metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(R)-2-Methyl­piperazine-1,4-diium di­aqua­tetra­chloridoferrate(II)

aDepartment of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang 455000, People's Republic of China, and bAnyang Administration of Work Safety, Henan Province 455000, People's Republic of China
*Correspondence e-mail: ayitpch@yahoo.com.cn

(Received 17 August 2010; accepted 3 September 2010; online 8 September 2010)

In the title salt, (C5H14N2)[FeCl4(H2O)2], the FeII cation is coordinated by four Cl anions and two water mol­ecules in a distorted octa­hedral geometry. The piperazine ring adopts a normal chair conformation. Inter­molecular N—H⋯Cl, N—H⋯(Cl,Cl) and O—H⋯Cl hydrogen bonding is present in the crystal structure.

Related literature

For hydrogen bonding in metal–chlorido complexes, see: Brammer et al. (2001[Brammer, L., Bruton, E. A. & Sherwood, P. (2001). Cryst. Growth Des. 1, 277-290.]); Bremner & Harrison (2003[Bremner, C. A. & Harrison, W. T. A. (2003). Acta Cryst. E59, m425-m426.]); Kefi & Nasr (2005[Kefi, R. & Nasr, C. B. (2005). Z. Kristallogr. New Cryst. Struct. 220, 241.]). For the crystal structure of a related compound, piperazindiium tetra­chloridozincate(II), see: Sutherland & Harrison (2009[Sutherland, P. A. & Harrison, W. T. A. (2009). Acta Cryst. E65, m565.]).

[Scheme 1]

Experimental

Crystal data
  • (C5H14N2)[FeCl4(H2O)2]

  • Mr = 335.86

  • Monoclinic, P 21

  • a = 8.6013 (17) Å

  • b = 6.4495 (13) Å

  • c = 12.024 (2) Å

  • β = 101.64 (3)°

  • V = 653.3 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.95 mm−1

  • T = 291 K

  • 0.28 × 0.24 × 0.20 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.8, Tmax = 0.9

  • 6105 measured reflections

  • 2558 independent reflections

  • 2456 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.050

  • S = 1.08

  • 2558 reflections

  • 129 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.24 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1156 Friedel pairs

  • Flack parameter: 0.010 (14)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1C⋯Cl2i 0.90 2.62 3.443 (2) 152
N1—H1C⋯Cl4i 0.90 2.81 3.379 (3) 122
N1—H1D⋯Cl4ii 0.90 2.28 3.169 (3) 167
N2—H2C⋯Cl1iii 0.90 2.26 3.145 (3) 168
N2—H2D⋯Cl3 0.90 2.45 3.275 (2) 152
O1—H11⋯Cl3iv 0.82 2.33 3.147 (2) 173
O1—H12⋯Cl3v 0.89 2.24 3.127 (2) 176
O2—H21⋯Cl2iii 0.93 2.19 3.119 (2) 174
O2—H22⋯Cl2vi 0.86 2.31 3.1590 (18) 168
Symmetry codes: (i) x-1, y-1, z; (ii) x-1, y, z; (iii) x, y-1, z; (iv) [-x+2, y+{\script{1\over 2}}, -z+1]; (v) x, y+1, z; (vi) [-x+2, y-{\script{1\over 2}}, -z+2].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Recently much attention has been devoted to hydrogen bonding networks in molecular salts containing metal-chlorido complexes (Brammer et al., 2001; Bremner & Harrison, 2003; Kefi & Nasr, 2005). The crystal structure of piperazinediium tetrachloridozincate(II) has been reported (Sutherland & Harrison, 2009). The construction of new members of this family is an important direction in the development of coordination chemistry. We report here the crystal structure of the title compound.

The crystal structure of the title compound (Fig. 1) contains the protonated piperazindiium cations and trans-Fe(H2O)2Cl4 octahedral anions. The piperazine ring adopts a chair conformation. An extensive network of N—H···Cl, N—H··· (Cl,Cl) and O—H···Cl hydrogen bonds results in a structure with a three-dimensional hydrogen-bond network (Fig. 2).

Related literature top

For hydrogen bonding in metal–chlorido complexes, see: Brammer et al. (2001); Bremner & Harrison (2003); Kefi & Nasr (2005). For the crystal structure of a related compound, piperazindiium tetrachloridozincate(II), see: Sutherland & Harrison (2009).

Experimental top

(R)-2-Methylpiperazine (2 mmol, 0.2 g), FeCl3(2 mmol, 0.31 g), KI (1 mmol, 0.17), I2 (0.5 mmol, 0.13 g) and 5% aqueous HCl (5 ml) were dissolved in 10 ml water, the solution was heated to 353 K (0.5 h), forming a clear solution. The reaction mixture was cooled slowly to room temperature, crystals of the title compound were formed after 6 d.

Refinement top

Water H atoms were located in a difference Fourier map and refined as riding their as found relative positions with Uiso(H) = 1.5Ueq(O). Other H atoms were placed in calculated positions with C—H = 0.9 or 0.98 and N—H = 0.90 Å, and refined using a riding model, with Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with atom labels. Displacement ellipsoids were drawn at the 30% probability level
[Figure 2] Fig. 2. The packing viewed along the a axis. Hydrogen bonds are drawn as dashed lines
(R)-2-Methylpiperazine-1,4-diium diaquatetrachloridoferrate(II) top
Crystal data top
(C5H14N2)[FeCl4(H2O)2]F(000) = 344
Mr = 335.86Dx = 1.707 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 2456 reflections
a = 8.6013 (17) Åθ = 3.2–26.0°
b = 6.4495 (13) ŵ = 1.95 mm1
c = 12.024 (2) ÅT = 291 K
β = 101.64 (3)°Block, yellow
V = 653.3 (2) Å30.28 × 0.24 × 0.20 mm
Z = 2
Data collection top
Rigaku SCXmini
diffractometer
2558 independent reflections
Radiation source: fine-focus sealed tube2456 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 13.6612 pixels mm-1θmax = 26.0°, θmin = 3.2°
ω scansh = 1010
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 77
Tmin = 0.8, Tmax = 0.9l = 1414
6105 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.023 w = 1/[σ2(Fo2) + (0.0172P)2 + 0.0801P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.050(Δ/σ)max = 0.001
S = 1.08Δρmax = 0.19 e Å3
2558 reflectionsΔρmin = 0.24 e Å3
129 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.116 (2)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1156 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.010 (14)
Crystal data top
(C5H14N2)[FeCl4(H2O)2]V = 653.3 (2) Å3
Mr = 335.86Z = 2
Monoclinic, P21Mo Kα radiation
a = 8.6013 (17) ŵ = 1.95 mm1
b = 6.4495 (13) ÅT = 291 K
c = 12.024 (2) Å0.28 × 0.24 × 0.20 mm
β = 101.64 (3)°
Data collection top
Rigaku SCXmini
diffractometer
2558 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2456 reflections with I > 2σ(I)
Tmin = 0.8, Tmax = 0.9Rint = 0.025
6105 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.023H-atom parameters constrained
wR(F2) = 0.050Δρmax = 0.19 e Å3
S = 1.08Δρmin = 0.24 e Å3
2558 reflectionsAbsolute structure: Flack (1983), 1156 Friedel pairs
129 parametersAbsolute structure parameter: 0.010 (14)
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.92584 (4)0.85265 (6)0.73702 (3)0.02261 (10)
Cl10.63527 (7)0.89798 (9)0.69296 (5)0.03230 (17)
Cl20.95176 (8)1.16607 (10)0.86527 (5)0.03236 (16)
Cl30.88976 (8)0.53109 (10)0.60858 (5)0.03094 (16)
Cl41.21704 (8)0.81475 (10)0.77621 (7)0.0463 (2)
N10.2717 (2)0.3313 (4)0.75683 (15)0.0271 (5)
H1C0.19220.24930.76900.033*
H1D0.23960.46390.75870.033*
N20.5845 (2)0.3786 (4)0.71209 (16)0.0309 (5)
H2C0.61470.24530.71030.037*
H2D0.66480.45880.69940.037*
O10.9382 (2)1.0515 (3)0.59861 (15)0.0433 (5)
H110.98181.03470.54460.065*
H120.91881.18700.60130.065*
O20.91049 (19)0.6462 (3)0.87073 (13)0.0303 (4)
H210.92340.50370.86340.045*
H220.95450.66970.94060.045*
C10.4148 (3)0.2974 (4)0.84969 (18)0.0242 (5)
H1A0.44470.15060.85080.029*
C20.5510 (3)0.4269 (4)0.82553 (19)0.0271 (6)
H2A0.52480.57270.82890.032*
H2B0.64520.40030.88330.032*
C30.4415 (3)0.4152 (5)0.6213 (2)0.0339 (6)
H3A0.46490.37960.54800.041*
H3B0.41270.56070.61980.041*
C40.3052 (3)0.2856 (4)0.64264 (19)0.0317 (6)
H4A0.21150.31460.58490.038*
H4B0.33080.13980.63790.038*
C50.3760 (3)0.3539 (5)0.9633 (2)0.0399 (6)
H5A0.33470.49260.96000.060*
H5B0.47050.34581.02130.060*
H5C0.29810.25930.98070.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.02514 (17)0.01809 (17)0.02560 (17)0.00031 (12)0.00748 (12)0.00170 (13)
Cl10.0251 (3)0.0260 (4)0.0452 (4)0.0010 (2)0.0056 (2)0.0016 (3)
Cl20.0461 (4)0.0235 (3)0.0255 (3)0.0002 (3)0.0024 (3)0.0033 (3)
Cl30.0468 (4)0.0231 (3)0.0269 (3)0.0018 (3)0.0171 (3)0.0002 (3)
Cl40.0270 (4)0.0260 (5)0.0866 (6)0.0004 (3)0.0131 (3)0.0033 (4)
N10.0224 (10)0.0257 (12)0.0326 (11)0.0024 (9)0.0039 (8)0.0032 (10)
N20.0295 (11)0.0285 (13)0.0388 (11)0.0037 (10)0.0163 (8)0.0018 (11)
O10.0727 (14)0.0263 (10)0.0418 (11)0.0091 (10)0.0376 (10)0.0080 (9)
O20.0425 (10)0.0245 (10)0.0224 (8)0.0018 (8)0.0033 (7)0.0017 (8)
C10.0243 (12)0.0214 (14)0.0249 (12)0.0003 (10)0.0005 (9)0.0041 (10)
C20.0235 (12)0.0272 (15)0.0300 (13)0.0037 (11)0.0044 (10)0.0014 (11)
C30.0438 (15)0.0347 (16)0.0247 (12)0.0036 (12)0.0106 (10)0.0005 (11)
C40.0350 (14)0.0298 (15)0.0273 (13)0.0028 (11)0.0007 (10)0.0031 (11)
C50.0432 (15)0.0486 (17)0.0298 (13)0.0074 (14)0.0122 (11)0.0019 (13)
Geometric parameters (Å, º) top
Fe1—O22.1122 (17)O2—H210.9315
Fe1—O12.1205 (18)O2—H220.8622
Fe1—Cl12.4654 (9)C1—C21.514 (3)
Fe1—Cl42.4655 (8)C1—C51.515 (3)
Fe1—Cl22.5249 (9)C1—H1A0.9800
Fe1—Cl32.5669 (8)C2—H2A0.9700
N1—C41.488 (3)C2—H2B0.9700
N1—C11.502 (3)C3—C41.503 (3)
N1—H1C0.9000C3—H3A0.9700
N1—H1D0.9000C3—H3B0.9700
N2—C21.483 (3)C4—H4A0.9700
N2—C31.490 (3)C4—H4B0.9700
N2—H2C0.9000C5—H5A0.9600
N2—H2D0.9000C5—H5B0.9600
O1—H110.8195C5—H5C0.9600
O1—H120.8919
O2—Fe1—O1177.97 (9)H21—O2—H22103.2
O2—Fe1—Cl191.26 (5)N1—C1—C2109.07 (19)
O1—Fe1—Cl188.22 (6)N1—C1—C5109.81 (19)
O2—Fe1—Cl490.52 (5)C2—C1—C5111.1 (2)
O1—Fe1—Cl490.00 (6)N1—C1—H1A108.9
Cl1—Fe1—Cl4178.22 (3)C2—C1—H1A108.9
O2—Fe1—Cl292.94 (5)C5—C1—H1A108.9
O1—Fe1—Cl289.03 (6)N2—C2—C1111.2 (2)
Cl1—Fe1—Cl289.83 (3)N2—C2—H2A109.4
Cl4—Fe1—Cl290.09 (3)C1—C2—H2A109.4
O2—Fe1—Cl385.99 (5)N2—C2—H2B109.4
O1—Fe1—Cl392.03 (6)C1—C2—H2B109.4
Cl1—Fe1—Cl388.41 (3)H2A—C2—H2B108.0
Cl4—Fe1—Cl391.70 (3)N2—C3—C4110.1 (2)
Cl2—Fe1—Cl3177.92 (3)N2—C3—H3A109.6
C4—N1—C1112.03 (19)C4—C3—H3A109.6
C4—N1—H1C109.2N2—C3—H3B109.6
C1—N1—H1C109.2C4—C3—H3B109.6
C4—N1—H1D109.2H3A—C3—H3B108.2
C1—N1—H1D109.2N1—C4—C3110.5 (2)
H1C—N1—H1D107.9N1—C4—H4A109.5
C2—N2—C3110.8 (2)C3—C4—H4A109.5
C2—N2—H2C109.5N1—C4—H4B109.5
C3—N2—H2C109.5C3—C4—H4B109.5
C2—N2—H2D109.5H4A—C4—H4B108.1
C3—N2—H2D109.5C1—C5—H5A109.5
H2C—N2—H2D108.1C1—C5—H5B109.5
Fe1—O1—H11130.2H5A—C5—H5B109.5
Fe1—O1—H12121.6C1—C5—H5C109.5
H11—O1—H12106.1H5A—C5—H5C109.5
Fe1—O2—H21121.5H5B—C5—H5C109.5
Fe1—O2—H22123.2
C4—N1—C1—C255.9 (3)C5—C1—C2—N2177.4 (2)
C4—N1—C1—C5177.8 (2)C2—N2—C3—C457.9 (3)
C3—N2—C2—C158.3 (3)C1—N1—C4—C356.9 (3)
N1—C1—C2—N256.3 (3)N2—C3—C4—N156.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···Cl2i0.902.623.443 (2)152
N1—H1C···Cl4i0.902.813.379 (3)122
N1—H1D···Cl4ii0.902.283.169 (3)167
N2—H2C···Cl1iii0.902.263.145 (3)168
N2—H2D···Cl30.902.453.275 (2)152
O1—H11···Cl3iv0.822.333.147 (2)173
O1—H12···Cl3v0.892.243.127 (2)176
O2—H21···Cl2iii0.932.193.119 (2)174
O2—H22···Cl2vi0.862.313.1590 (18)168
Symmetry codes: (i) x1, y1, z; (ii) x1, y, z; (iii) x, y1, z; (iv) x+2, y+1/2, z+1; (v) x, y+1, z; (vi) x+2, y1/2, z+2.

Experimental details

Crystal data
Chemical formula(C5H14N2)[FeCl4(H2O)2]
Mr335.86
Crystal system, space groupMonoclinic, P21
Temperature (K)291
a, b, c (Å)8.6013 (17), 6.4495 (13), 12.024 (2)
β (°) 101.64 (3)
V3)653.3 (2)
Z2
Radiation typeMo Kα
µ (mm1)1.95
Crystal size (mm)0.28 × 0.24 × 0.20
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.8, 0.9
No. of measured, independent and
observed [I > 2σ(I)] reflections
6105, 2558, 2456
Rint0.025
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.050, 1.08
No. of reflections2558
No. of parameters129
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.24
Absolute structureFlack (1983), 1156 Friedel pairs
Absolute structure parameter0.010 (14)

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···Cl2i0.902.623.443 (2)152
N1—H1C···Cl4i0.902.813.379 (3)122
N1—H1D···Cl4ii0.902.283.169 (3)167
N2—H2C···Cl1iii0.902.263.145 (3)168
N2—H2D···Cl30.902.453.275 (2)152
O1—H11···Cl3iv0.822.333.147 (2)173
O1—H12···Cl3v0.892.243.127 (2)176
O2—H21···Cl2iii0.932.193.119 (2)174
O2—H22···Cl2vi0.862.313.1590 (18)168
Symmetry codes: (i) x1, y1, z; (ii) x1, y, z; (iii) x, y1, z; (iv) x+2, y+1/2, z+1; (v) x, y+1, z; (vi) x+2, y1/2, z+2.
 

Acknowledgements

This work was supported by a start-up grant from Anyang Institute of Technology, China.

References

First citationBrammer, L., Bruton, E. A. & Sherwood, P. (2001). Cryst. Growth Des. 1, 277–290.  Web of Science CrossRef CAS Google Scholar
First citationBremner, C. A. & Harrison, W. T. A. (2003). Acta Cryst. E59, m425–m426.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKefi, R. & Nasr, C. B. (2005). Z. Kristallogr. New Cryst. Struct. 220, 241.  Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSutherland, P. A. & Harrison, W. T. A. (2009). Acta Cryst. E65, m565.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds