organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 3-oxo-3H-benzo[f]chromene-2-carboxyl­ate

aDepartment of Physics, Sri D Devaraja Urs Govt. First Grade College, Hunsur 571 105, Mysore District, Karnataka, India, bDepartment of Physics, Yuvaraja's College (Constituent College), University of Mysore, Mysore 570 005, Karnataka, India, cDepartment of PG Studies in Pharmaceutical Chemistry, Kuvempu University Kadur P. G. Center, Kadur 577 548, Karnataka, India, and dDepartment of Physics, Y. Y. D. Govt. First Grade College, Belur 573 115, Hassan, Karnataka, India
*Correspondence e-mail: devarajegowda@yahoo.com

(Received 6 September 2010; accepted 21 September 2010; online 30 September 2010)

In the title compound, C16H12O4, the chromene ring system is almost planar [maximum deviation = 0.026 (1) Å] and makes dihedral angles of 1.24 (9) and 26.5 (2)° with the fused benzene ring and the plane of the ethyl carboxyl­ate group, respectively.

Related literature

For general background to chromenes, see: Kendall et al. (1961[Kendall, J. D., Duflin, G. E. & Waddington, H. R. J. (1961). Chem. Abstr. 55, 21927.]); Rau & Brack (1963[Rau, R. & Brack, A. (1963). Chem. Abstr. 58, 11506.]); Jones et al. (1985[Jones, G. II, Jackson, W. R., Choi, C. & Bergmark, W. R. (1985). J. Phys. Chem. 89, 294-300.]); Gikas et al. (2003[Gikas, E., Parissi-Poulou, M., Kazanis, M. & Vavagianis, A. (2003). Anal. Chim. Acta, 489, 153-163.]); Miyata & Nalwa, (1997[Miyata, S. & Nalwa, H. S. (1997). Editors. Organic Electroluminescent Materials and Devices. Amsterdam: Gordon and Breach.]); Shibata (1994[Shibata, T. (1994). Japan Patent 6 122 874.]). For related structures, see: Lakshmi et al. (2006[Lakshmi, S., Manvar, D., Parecha, A., Shah, A., Sridhar, M. A. & Shashidhara Prasad, J. (2006). Acta Cryst. E62, o2163-o2165.]); Jiao et al. (2009[Jiao, Y.-H., Zhang, Q., Meng, F.-Y., Teng, L., Yuan, J. & Ng, S. W. (2009). Acta Cryst. E65, o775.]).

[Scheme 1]

Experimental

Crystal data
  • C16H12O4

  • Mr = 268.26

  • Monoclinic, P 21 /n

  • a = 14.6716 (11) Å

  • b = 4.5190 (5) Å

  • c = 19.3874 (18) Å

  • β = 90.218 (7)°

  • V = 1285.4 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.22 × 0.15 × 0.12 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: ψ scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.981, Tmax = 0.987

  • 13075 measured reflections

  • 2276 independent reflections

  • 997 reflections with I > 2σ(I)

  • Rint = 0.088

Refinement
  • R[F2 > 2σ(F2)] = 0.075

  • wR(F2) = 0.208

  • S = 1.04

  • 2276 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.16 e Å−3

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Chromenes are involved in the structures of molecules of biologically active compounds. Several chromene derivatives have been patented for a variety of industrial applications (Kendall et al., 1961; Rau & Brack,1963).

Chromenes also play a vital role in electrophotographic, electroluminescent devices and laser dyes. Several 3-substituted 7-hydroxycoumarins rank among the most efficient photostable laser dyes, emitting in the blue green region of the visible spectrum. The lasing range covered by chromene dyes is appreciably extended when the 3-substituent is a heterocyclic unit (Jones et al., 1985; Gikas et al., 2003). Benzo-annulated chromene derivativesare widely used in organic light-emitting devices and are used as electron-transporting emitters (Miyata & Nalwa et al., 1997; Shibata, 1994).

In the title compound (Fig. 1) the chromene ring system is almost planar [maximum deviation = 0.026 (1) Å] and makes dihedral angles of 1.24 (9)° and 26.5 (2)% with the fused benzene ring and the plane of the ethyl carboxylate group, respectively. The bond lengths and bond angles are in good agreement with those in related structures (Lakshmi et al., 2006; Jiao et al., 2009). The packing of the molecules, when viewed along b, is shown in Fig. 2.

Related literature top

For general background to chromenes, see: Kendall et al. (1961); Rau & Brack (1963); Jones et al. (1985); Gikas et al. (2003); Miyata & Nalwa, (1997); Shibata (1994). For related structures, see: Lakshmi et al. (2006); Jiao et al. (2009).

Experimental top

A mixture of 2-hydroxy-1-naphthaldehyde (2.9 mmol), an equivalent amount of diethyl malonate (2.9 mmol), and a catalytic amount of piperidine in ethanol (30 ml) was refluxed for 30 minutes on a water bath. After the reaction was complete, the reaction mixture was cooled to room temperature and poured into crushed ice with stirring. The precipitate obtained was then filtered, washed with water, dried and recrystallized using ethanol to yield the pure title compound as a white-yellow crystalline solid. Yield 90%; m.p. 388 K.

Refinement top

All H atoms were positioned geometrically with C—H = 0.93 Å for aromatic H, 0.97 Å for methylene H and 0.96 Å for methyl H and refined using a riding model with Uiso(H) =1.5Ueq(C) for methyl H and 1.2Ueq(C) for all other H.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. Packing of the molecules when viewed along b.
Ethyl 3-oxo-3H-benzo[f]chromene-2-carboxylate top
Crystal data top
C16H12O4F(000) = 560
Mr = 268.26Dx = 1.386 Mg m3
Monoclinic, P21/nMelting point < 388 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 14.6716 (11) ÅCell parameters from 2276 reflections
b = 4.5190 (5) Åθ = 2.8–25.0°
c = 19.3874 (18) ŵ = 0.10 mm1
β = 90.218 (7)°T = 293 K
V = 1285.4 (2) Å3Plate, colourless
Z = 40.22 × 0.15 × 0.12 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2276 independent reflections
Radiation source: fine-focus sealed tube997 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.088
ω and ϕ scansθmax = 25.0°, θmin = 2.8°
Absorption correction: ψ scan
(SADABS; Sheldrick, 2004)
h = 1717
Tmin = 0.981, Tmax = 0.987k = 55
13075 measured reflectionsl = 2323
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.075H-atom parameters constrained
wR(F2) = 0.208 w = 1/[σ2(Fo2) + (0.0891P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2276 reflectionsΔρmax = 0.17 e Å3
182 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.017 (4)
Crystal data top
C16H12O4V = 1285.4 (2) Å3
Mr = 268.26Z = 4
Monoclinic, P21/nMo Kα radiation
a = 14.6716 (11) ŵ = 0.10 mm1
b = 4.5190 (5) ÅT = 293 K
c = 19.3874 (18) Å0.22 × 0.15 × 0.12 mm
β = 90.218 (7)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2276 independent reflections
Absorption correction: ψ scan
(SADABS; Sheldrick, 2004)
997 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 0.987Rint = 0.088
13075 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0750 restraints
wR(F2) = 0.208H-atom parameters constrained
S = 1.04Δρmax = 0.17 e Å3
2276 reflectionsΔρmin = 0.16 e Å3
182 parameters
Special details top

Experimental. 1H NMR (400 MHz, CDCl3) δ(p.p.m.): 1.4 (s, 3H, CH3), 4.4 (q, 2H, H2), 7.4 (m, 6H, ArH), 9.2 (s, 1H, CH): 13C NMR (300 MHz, CDCl3) δ(p.p.m.): 163 (C=O ester), 160 (C=O pyrone), 150.4, 149.7, 148.7, 130.6, 126.6, 124.2, 124.0, 121.2, 121, 120, 114.5, 115, 58.8, 26: IR (KBr) ν(cm-1): 1765 (s) (C=O), 1750 (s) (C=O ester): MS (m/z): 269 (M+1).

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.37862 (18)0.4741 (7)0.03118 (17)0.0587 (9)
O20.19329 (19)0.8301 (8)0.17429 (17)0.0700 (10)
O30.0829 (2)0.7805 (8)0.09664 (17)0.0802 (12)
O40.3625 (2)0.8050 (8)0.11371 (17)0.0777 (11)
C10.3450 (3)0.2819 (10)0.0168 (2)0.0518 (12)
C20.4098 (3)0.1524 (12)0.0605 (3)0.0657 (14)
H20.47140.19750.05600.079*
C30.3813 (3)0.0397 (11)0.1094 (3)0.0641 (14)
H30.42410.12760.13830.077*
C40.2879 (3)0.1105 (10)0.1176 (2)0.0535 (13)
C50.2597 (4)0.3160 (11)0.1686 (2)0.0671 (15)
H50.30250.40410.19750.081*
C60.1708 (4)0.3826 (12)0.1749 (3)0.0731 (15)
H60.15270.51660.20860.088*
C70.1050 (4)0.2543 (12)0.1319 (3)0.0765 (16)
H70.04390.30420.13670.092*
C80.1309 (3)0.0572 (11)0.0833 (3)0.0634 (14)
H80.08680.02850.05510.076*
C90.2229 (3)0.0214 (9)0.0743 (2)0.0467 (11)
C100.2530 (3)0.2264 (9)0.0221 (2)0.0444 (11)
C110.1960 (3)0.3847 (10)0.0243 (2)0.0503 (12)
H110.13340.35540.02130.060*
C120.2266 (3)0.5729 (10)0.0719 (2)0.0497 (12)
C130.3241 (3)0.6306 (12)0.0766 (2)0.0545 (13)
C140.1601 (3)0.7379 (9)0.1150 (2)0.0533 (12)
C150.1339 (3)1.0111 (12)0.2181 (3)0.0715 (15)
H15A0.09931.14550.18920.086*
H15B0.17111.12910.24880.086*
C160.0699 (4)0.8298 (13)0.2596 (3)0.0918 (18)
H16A0.03270.95730.28760.138*
H16B0.10380.69840.28870.138*
H16C0.03170.71640.22940.138*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0418 (18)0.068 (2)0.066 (2)0.0077 (16)0.0000 (17)0.0002 (18)
O20.062 (2)0.089 (3)0.059 (2)0.0067 (18)0.0089 (18)0.017 (2)
O30.046 (2)0.119 (3)0.075 (2)0.0087 (19)0.0054 (18)0.028 (2)
O40.064 (2)0.097 (3)0.072 (2)0.0201 (19)0.0008 (19)0.021 (2)
C10.045 (3)0.057 (3)0.054 (3)0.008 (2)0.002 (2)0.005 (3)
C20.043 (3)0.078 (4)0.076 (4)0.001 (3)0.010 (3)0.009 (3)
C30.054 (3)0.065 (4)0.073 (4)0.009 (3)0.020 (3)0.000 (3)
C40.064 (3)0.054 (3)0.043 (3)0.005 (2)0.005 (2)0.013 (2)
C50.091 (4)0.064 (4)0.046 (3)0.011 (3)0.017 (3)0.008 (3)
C60.092 (4)0.072 (4)0.056 (3)0.005 (3)0.008 (3)0.015 (3)
C70.082 (4)0.089 (4)0.059 (3)0.010 (3)0.020 (3)0.016 (3)
C80.058 (3)0.067 (4)0.065 (3)0.002 (3)0.004 (3)0.006 (3)
C90.045 (3)0.048 (3)0.047 (3)0.001 (2)0.003 (2)0.012 (2)
C100.044 (3)0.043 (3)0.045 (3)0.001 (2)0.001 (2)0.009 (2)
C110.042 (3)0.059 (3)0.050 (3)0.007 (2)0.003 (2)0.015 (3)
C120.043 (3)0.057 (3)0.049 (3)0.005 (2)0.004 (2)0.012 (3)
C130.049 (3)0.065 (4)0.050 (3)0.009 (3)0.002 (3)0.011 (3)
C140.055 (3)0.052 (3)0.052 (3)0.005 (3)0.001 (3)0.004 (2)
C150.074 (3)0.073 (4)0.068 (3)0.004 (3)0.008 (3)0.020 (3)
C160.110 (5)0.090 (5)0.075 (4)0.006 (3)0.025 (3)0.005 (3)
Geometric parameters (Å, º) top
O1—C11.366 (5)C6—H60.9300
O1—C131.381 (5)C7—C81.353 (6)
O2—C141.318 (5)C7—H70.9300
O2—C151.464 (5)C8—C91.408 (6)
O3—C141.204 (5)C8—H80.9300
O4—C131.208 (5)C9—C101.443 (6)
C1—C101.376 (5)C10—C111.420 (6)
C1—C21.400 (6)C11—C121.333 (6)
C2—C31.352 (6)C11—H110.9300
C2—H20.9300C12—C131.458 (6)
C3—C41.417 (6)C12—C141.483 (6)
C3—H30.9300C15—C161.481 (6)
C4—C91.400 (6)C15—H15A0.9700
C4—C51.419 (6)C15—H15B0.9700
C5—C61.345 (7)C16—H16A0.9600
C5—H50.9300C16—H16B0.9600
C6—C71.399 (7)C16—H16C0.9600
C1—O1—C13123.3 (3)C8—C9—C10123.0 (4)
C14—O2—C15117.5 (4)C1—C10—C11115.9 (4)
O1—C1—C10121.5 (4)C1—C10—C9118.1 (4)
O1—C1—C2115.6 (4)C11—C10—C9125.9 (4)
C10—C1—C2122.9 (5)C12—C11—C10124.0 (4)
C3—C2—C1118.7 (5)C12—C11—H11118.0
C3—C2—H2120.6C10—C11—H11118.0
C1—C2—H2120.6C11—C12—C13119.4 (4)
C2—C3—C4121.7 (5)C11—C12—C14119.2 (4)
C2—C3—H3119.1C13—C12—C14121.2 (5)
C4—C3—H3119.1O4—C13—O1116.3 (4)
C9—C4—C3119.5 (5)O4—C13—C12127.9 (5)
C9—C4—C5119.8 (4)O1—C13—C12115.8 (4)
C3—C4—C5120.7 (5)O3—C14—O2123.9 (4)
C6—C5—C4119.7 (5)O3—C14—C12122.1 (4)
C6—C5—H5120.2O2—C14—C12114.0 (4)
C4—C5—H5120.2O2—C15—C16112.4 (4)
C5—C6—C7121.3 (5)O2—C15—H15A109.1
C5—C6—H6119.3C16—C15—H15A109.1
C7—C6—H6119.3O2—C15—H15B109.1
C8—C7—C6119.6 (5)C16—C15—H15B109.1
C8—C7—H7120.2H15A—C15—H15B107.9
C6—C7—H7120.2C15—C16—H16A109.5
C7—C8—C9121.6 (5)C15—C16—H16B109.5
C7—C8—H8119.2H16A—C16—H16B109.5
C9—C8—H8119.2C15—C16—H16C109.5
C4—C9—C8118.0 (4)H16A—C16—H16C109.5
C4—C9—C10119.0 (4)H16B—C16—H16C109.5
C13—O1—C1—C101.5 (6)C4—C9—C10—C10.5 (6)
C13—O1—C1—C2177.3 (4)C8—C9—C10—C1178.5 (4)
O1—C1—C2—C3179.9 (4)C4—C9—C10—C11178.0 (4)
C10—C1—C2—C31.1 (7)C8—C9—C10—C113.1 (6)
C1—C2—C3—C40.5 (7)C1—C10—C11—C121.4 (6)
C2—C3—C4—C90.1 (7)C9—C10—C11—C12179.9 (4)
C2—C3—C4—C5179.1 (5)C10—C11—C12—C131.8 (6)
C9—C4—C5—C60.0 (7)C10—C11—C12—C14176.8 (4)
C3—C4—C5—C6179.2 (4)C1—O1—C13—O4176.1 (4)
C4—C5—C6—C70.3 (7)C1—O1—C13—C121.7 (6)
C5—C6—C7—C80.6 (8)C11—C12—C13—O4175.6 (5)
C6—C7—C8—C90.5 (7)C14—C12—C13—O40.8 (7)
C3—C4—C9—C8179.1 (4)C11—C12—C13—O11.8 (6)
C5—C4—C9—C80.1 (6)C14—C12—C13—O1176.7 (4)
C3—C4—C9—C100.1 (6)C15—O2—C14—O34.1 (7)
C5—C4—C9—C10179.1 (4)C15—O2—C14—C12176.2 (4)
C7—C8—C9—C40.2 (7)C11—C12—C14—O322.9 (6)
C7—C8—C9—C10178.8 (4)C13—C12—C14—O3151.9 (4)
O1—C1—C10—C111.2 (6)C11—C12—C14—O2156.8 (4)
C2—C1—C10—C11177.5 (4)C13—C12—C14—O228.4 (6)
O1—C1—C10—C9179.8 (4)C14—O2—C15—C1682.2 (5)
C2—C1—C10—C91.1 (6)

Experimental details

Crystal data
Chemical formulaC16H12O4
Mr268.26
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)14.6716 (11), 4.5190 (5), 19.3874 (18)
β (°) 90.218 (7)
V3)1285.4 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.22 × 0.15 × 0.12
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionψ scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.981, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
13075, 2276, 997
Rint0.088
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.075, 0.208, 1.04
No. of reflections2276
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.16

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1999).

 

Acknowledgements

The authors thank the DST, India, for funding under DST–FIST (Level II) for the X-ray diffraction facility at SSCU, IISc, Bangalore.

References

First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGikas, E., Parissi-Poulou, M., Kazanis, M. & Vavagianis, A. (2003). Anal. Chim. Acta, 489, 153–163.  Web of Science CrossRef CAS Google Scholar
First citationJiao, Y.-H., Zhang, Q., Meng, F.-Y., Teng, L., Yuan, J. & Ng, S. W. (2009). Acta Cryst. E65, o775.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJones, G. II, Jackson, W. R., Choi, C. & Bergmark, W. R. (1985). J. Phys. Chem. 89, 294–300.  CrossRef CAS Web of Science Google Scholar
First citationKendall, J. D., Duflin, G. E. & Waddington, H. R. J. (1961). Chem. Abstr. 55, 21927.  Google Scholar
First citationLakshmi, S., Manvar, D., Parecha, A., Shah, A., Sridhar, M. A. & Shashidhara Prasad, J. (2006). Acta Cryst. E62, o2163–o2165.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMiyata, S. & Nalwa, H. S. (1997). Editors. Organic Electroluminescent Materials and Devices. Amsterdam: Gordon and Breach.  Google Scholar
First citationRau, R. & Brack, A. (1963). Chem. Abstr. 58, 11506.  Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShibata, T. (1994). Japan Patent 6 122 874.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds