—N5—C40176.57 (16)
N3—C15—C20—C19178.98 (17)C33—C28—N5—C403.4 (2)
C16—C15—C20—C190.6 (3)O2—C1—O1—Cu1179.08 (16)
N3—C15—C20—C211.6 (2)C2—C1—O1—Cu10.7 (2)
C16—C15—C20—C21178.05 (16)O4—C7—O3—Cu1177.91 (17)
C18—C19—C20—C150.1 (3)C6—C7—O3—Cu13.2 (2)
C18—C19—C20—C21177.4 (2)O6—C8—O5—Cu1177.28 (18)
C15—C20—C21—N4177.40 (17)C9—C8—O5—Cu11.39 (19)
C19—C20—C21—N40.1 (3)O8—C14—O7—Cu1170.74 (15)
C15—C20—C21—C221.7 (2)C13—C14—O7—Cu19.11 (19)
C19—C20—C21—C22178.99 (17)C2—N1—Cu1—O3177.34 (14)
N4—C21—C22—C27178.29 (17)C6—N1—Cu1—O34.08 (13)
C20—C21—C22—C270.9 (2)C2—N1—Cu1—O10.23 (13)
N4—C21—C22—C231.6 (3)C6—N1—Cu1—O1178.81 (14)
C20—C21—C22—C23179.26 (16)C2—N1—Cu1—O585.87 (14)
C27—C22—C23—C240.4 (3)C6—N1—Cu1—O595.56 (14)
C21—C22—C23—C24179.45 (17)C2—N1—Cu1—O792.88 (14)
C22—C23—C24—C251.3 (3)C6—N1—Cu1—O785.69 (14)
C23—C24—C25—C261.3 (3)C9—N2—Cu1—O397.70 (12)
C24—C25—C26—C270.5 (3)C13—N2—Cu1—O389.48 (13)
C25—C26—C27—N3179.69 (17)C9—N2—Cu1—O180.76 (12)
C25—C26—C27—C220.4 (3)C13—N2—Cu1—O192.06 (12)
C23—C22—C27—N3179.67 (15)C9—N2—Cu1—O56.65 (11)
C21—C22—C27—N30.2 (2)C13—N2—Cu1—O5179.47 (13)
C23—C22—C27—C260.4 (2)C9—N2—Cu1—O7174.33 (13)
C21—C22—C27—C26179.73 (16)C13—N2—Cu1—O71.52 (12)
N5—C28—C29—C30179.39 (17)C7—O3—Cu1—N13.98 (14)
C33—C28—C29—C300.6 (3)C7—O3—Cu1—N2172.25 (14)
C28—C29—C30—C311.1 (3)C7—O3—Cu1—O112.1 (3)
C29—C30—C31—C320.5 (3)C7—O3—Cu1—O5110.80 (15)
C30—C31—C32—C330.7 (3)C7—O3—Cu1—O796.94 (15)
N5—C28—C33—C32179.48 (15)C1—O1—Cu1—N10.30 (13)
C29—C28—C33—C320.6 (2)C1—O1—Cu1—N2176.41 (13)
N5—C28—C33—C340.4 (2)C1—O1—Cu1—O37.8 (3)
C29—C28—C33—C34179.68 (15)C1—O1—Cu1—O5107.50 (14)
C31—C32—C33—C281.2 (3)C1—O1—Cu1—O7100.67 (14)
C31—C32—C33—C34179.76 (17)C8—O5—Cu1—N1172.87 (12)
C28—C33—C34—N6177.13 (16)C8—O5—Cu1—N22.54 (12)
C32—C33—C34—N61.9 (3)C8—O5—Cu1—O3106.42 (13)
C28—C33—C34—C354.1 (2)C8—O5—Cu1—O193.87 (13)
C32—C33—C34—C35176.79 (15)C8—O5—Cu1—O74.55 (19)
N6—C34—C35—C40176.82 (16)C14—O7—Cu1—N1179.90 (13)
C33—C34—C35—C404.4 (2)C14—O7—Cu1—N24.63 (13)
N6—C34—C35—C367.1 (2)C14—O7—Cu1—O399.91 (14)
C33—C34—C35—C36171.71 (15)C14—O7—Cu1—O199.52 (14)
C40—C35—C36—C371.7 (3)C14—O7—Cu1—O52.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O70.87 (4)1.98 (4)2.832 (2)167 (4)
O1W—H1WB···O4i0.74 (4)2.14 (4)2.877 (3)175 (4)
O2W—H2WA···O8ii0.84 (3)1.98 (3)2.820 (3)174 (3)
O2W—H2WB···O80.84 (4)1.98 (4)2.810 (3)174 (4)
O3W—H3WA···O2iii0.79 (3)2.01 (3)2.787 (3)169 (3)
O3W—H3WB···O2Wiv0.84 (3)1.89 (3)2.730 (3)175 (3)
N3—H3B···O60.83 (2)1.88 (2)2.716 (2)179 (3)
N4—H4B···O1Wv0.89 (3)2.09 (3)2.938 (3)158 (2)
N4—H4C···O8v0.77 (3)2.27 (3)2.972 (2)152 (3)
N5—H5B···O3W0.80 (2)1.91 (2)2.703 (2)173 (2)
N6—H6A···O2vi0.87 (2)1.97 (2)2.819 (2)164 (2)
N6—H6B···O50.83 (3)2.11 (3)2.888 (2)158 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+2, z+1; (iii) x, y, z+1; (iv) x+2, y+2, z+2; (v) x+1, y, z+1; (vi) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formula(C13H11N2)2[Cu(C7H3NO4)2]·3H2O
Mr838.27
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)10.921 (2), 13.299 (3), 14.008 (3)
α, β, γ (°)102.09 (3), 103.96 (3), 105.38 (3)
V3)1820.6 (9)
Z2
Radiation typeMo Kα
µ (mm1)0.67
Crystal size (mm)0.38 × 0.30 × 0.25
Data collection
DiffractometerSTOE IPDS II
diffractometer
Absorption correctionNumerical
[shape of crystal determined optically (X-RED32 and X-SHAPE; Stoe & Cie, 2005)]
Tmin, Tmax0.787, 0.849
No. of measured, independent and
observed [I > 2σ(I)] reflections
21686, 9767, 7989
Rint0.027
(sin θ/λ)max1)0.687
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.094, 1.03
No. of reflections9767
No. of parameters571
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.38

Computer programs: X-AREA (Stoe & Cie, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O70.87 (4)1.98 (4)2.832 (2)167 (4)
O1W—H1WB···O4i0.74 (4)2.14 (4)2.877 (3)175 (4)
O2W—H2WA···O8ii0.84 (3)1.98 (3)2.820 (3)174 (3)
O2W—H2WB···O80.84 (4)1.98 (4)2.810 (3)174 (4)
O3W—H3WA···O2iii0.79 (3)2.01 (3)2.787 (3)169 (3)
O3W—H3WB···O2Wiv0.84 (3)1.89 (3)2.730 (3)175 (3)
N3—H3B···O60.83 (2)1.88 (2)2.716 (2)179 (3)
N4—H4B···O1Wv0.89 (3)2.09 (3)2.938 (3)158 (2)
N4—H4C···O8v0.77 (3)2.27 (3)2.972 (2)152 (3)
N5—H5B···O3W0.80 (2)1.91 (2)2.703 (2)173 (2)
N6—H6A···O2vi0.87 (2)1.97 (2)2.819 (2)164 (2)
N6—H6B···O50.83 (3)2.11 (3)2.888 (2)158 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+2, z+1; (iii) x, y, z+1; (iv) x+2, y+2, z+2; (v) x+1, y, z+1; (vi) x+2, y+1, z+1.
 

Acknowledgements

We are grateful to the Islamic Azad University, North Tehran Branch for financial support.

References

First citationAghabozorg, H., Eshtiagh-Hosseini, H., Salimi, A. R. & Mirzaei, M. (2010). J. Iran. Chem. Soc. 7, 289–300.  CrossRef CAS Google Scholar
First citationAghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc. 5, 184–227.  CrossRef CAS Google Scholar
First citationDerikvand, Z., Attar Gharamaleki, J. & Stoeckli-Evans, H. (2010). Acta Cryst. E66, m1316–m1317.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEshtiagh-Hosseini, H., Aghabozorg, H. & Mirzaei, M. (2010). Acta Cryst. E66, m882.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2005). X-AREA, X-SHAPE and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTabatabaee, M., Aghabozorg, H., Attar Gharamaleki, J. & Sharif, M. A. (2009). Acta Cryst. E65, m473–m474.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 10| October 2010| Pages m1318-m1319
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds