organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(Bi­phenyl-4-yl)acetic acid (felbinac)

aDepartment of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA, bLaboratory for Pharmacotechnology and Biopharmacy, K.U. Leuven, Gasthuisberg O&N2, Herestraat 49, Box 921, 3000 Leuven, Belgium, and cDepartment of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA
*Correspondence e-mail: lstaylor@purdue.edu

(Received 12 August 2010; accepted 6 September 2010; online 25 September 2010)

The structure of the title compound, C14H12O2, displays the expected inter­molecular hydrogen bonding of the carb­oxy­lic acid groups, forming dimers. The dihedral angle between the two aromatic rings is 27.01 (7)°.

Related literature

The title compound is a potent non-steroidal anti-inflammatory agent, used to treat muscle inflammation and arthritis. For single-crystal structures of inclusion complexes between felbinac and both hepta­kis-(2,3,6-tri-O-meth­yl)-β-cyclo­dextrin and β-cyclo­dextrin, see: Harata et al. (1992[Harata, K., Hirayama, F., Arima, H., Uekama, H. & Miyaji, T. (1992). J. Chem. Soc. Perkin Trans. 2, pp. 1159-1166.]) and Wang et al. (2009[Wang, E., Chen, G. & Liu, H. (2009). Chin. J. Chem. 27, 2097-2101.]), respectively. For single crystal structures of different complexes of felbinac with tryptamine and 1,2-diphenyl­ethyl­enediamine (different solvates), see: Koshima et al. (1998[Koshima, H., Khan, S. I. & Garcia-Garibay, M. A. (1998). Tetrahedron Asymmetry, 9, 1851-1854.]) and Imai et al. (2007[Imai, Y., Kawaguchi, K., Asai, K., Sato, T., Kuroda, R. & Matsuraba, Y. (2007). CrystEngComm, 9, 467-470.]), respectively.

[Scheme 1]

Experimental

Crystal data
  • C14H12O2

  • Mr = 212.25

  • Orthorhombic, P b c n

  • a = 46.248 (19) Å

  • b = 6.465 (3) Å

  • c = 7.470 (3) Å

  • V = 2233.4 (16) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 0.64 mm−1

  • T = 150 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Rigaku RAPID II diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2001[Rigaku (2001). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.803, Tmax = 0.881

  • 8644 measured reflections

  • 1952 independent reflections

  • 1539 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.107

  • S = 1.08

  • 1952 reflections

  • 150 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.12 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1i 0.98 (2) 1.69 (2) 2.6663 (16) 178 (2)
Symmetry code: (i) [-x+1, y, -z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2001[Rigaku (2001). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97 and local programs.

Supporting information


Comment top

The title compound is a potent non-steroidal anti-inflammatory agent, used to treat muscle inflammation and arthritis. Although the single-crystal structures of inclusion complexes between felbinac and both heptakis-(2,3,6-tri-O-methyl)-β-cyclodextrin and β-cyclodextrin have been published (Harata et al., 1992; Wang et al., 2009), that of the pure compound has not been reported. The molecular structure is shown in Figure 1. The expected H-bonded carboxylic acid dimers are formed, with O1···O2 distances of 2.6663 (13) Å. The dihedral angle between the two benzene rings is 27.01 (7)°. Hydrogen bonds between carboxylic acid groups of felbinac are disrupted in the published felbinac-cyclodextrin structures (Harata et al., 1992; Wang et al., 2009). In the inclusion complex between felbinac and heptakis-(2,3,6-tri-O-methyl)-β-cyclodextrin (Harata et al., 1992), no dimers are formed; in that between felbinac and β-cyclodextrin (Wang et al., 2009), face-to-face π-π stackings form the basis for dimer formation. Hydrogen bonds between carboxylic acid groups of felbinac are disrupted in the complexes with tryptamine (Koshima et al., 1998) and 1,2-diphenylethylenediamine (Imai et al., 2007) due to ionic interactions with the amine functions.

Related literature top

The title compound is a potent non-steroidal anti-inflammatory agent, used to

treat muscle inflammation and arthritis. For single-crystal structures of inclusion complexes between felbinac and both heptakis-(2,3,6-tri-O-methyl)-β-cyclodextrin and β-cyclodextrin, see: Harata et al. (1992) and Wang et al. (2009), respectively. For single crystal structures of different complexes of felbinac with tryptamine and 1,2-diphenylethylenediamine (different solvates), see: Koshima et al. (1998) and Imai et al. (2007), respectively.

Experimental top

A solution of 2-(biphenyl-4-yl)acetic acid (15 mg ml-1) was prepared in diethylether. Subsequently, 15 ml of the solution was transferred into a clean crystallization dish (diameter 50 mm; height 35 mm). The vessel was partially covered with a plastic sheet and the solution was allowed to slowly evaporate overnight.

Refinement top

The H atom bound to oxygen O2 was located in a difference Fourier map and refined freely with isotropic displacement parameters. Other H atoms were placed in calculated positions and treated as riding on their parent atoms with C—H = 0.95 Å (aromatic), 0.99 Å (aliphatic) and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku, 2001); cell refinement: CrystalClear (Rigaku, 2001); data reduction: CrystalClear (Rigaku, 2001); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELX97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and local programs.

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering. H atoms are presented as small spheres of arbitrary radius.
2-(Biphenyl-4-yl)acetic acid top
Crystal data top
C14H12O2F(000) = 896
Mr = 212.25Dx = 1.262 Mg m3
Orthorhombic, PbcnCu - Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2n 2abCell parameters from 8644 reflections
a = 46.248 (19) Åθ = 6–66°
b = 6.465 (3) ŵ = 0.64 mm1
c = 7.470 (3) ÅT = 150 K
V = 2233.4 (16) Å3Chunk, colourless
Z = 80.20 × 0.20 × 0.20 mm
Data collection top
Rigaku RAPID II
diffractometer
1539 reflections with I > 2σ(I)
Confocal optics monochromatorRint = 0.037
ω scansθmax = 66.5°, θmin = 6.6°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2001)
h = 5354
Tmin = 0.803, Tmax = 0.881k = 77
8644 measured reflectionsl = 88
1952 independent reflections
Refinement top
Refinement on F2H atoms treated by a mixture of independent and constrained refinement
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0586P)2 + 0.0731P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.038(Δ/σ)max = 0.001
wR(F2) = 0.107Δρmax = 0.21 e Å3
S = 1.08Δρmin = 0.12 e Å3
1952 reflectionsExtinction correction: SHELXL97 (Sheldrick, 2008)
150 parametersExtinction coefficient: 0.92E-02
0 restraints
Crystal data top
C14H12O2V = 2233.4 (16) Å3
Mr = 212.25Z = 8
Orthorhombic, PbcnCu - Kα radiation
a = 46.248 (19) ŵ = 0.64 mm1
b = 6.465 (3) ÅT = 150 K
c = 7.470 (3) Å0.20 × 0.20 × 0.20 mm
Data collection top
Rigaku RAPID II
diffractometer
1952 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2001)
1539 reflections with I > 2σ(I)
Tmin = 0.803, Tmax = 0.881Rint = 0.037
8644 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.21 e Å3
1952 reflectionsΔρmin = 0.12 e Å3
150 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Outlier data were removed using a local program based on the method of Prince and Nicholson.

Refinement on F2 for ALL reflections except for 0 with very negative F2 or flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating R_factor_obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.465961 (19)0.26139 (14)0.29970 (13)0.0659 (3)
O20.50183 (2)0.25189 (14)0.49623 (15)0.0673 (3)
C110.36381 (3)0.24813 (16)0.46896 (16)0.0459 (3)
C120.38092 (3)0.07334 (19)0.44073 (17)0.0537 (3)
C130.40981 (3)0.0723 (2)0.48829 (18)0.0580 (4)
C140.42282 (3)0.24426 (18)0.56461 (17)0.0519 (4)
C150.40583 (3)0.4174 (2)0.59492 (18)0.0571 (4)
C160.37693 (3)0.41946 (19)0.54734 (17)0.0549 (4)
C170.45452 (3)0.24152 (19)0.61233 (19)0.0606 (4)
C180.47426 (3)0.25310 (17)0.45355 (19)0.0513 (4)
C210.33265 (3)0.25021 (16)0.41626 (16)0.0462 (3)
C220.31270 (2)0.37583 (18)0.50399 (17)0.0543 (4)
C230.28391 (3)0.3774 (2)0.45408 (18)0.0591 (4)
C240.27427 (3)0.25357 (19)0.3176 (2)0.0594 (4)
C250.29358 (3)0.1274 (2)0.2301 (2)0.0628 (4)
C260.32239 (3)0.1263 (2)0.27863 (18)0.0566 (4)
H20.5133 (4)0.258 (2)0.386 (3)0.105 (7)*
H120.37260.04650.38810.064*
H130.42100.04890.46830.070*
H150.41410.53630.64910.069*
H160.36580.54040.56860.066*
H220.31900.46170.59960.065*
H230.27070.46520.51490.071*
H240.25450.25490.28390.071*
H250.28710.04050.13570.075*
H260.33550.03880.21640.068*
H17A0.45870.35980.69250.073*
H17B0.45880.11300.67940.073*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0465 (6)0.0959 (8)0.0552 (6)0.0007 (4)0.0058 (4)0.0046 (5)
O20.0459 (6)0.0945 (9)0.0617 (6)0.0005 (4)0.0098 (5)0.0014 (5)
C110.0472 (7)0.0521 (8)0.0384 (7)0.0008 (5)0.0040 (5)0.0001 (5)
C120.0536 (8)0.0521 (7)0.0555 (8)0.0006 (6)0.0023 (6)0.0078 (6)
C130.0545 (8)0.0584 (8)0.0611 (9)0.0074 (6)0.0030 (6)0.0049 (7)
C140.0499 (8)0.0642 (9)0.0416 (7)0.0003 (5)0.0006 (5)0.0029 (6)
C150.0571 (8)0.0584 (8)0.0559 (8)0.0041 (6)0.0027 (6)0.0090 (7)
C160.0529 (8)0.0530 (7)0.0587 (8)0.0032 (6)0.0010 (6)0.0090 (6)
C170.0550 (9)0.0761 (10)0.0508 (8)0.0019 (6)0.0054 (6)0.0001 (7)
C180.0469 (7)0.0527 (8)0.0543 (8)0.0006 (5)0.0104 (6)0.0015 (6)
C210.0485 (8)0.0490 (7)0.0411 (7)0.0024 (5)0.0041 (5)0.0017 (5)
C220.0539 (8)0.0611 (9)0.0479 (7)0.0028 (6)0.0003 (6)0.0072 (6)
C230.0518 (8)0.0678 (9)0.0576 (9)0.0068 (6)0.0047 (6)0.0003 (7)
C240.0487 (8)0.0666 (9)0.0628 (9)0.0047 (6)0.0040 (6)0.0066 (7)
C250.0585 (9)0.0688 (10)0.0612 (9)0.0073 (6)0.0072 (6)0.0109 (7)
C260.0551 (8)0.0603 (9)0.0544 (8)0.0010 (6)0.0025 (6)0.0103 (6)
Geometric parameters (Å, º) top
O1—C181.2128 (17)C17—C181.499 (2)
O2—C181.3144 (15)C17—H17A0.9900
O2—H20.98 (2)C17—H17B0.9900
C11—C161.3921 (16)C21—C261.3869 (17)
C11—C121.3957 (16)C21—C221.3930 (16)
C11—C211.4937 (18)C22—C231.3827 (16)
C12—C131.3822 (16)C22—H220.9500
C12—H120.9500C23—C241.3710 (18)
C13—C141.3870 (17)C23—H230.9500
C13—H130.9500C24—C251.3749 (18)
C14—C151.3865 (16)C24—H240.9500
C14—C171.5088 (18)C25—C261.3811 (16)
C15—C161.3830 (16)C25—H250.9500
C15—H150.9500C26—H260.9500
C16—H160.9500
C18—O2—H2108.7 (11)C14—C17—H17B108.80
C16—C11—C12117.42 (12)H17A—C17—H17B107.70
C16—C11—C21121.62 (10)O1—C18—O2122.48 (13)
C12—C11—C21120.97 (11)O1—C18—C17124.01 (12)
C13—C12—C11120.89 (12)O2—C18—C17113.50 (13)
C13—C12—H12119.60C26—C21—C22117.31 (12)
C11—C12—H12119.60C26—C21—C11121.35 (10)
C12—C13—C14121.41 (11)C22—C21—C11121.34 (11)
C12—C13—H13119.30C23—C22—C21121.02 (12)
C14—C13—H13119.30C23—C22—H22119.50
C15—C14—C13117.92 (12)C21—C22—H22119.50
C15—C14—C17121.45 (11)C24—C23—C22120.62 (12)
C13—C14—C17120.63 (11)C24—C23—H23119.70
C16—C15—C14120.90 (12)C22—C23—H23119.70
C16—C15—H15119.50C23—C24—C25119.27 (13)
C14—C15—H15119.50C23—C24—H24120.40
C15—C16—C11121.46 (11)C25—C24—H24120.40
C15—C16—H16119.30C24—C25—C26120.31 (13)
C11—C16—H16119.30C24—C25—H25119.80
C18—C17—C14113.85 (12)C26—C25—H25119.80
C18—C17—H17A108.80C25—C26—C21121.47 (12)
C14—C17—H17A108.80C25—C26—H26119.30
C18—C17—H17B108.80C21—C26—H26119.30
C16—C11—C12—C130.35 (19)C14—C17—C18—O2179.61 (9)
C21—C11—C12—C13179.48 (11)C16—C11—C21—C26152.94 (12)
C11—C12—C13—C140.3 (2)C12—C11—C21—C2626.89 (17)
C12—C13—C14—C151.1 (2)C16—C11—C21—C2227.41 (17)
C12—C13—C14—C17178.81 (12)C12—C11—C21—C22152.77 (12)
C13—C14—C15—C161.2 (2)C26—C21—C22—C230.55 (17)
C17—C14—C15—C16178.71 (12)C11—C21—C22—C23179.79 (11)
C14—C15—C16—C110.5 (2)C21—C22—C23—C240.58 (19)
C12—C11—C16—C150.25 (19)C22—C23—C24—C250.14 (19)
C21—C11—C16—C15179.59 (11)C23—C24—C25—C260.3 (2)
C15—C14—C17—C18106.63 (14)C24—C25—C26—C210.3 (2)
C13—C14—C17—C1873.25 (15)C22—C21—C26—C250.09 (18)
C14—C17—C18—O10.88 (18)C11—C21—C26—C25179.76 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.98 (2)1.69 (2)2.6663 (16)178 (2)
Symmetry code: (i) x+1, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H12O2
Mr212.25
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)150
a, b, c (Å)46.248 (19), 6.465 (3), 7.470 (3)
V3)2233.4 (16)
Z8
Radiation typeCu - Kα
µ (mm1)0.64
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerRigaku RAPID II
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2001)
Tmin, Tmax0.803, 0.881
No. of measured, independent and
observed [I > 2σ(I)] reflections
8644, 1952, 1539
Rint0.037
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.107, 1.08
No. of reflections1952
No. of parameters150
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.12

Computer programs: CrystalClear (Rigaku, 2001), SIR2004 (Burla et al., 2005), SHELX97 (Sheldrick, 2008), ORTEPII (Johnson, 1976) and PLATON (Spek, 2009), SHELXL97 (Sheldrick, 2008) and local programs.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.98 (2)1.69 (2)2.6663 (16)178 (2)
Symmetry code: (i) x+1, y, z+1/2.
 

Acknowledgements

The authors would like to thank the National Science Foundation Engineering Research Center for Structured Organic Particulate Systems for financial support (NSF ERC-SOPS; EEC-0540855). The authors thank the National Science Foundation, Directorate for Mathematical & Physical Sciences, Division of Materials Research for financial support (NSF MPS-DMR; DMR-0804609). BVE is a Postdoctoral Researcher of the `Fonds voor Wetenschappelijk Onderzoek', Flanders, Belgium.

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHarata, K., Hirayama, F., Arima, H., Uekama, H. & Miyaji, T. (1992). J. Chem. Soc. Perkin Trans. 2, pp. 1159–1166.  CrossRef Google Scholar
First citationImai, Y., Kawaguchi, K., Asai, K., Sato, T., Kuroda, R. & Matsuraba, Y. (2007). CrystEngComm, 9, 467–470.  Web of Science CSD CrossRef CAS Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationKoshima, H., Khan, S. I. & Garcia-Garibay, M. A. (1998). Tetrahedron Asymmetry, 9, 1851–1854.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2001). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, E., Chen, G. & Liu, H. (2009). Chin. J. Chem. 27, 2097–2101.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds