

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

NaAg₂Mo₃O₉AsO₄

Hamadi Hamza, Mohamed Faouzi Zid* and Ahmed Driss

Laboratoire de Matériaux et Cristallochimie, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092 Manar II Tunis, Tunisia Correspondence e-mail: faouzi.zid@fst.rnu.tn

Received 27 July 2010; accepted 27 August 2010

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (Mo–O) = 0.005 Å; disorder in main residue; R factor = 0.030; wR factor = 0.087; data-to-parameter ratio = 12.6.

The title compound, sodium disilver arsenatotrimolybdate, Na_{0.93 (1)}Ag_{2.07 (1)}Mo₃AsO₁₃, was prepared by a solid-state reaction. In the crystal structure, isolated AsO₄ tetrahedra share corners with groups of three edge-sharing MoO₆ octahedra. This arrangement leads to the formation of anionic ¹_∞[Mo₃AsO₁₃]_n ribbons extending parallel to [100]. The three metal sites show occupational disorder by Ag^I and Na^I cations, each with a different Ag:Na ratio. The metal cations are situated in the space between the ribbons and are surrounded by terminal O atoms of the ribbons in the form of distorted MO_7 polyhedra (M = Ag, Na) for distances < 3.0 Å. The title compound shows weak ionic conductivity. Structural relationships between different compounds in the quaternary systems M-Sb-P-O, M-Nb-P-O and M-Mo-As-O (M is Ag or an alkali metal) are also discussed.

Related literature

For literature on framework structures containing MO_6 and XO_4 (M = transition metal, X = P, As) building blocks, see: Benhamada *et al.* (1992); Harrison *et al.* (1994); Piffard *et al.* (1985); Haddad *et al.* (1988); Ledain *et al.* (1997). For synthetic details, see: Zid & Jouini (1996); Zid *et al.* (1998); Hajji *et al.* (2005); Hajji & Zid (2006); Ben Hlila *et al.* (2009). For structurally related compounds, see: Guyomard *et al.* (1991); Zid *et al.* (1992); Lachgar *et al.* (1986); Ben Amor & Zid (2006). For details of properties of related compounds, see: Ouerfelli *et al.* (2007). For the bond-valence model, see: Brown & Altermatt (1985).

Experimental

Crystal data

NaAg ₂ Mo ₃ AsO ₁₃	b = 8.217 (2) Å
$M_r = 814.99$	c = 9.755 (3) Å
Triclinic, P1	$\alpha = 113.42 \ (2)^{\circ}$
a = 8.063 (2) Å	$\beta = 99.49 \ (1)^{\circ}$

 $\gamma = 105.84 \ (2)^{\circ}$ $V = 542.6 \ (3) \ \text{Å}^{3}$ Z = 2Mo *K* α radiation

Data collection

Enraf-Nonius CAD-4 diffractometer Absorption correction: ψ scan (North *et al.*, 1968) $T_{\min} = 0.055, T_{\max} = 0.194$ 2895 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.030$ $wR(F^2) = 0.087$ S = 1.242371 reflections $\mu = 10.17 \text{ mm}^{-1}$ T = 298 K $0.34 \times 0.26 \times 0.16 \text{ mm}$

2371 independent reflections 2282 reflections with $I > 2\sigma(I)$ $R_{int} = 0.024$ 2 standard reflections every 120 min intensity decay: 1.6%

188 parameters 3 restraints $\Delta \rho_{\text{max}} = 1.98 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -1.63 \text{ e } \text{\AA}^{-3}$

Data collection: *CAD-4 EXPRESS* (Duisenberg, 1992; Macíček & Yordanov, 1992); cell refinement: *CAD-4 EXPRESS*; data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg, 1998); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2387).

References

- Ben Amor, R. & Zid, M. F. (2006). Acta Cryst. E62, i238-i240.
- Benhamada, L., Grandin, A., Borel, M. M., Leclaire, A. & Raveau, B. (1992). J. Solid State Chem. 101, 154–160.
- Ben Hlila, S., Zid, M. F. & Driss, A. (2009). Acta Cryst. E65, i11.
- Brandenburg, K. (1998). DIAMOND. University of Bonn, Germany.
- Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.
- Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Guyomard, D., Pagnoux, C., Zahletho, J. J., Verbaere, A. & Piffard, Y. (1991). J. Solid State Chem. 90, 367–372.
- Haddad, A., Jouini, T., Piffard, Y. & Jouini, N. (1988). J. Solid State Chem. 77, 293–298.
- Hajji, M. & Zid, M. F. (2006). Acta Cryst. E62, i114-i116.
- Hajji, M., Zid, M. F. & Jouini, T. (2005). Acta Cryst. C61, i57-i58.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
- Harrison, W. T. A., Liano, C. S., Nenouff, T. M. & Stucky, G. D. J. (1994). J. Solid State Chem. 113, 367–372.
- Lachgar, A., Deniard-Courant, S. & Piffard, Y. (1986). J. Solid State Chem. 63, 409–413.
- Ledain, S., Leclaire, A., Borel, M. M. & Raveau, B. (1997). J. Solid State Chem. 129, 298–302.
- Macíček, J. & Yordanov, A. (1992). J. Appl. Cryst. 25, 73-80.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351– 359.
- Ouerfelli, N., Guesmi, A., Mazza, D., Madani, A., Zid, M. F. & Driss, A. (2007). J. Solid State Chem. 180, 1224–1229.
- Piffard, Y., Lachgar, A. & Tournoux, M. (1985). J. Solid State Chem. 58, 253– 256.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Zid, M. F., Driss, A. & Jouini, T. (1998). J. Solid State Chem. 141, 500-507.
- Zid, M. F. & Jouini, T. (1996). Acta Cryst. C52, 1334-1336.
- Zid, M. F., Jouini, T., Jouini, N. & Piffard, Y. (1992). J. Solid State Chem. 99, 201–206.

supporting information

Acta Cryst. (2010). E66, i69 [doi:10.1107/S160053681003463X]

NaAg₂Mo₃O₉AsO₄

Hamadi Hamza, Mohamed Faouzi Zid and Ahmed Driss

S1. Comment

La recherche de nouveaux matériaux pouvant être potentiellement des conducteurs ioniques ou bien des échangeurs d'ions, a conduit à s'intéresser aux composés à charpentes mixtes formées d'octaèdres MO_6 (M = m\' *et al.* de transition) et de tétraèdres XO_4 (X = P, As).

En effet, la jonction entre ces polyèdres conduit à des composés à charpentes ouvertes mixtes présentant de nombreuses propriétés physico-chimiques intéressantes qui sont en relation directe avec leurs structures cristallines (Benhamada *et al.*, 1992; Harrison *et al.*, 1994; Zid *et al.*, 1992; Piffard *et al.*, 1985; Haddad *et al.*, 1988; Ledain *et al.*, 1997). Ce domaine est loin d'être entièrement exploré et fait l'objet des travaux présentant des intérêts fondamentaux que pratiques.

C'est dans ce cadre que nous avons exploré les systèmes A-Mo-As-O (A = cation monovalent) dans lesquels nous avons précédemment caractérisé plusieurs phases intéressantes: K₂MoO₂As₂O₇ (Zid & Jouini, 1996), Rb₂MoO₂As₂O₇ (Zid *et al.*, 1998), Li(MoO₂)₂O(AsO₄) (Hajji *et al.*, 2005) et AgMoO₂AsO₄ (Hajji & Zid, 2006). Un nouveau produit de symétrie triclinique a été synthétisé par réaction à l'état solide. Le mode de préparation, la détermination de la structure par diffraction des rayons-X sur monocristal et certaines propriétés physiques seront présentés dans ce travail. La nouvelle phase NaAg₂Mo₃AsO₁₃ est l'une des rares molybdyloxydes double d'arséniate et de métaux monovalents à charpente unidimensionnelle synthétisée dans ces dernières années.

L'unité anionique asymétrique [Mo₃AsO₁₃]³⁻ dans NaAg₂Mo₃AsO₁₃ est formée par trois octaèdres MoO₆, mettant en commun des arêtes, reliés par partage d'un sommet à un tétraèdre AsO₄ (Fig. 1). Dans la charpente anionique unidimensionnelle, chaque unité se lie à son centrosymétrique, d'une part par mise en commun de sommets entre les octaèdres terminaux des deux unités pour former des cycles à six octaèdres et d'autre part par formation de ponts mixtes As—O—Mo entre octaèdres et tétraèdres appartenant à deux unités anioniques symétriques [Mo₃AsO₁₃]³⁻ différentes. L'association de ces doubles unités par partage d'arêtes conduit à des rubans infinis disposés selon la direction *a* (Fig. 2). Les atomes d'oxygène non engagés dans les ponts pointent vers l'espace inter-rubans où résident les cations Na⁺ et Ag⁺ (Fig. 3). Les moyennes des distances Mo—O, As—O, Ag—O et Na—O dans la structure sont conformes à celles rencontrées dans la littérature (Hajji & Zid, 2006; Ben Hlila *et al.*, 2009). Par contre, si on se limite à une sphère de coordination de rayon égal à 3 Å moyennant le programme *DIAMOND* 2.0 (Brandenburg, 1998), on montre que les polyèdres irréguliers *MO*₇ (*M* = Ag/Na) se lient par partage d'arêtes pour développer des couches disposées selon les plans (010) (Fig. 4). De plus, le calcul des différentes valences des liaisons utilisant la formule empirique de Brown (Brown & Altermatt, 1985) vérifie bien les valeurs de charges des ions: Mo1 (5,93), Mo2 (5,84), Mo3 (5,85), As (4,81), Ag1 (0,97), Ag2 (1,03), Ag3 (1,09), Na1 (0,88), Na2 (0,93) et Na3 (1,07), attendues dans la phase étudiée.

La structure étudiée étant originale, à notre connaissance, nous avons d'une part sélectioné de la littérature des structures à charpente unidimensionnelle pour présenter les différences essentielles dans la jonction des polyèdres pour conduire à des rubans de nature différente, et d'autre part essayer de trouver une certaine analogie structurale avec des composés ayant un groupement X_3O_{11} (X = Nb, Mo ou Sb). En effet, dans la charpente anionique de Na₃SbO(PO₄)₂ (Guyomard *et* *al.*, 1991), les rubans sont formés au moyen de chaînes d'octaèdres partageant des sommets et reliés à des tétraèdres PO₄ par mise en commun de sommets. Dans le niobylphosphate K₃NbO(PO₄)₂ (Zid *et al.*, 1992), ils sont construits au moyen de double chaînes classiques NbPO₈ mettant en commun des sommtes oxygène entre octaèdres et tétraèdres. Dans la charpente unidimensionnelle de K₂SbO₂PO₄ (Lachgar *et al.*, 1986), chaque ruban est formé au moyen d'une chaîne d'octaèdres, partageant des arêtes, dans laquelle un tétraèdre PO₄ met en commun deux sommets avec repectivement deux octaèdres juxtaposés. Dans le triniobyloxoarséniate de formulation Ag₃Nb₃As₂O₁₄ (Ben Amor & Zid, 2006), la charpente anionique se caractérise par la présence des groupements X_3O_{11} , formés par trois octaèdres (X = Nb) partageant des arêtes, similaires à ceux rencontrés dans notre trimolybdate (X = Mo) mais ils sont disposés, contrairement à notre structure, perpendiculairement les uns aux autres. De plus l'association, dans Ag₃Nb₃As₂O₁₄, de ces groupements Nb₃O₁₁ par mise en commum de sommets avec les tètraédes AsO₄ conduit à une structure tridimensionnelle.

Afin d'utiliser les données structurales trouvées, favorables à une bonne mobilité ionique, et les relier aux propriétés physico-chimiques et en particulier de conduction ioniques (Ouerfelli *et al.*, 2007) des mesures de la résistance en fonction de la température de notre matériau ont été réalisées moyennant un pont d'impédance complexe de type HP4192A sur un échantillon pur compacté, sous forme de pastille (e/s = 0,073 cm⁻¹). Les valeurs des conductivités obtenues en montée de températures vérifient bien l'un des modèles d'Arrhenius: $Ln(\sigma T) = Ln\sigma_0 - (10^4 Ea/kT)$. En effet, cette étude montre que ce matériau, ayant une énergie d'activation égale à 0,647 eV et des conductivités égales à: 1,27 × 10⁻⁶ S cm⁻¹ à 613 K, 2,11 × 10⁻⁶ S cm⁻¹ à 643 K, 3,29 × 10⁻⁶ S cm⁻¹ à 673 K et 5,39 × 10⁻⁶ S cm⁻¹ à 703 K, est classé comme étant un conducteur ionique moyen. Ce résultat est comparable à celui trouvé pour le composé au thallium, rencontré dans la littérature (Ouerfelli *et al.*, 2007).

S2. Experimental

Les cristaux relatifs à la phase NaAg₂Mo₃AsO₁₃ ont été obtenus à partir des réactifs: (NH₄)₂Mo₄O₁₃ (Fluka, 69858), NH₄H₂AsO₄ (préparé au laboratoire, ASTM 01-775), AgNO₃ (Fluka, 69658) et Na₂CO₃ (Prolabo, 27778) pris dans les rapports molaires Ag:Na:Mo:As égaux à 2:1:3:1. Le mélange, finement broyé, est préchauffé à l'air jusqu'à 623 K en vue d'éliminer les composés volatils. Il est ensuite porté, par palier de 100 degrés, jusqu'à une température de synthèse proche de la fusion, 823 K. Le mélange est alors abandonné à cette température pendant deux semaines pour favoriser la germination et la croissance des cristaux. Le résidu final a subi en premier un refroidissement lent (5°/jour) jusqu'à 773 K puis un second rapide (50°/h) jusqu'à la température ambiante. Des cristaux jaunâtres, de taille suffisante pour les mesures des intensités, ont été séparés du flux par l'eau chaude. Une analyse qualitative au M.E.B.E. de type FEI Quanta 200 d'un cristal confirme la présence des différents éléments chimiques attendus: Ag, Mo, As, Na et l'oxygène.

S3. Refinement

Dans l'affinement final et pour des raisons de neutralité électrique, les taux d'occupation des cations Na⁺ et Ag⁺ ont été menés en utilisant la condition SUMP autorisée par le programme *SHELX* (Sheldrick, 2008). De plus les ellipsoïdes et les positions des ions Na⁺ ont été définis, moyennant respectivement les conditions EADP et EXYZ autorisée par le programme *SHELX*, identiques à ceux des ions Ag⁺. Les densités d'électrons max et min restants dans la Fourier-différence sont situées respectivements à 0.75 Å de Mo1 et à 0.94 Å de Mo2. Il en résulte la composition chimique finale Ag_{2,07 (1)}Na_{0,93 (1)}Mo₃AsO₁₃ du nouveau matériau obtenu.

Figure 1

Unité asymétrique dans NaAg₂Mo₃AsO₁₃. Les ellipsoïdes ont été définis avec 50% de probabilité. [Codes de symétrie: (i) -*x*, -*y* + 1, -*z* + 1; (ii) -*x* + 1, -*y* + 1, -*z* + 2; (iii) *x*, *y*, *z* + 1; (iv)*x*, *y*, *z* - 1.]

Figure 2

Projection de la stucture de NaAg₂Mo₃AsO₁₃ selon *b*, mettant en évidence la disposition des rubans.

Projection de la stucture de NaAg₂Mo₃AsO₁₃ selon *a*, montrant les espaces inter-rubans où résident les cations.

Figure 4

Vue en perspective, selon b, montrant la connection des polyèdres (Ag/Na)O7 dans la stucture de NaAg2Mo3AsO13.

sodium disilver arsenatotrimolybdate

Crystal data

NaAg₂Mo₃AsO₁₃ $M_r = 814.99$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 8.063 (2) Å b = 8.217 (2) Å c = 9.755 (3) Å $\alpha = 113.42$ (2)° $\beta = 99.49$ (1)° $\gamma = 105.84$ (2)° V = 542.6 (3) Å³

Data collection

Enraf–Nonius CAD-4 diffractometer Radiation source: fine-focus sealed tube Graphite monochromator $\omega/2\theta$ scans Absorption correction: ψ scan (North *et al.*, 1968) $T_{\rm min} = 0.055, T_{\rm max} = 0.194$ 2895 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.030$ $wR(F^2) = 0.087$ S = 1.242371 reflections Z = 2 F(000) = 741 $D_x = 4.989 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 25 reflections $\theta = 10-15^{\circ}$ $\mu = 10.17 \text{ mm}^{-1}$ T = 298 K Prism, yellow $0.34 \times 0.26 \times 0.16 \text{ mm}$

2371 independent reflections 2282 reflections with $I > 2\sigma(I)$ $R_{int} = 0.024$ $\theta_{max} = 27.0^{\circ}, \theta_{min} = 2.4^{\circ}$ $h = -10 \rightarrow 2$ $k = -10 \rightarrow 10$ $l = -12 \rightarrow 12$ 2 standard reflections every 120 min intensity decay: 1.6%

188 parameters3 restraintsPrimary atom site location: structure-invariant direct methodsSecondary atom site location: difference Fourier map

 $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0402P)^{2} + 4.8728P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 1.98 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\min} = -1.63 \text{ e } \text{\AA}^{-3}$ Extinction correction: *SHELXL97* (Sheldrick, 2008), Fc*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.0306 (10)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Mo1	0.01511 (7)	0.28903 (7)	0.35866 (6)	0.00656 (15)	
Mo2	0.19906 (7)	0.41276 (7)	0.74653 (6)	0.00685 (16)	
Mo3	0.38388 (7)	0.55984 (7)	1.26729 (6)	0.00759 (16)	
As1	0.44918 (8)	0.77640 (8)	0.66832 (7)	0.00632 (17)	
Ag1	0.40570 (9)	0.14320 (9)	0.93581 (8)	0.0194 (3)	0.833 (4)
Na1	0.40570 (9)	0.14320 (9)	0.93581 (8)	0.0194 (3)	0.167 (8)
Ag2	-0.10888 (11)	0.15255 (13)	0.92123 (10)	0.0278 (3)	0.708 (5)
Na2	-0.10888 (11)	0.15255 (13)	0.92123 (10)	0.0278 (3)	0.292 (8)
Ag3	0.24782 (12)	0.97254 (12)	0.47319 (11)	0.0173 (3)	0.527 (4)
Na3	0.24782 (12)	0.97254 (12)	0.47319 (11)	0.0173 (3)	0.473 (8)
O1	0.2795 (7)	0.7125 (7)	1.2563 (6)	0.0184 (10)	
O2	0.2847 (7)	0.3639 (7)	1.0825 (6)	0.0164 (10)	
O3	0.2647 (7)	0.6107 (7)	0.9260 (6)	0.0189 (10)	
O4	0.2389 (6)	0.4348 (6)	0.3654 (5)	0.0115 (9)	
05	0.3870 (6)	0.3088 (6)	0.7529 (5)	0.0098 (8)	
O6	0.5302 (6)	0.7705 (6)	1.5190 (5)	0.0111 (9)	
07	0.0860 (6)	0.1790 (7)	0.4672 (6)	0.0142 (9)	
08	-0.0573 (7)	0.1214 (7)	0.1630 (6)	0.0159 (10)	
09	0.0571 (6)	0.4905 (6)	0.6238 (5)	0.0113 (9)	
O10	0.4147 (6)	0.5666 (6)	0.6783 (5)	0.0094 (8)	
011	0.5864 (6)	0.9570 (7)	0.8439 (6)	0.0169 (10)	
012	0.2510 (6)	0.8156 (6)	0.6336 (6)	0.0117 (9)	
O13	0.0388 (6)	0.2362 (7)	0.7601 (6)	0.0135 (9)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}	
Mol	0.0066 (3)	0.0069 (3)	0.0065 (3)	0.00209 (19)	0.00062 (19)	0.0042 (2)	
Mo2	0.0067 (3)	0.0091 (3)	0.0067 (3)	0.00284 (19)	0.00147 (19)	0.0059 (2)	
Mo3	0.0072 (3)	0.0109 (3)	0.0066 (3)	0.0037 (2)	0.00137 (19)	0.0060(2)	
As1	0.0066 (3)	0.0067 (3)	0.0058 (3)	0.0016 (2)	0.0007 (2)	0.0041 (2)	

Ag1	0.0228 (4)	0.0176 (4)	0.0158 (4)	0.0095 (3)	0.0055 (3)	0.0050 (3)
Na1	0.0228 (4)	0.0176 (4)	0.0158 (4)	0.0095 (3)	0.0055 (3)	0.0050 (3)
Ag2	0.0221 (5)	0.0427 (6)	0.0234 (5)	0.0058 (4)	0.0113 (3)	0.0224 (4)
Na2	0.0221 (5)	0.0427 (6)	0.0234 (5)	0.0058 (4)	0.0113 (3)	0.0224 (4)
Ag3	0.0183 (5)	0.0123 (5)	0.0218 (5)	0.0039 (3)	0.0041 (3)	0.0106 (4)
Na3	0.0183 (5)	0.0123 (5)	0.0218 (5)	0.0039 (3)	0.0041 (3)	0.0106 (4)
01	0.016 (2)	0.025 (3)	0.024 (3)	0.012 (2)	0.007 (2)	0.017 (2)
O2	0.019 (2)	0.019 (2)	0.011 (2)	0.0084 (19)	0.0034 (19)	0.0054 (19)
03	0.028 (3)	0.019 (2)	0.010 (2)	0.009 (2)	0.007 (2)	0.006 (2)
04	0.0052 (19)	0.016 (2)	0.013 (2)	0.0006 (17)	0.0017 (17)	0.0086 (18)
05	0.009 (2)	0.015 (2)	0.012 (2)	0.0073 (17)	0.0054 (17)	0.0097 (18)
06	0.014 (2)	0.013 (2)	0.007 (2)	0.0032 (17)	0.0051 (17)	0.0063 (17)
07	0.014 (2)	0.020 (2)	0.017 (2)	0.0083 (19)	0.0054 (18)	0.015 (2)
08	0.018 (2)	0.014 (2)	0.011 (2)	0.0040 (19)	0.0062 (19)	0.0019 (18)
09	0.009 (2)	0.011 (2)	0.013 (2)	0.0027 (17)	-0.0005 (17)	0.0069 (18)
O10	0.010 (2)	0.009 (2)	0.013 (2)	0.0031 (16)	0.0038 (17)	0.0085 (18)
011	0.016 (2)	0.015 (2)	0.013 (2)	0.0020 (19)	0.0001 (18)	0.0046 (19)
012	0.007 (2)	0.013 (2)	0.020 (2)	0.0061 (17)	0.0052 (18)	0.0110 (19)
013	0.011 (2)	0.019 (2)	0.016 (2)	0.0062 (18)	0.0047 (18)	0.013 (2)

Geometric parameters (Å, °)

Mo1-08	1.728 (5)	Mo3	2.252 (4)
Mo1—O7	1.763 (4)	As1—011	1.679 (5)
Mo1—O4	1.847 (4)	As1—O6 ^{iv}	1.681 (4)
Mo1—O9 ⁱ	2.003 (4)	As1—010	1.715 (4)
Mo1-O12 ⁱ	2.109 (4)	As1—012	1.721 (4)
Mo1-09	2.356 (5)	Ag1—O2	2.378 (5)
Mo2—O3	1.718 (5)	Ag1—O11 ^v	2.414 (5)
Mo2—O13	1.726 (5)	Ag1—O3 ⁱⁱ	2.586 (5)
Mo2—O9	1.925 (4)	Ag1—O11 ⁱⁱ	2.586 (5)
Mo2—O5	1.936 (4)	Ag2—O13	2.322 (5)
Mo2—O10	2.217 (4)	Ag2—O11 ^{vi}	2.336 (5)
Mo2—O7	2.452 (5)	Ag2—O8 ⁱⁱⁱ	2.452 (5)
Mo3—O1	1.717 (5)	Ag3—O6 ^{vii}	2.330 (4)
Mo3—O2	1.731 (5)	Ag3—O12	2.392 (5)
Mo3—O5 ⁱⁱ	1.954 (4)	Ag3—O7 ^{viii}	2.418 (5)
Mo3—O4 ⁱⁱⁱ	1.958 (4)	Ag3—O1 ^{iv}	2.447 (5)
Mo3—O6	2.229 (5)	Ag3—O13 ⁱ	2.542 (5)
O8—Mo1—O7	106.5 (2)	O5 ⁱⁱ —Mo3—O4 ⁱⁱⁱ	153.23 (19)
O8—Mo1—O4	97.9 (2)	O1—Mo3—O6	88.2 (2)
O7—Mo1—O4	99.3 (2)	O2—Mo3—O6	168.1 (2)
O8—Mo1—O9 ⁱ	108.7 (2)	O5 ⁱⁱ —Mo3—O6	80.51 (18)
O7—Mo1—O9 ⁱ	143.3 (2)	O4 ⁱⁱⁱ —Mo3—O6	80.69 (18)
O4—Mo1—O9 ⁱ	86.02 (19)	O1—Mo3—O10 ⁱⁱ	164.6 (2)
O8-Mo1-O12 ⁱ	88.9 (2)	O2—Mo3—O10 ⁱⁱ	89.2 (2)
O7-Mo1-O12 ⁱ	90.1 (2)	O5 ⁱⁱ —Mo3—O10 ⁱⁱ	71.43 (16)

O4-Mo1-O12 ⁱ	166.24 (19)	O4 ⁱⁱⁱ —Mo3—O10 ⁱⁱ	86.64 (17)
O9 ⁱ —Mo1—O12 ⁱ	80.47 (17)	O6—Mo3—O10 ⁱⁱ	79.96 (17)
O8—Mo1—O9	169.15 (19)	O11—As1—O6 ^{iv}	113.4 (2)
O7—Mo1—O9	73.34 (19)	O11—As1—O10	108.0 (2)
O4—Mo1—O9	92.76 (18)	O6 ^{iv} —As1—O10	110.5 (2)
O9 ⁱ —Mo1—O9	70.15 (19)	O11—As1—O12	106.6 (2)
O12 ⁱ —Mo1—O9	80.27 (17)	O6 ^{iv} —As1—O12	106.3 (2)
O3—Mo2—O13	104.5 (2)	O10—As1—O12	112.0 (2)
O3—Mo2—O9	98.4 (2)	O2—Ag1—O11 ^v	166.50 (17)
O13—Mo2—O9	103.7 (2)	O2—Ag1—O3 ⁱⁱ	92.84 (17)
O3—Mo2—O5	106.0 (2)	O11 ^v —Ag1—O3 ⁱⁱ	76.24 (16)
O13—Mo2—O5	96.0 (2)	O2—Ag1—O11 ⁱⁱ	85.15 (16)
O9—Mo2—O5	143.54 (19)	O11 ^v —Ag1—O11 ⁱⁱ	87.38 (17)
O3—Mo2—O10	90.5 (2)	O3 ⁱⁱ —Ag1—O11 ⁱⁱ	92.39 (15)
O13—Mo2—O10	163.3 (2)	O13—Ag2—O11 ^{vi}	125.47 (17)
O9—Mo2—O10	80.67 (18)	O13—Ag2—O8 ⁱⁱⁱ	142.90 (16)
O5—Mo2—O10	72.53 (17)	O11 ^{vi} —Ag2—O8 ⁱⁱⁱ	89.43 (17)
O3—Mo2—O7	166.5 (2)	O6 ^{vii} —Ag3—O12	131.29 (16)
O13—Mo2—O7	82.7 (2)	O6 ^{vii} —Ag3—O7 ^{viii}	77.75 (16)
O9—Mo2—O7	68.61 (18)	O12—Ag3—O7 ^{viii}	127.64 (16)
O5—Mo2—O7	84.14 (17)	O6 ^{vii} —Ag3—O1 ^{iv}	98.64 (16)
O10—Mo2—O7	84.01 (16)	O12—Ag3—O1 ^{iv}	92.52 (16)
O1—Mo3—O2	103.3 (2)	O7 ^{viii} —Ag3—O1 ^{iv}	129.80 (17)
O1—Mo3—O5 ⁱⁱ	97.1 (2)	O6 ^{vii} —Ag3—O13 ⁱ	121.56 (15)
O2—Mo3—O5 ⁱⁱ	101.0 (2)	O12—Ag3—O13 ⁱ	106.27 (15)
O1—Mo3—O4 ⁱⁱⁱ	101.2 (2)	O7 ^{viii} —Ag3—O13 ⁱ	74.12 (16)
O2—Mo3—O4 ⁱⁱⁱ	93.7 (2)	O1 ^{iv} —Ag3—O13 ⁱ	65.54 (16)

Symmetry codes: (i) -*x*, -*y*+1, -*z*+1; (ii) -*x*+1, -*y*+1, -*z*+2; (iii) *x*, *y*, *z*+1; (iv) *x*, *y*, *z*-1; (v) *x*, *y*-1, *z*; (vi) *x*-1, *y*-1, *z*; (vii) -*x*+1, -*y*+2, -*z*+2; (viii) *x*, *y*+1, *z*.