organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[2-((4,6-di­methyl­pyrimidin-2-yl){2-[(4,6-di­methyl­pyrimidin-2-yl)sulfan­yl]eth­yl}amino)­eth­yl] di­sulfide

aShanghai Sunvea Chemical Materials Science and Technology Co Ltd, Shanghai 201611, People's Republic of China, bInstitute of Marine Materials Science and Engineering, Shanghai Maritime University, Shanghai 201306, People's Republic of China, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 26 August 2010; accepted 1 September 2010; online 8 September 2010)

Bis[2-(4,6-dimethyl­pyrimidin-2-ylsulfan­yl)eth­yl]amine under hydro­thermal conditions has unexpectedly been transformed into the title compound, C32H44N10S4. In the title mol­ecule, the zigzag 3,10-diaza-6,7-disulfanyldodecyl skeleton has two dimethyl­pyrimidinylsulfanyl groups at both ends, and the aza atoms each carry a dimethyl­pyrimidinyl unit. The N atoms in the skeleton show a planar coordination.

Related literature

For the crystal structures of ligands having two 4,6-dimethyl­pyridimin-2-ylsulfanyl units linked to a hydro­carbon chain, see: Chen et al. (2007[Chen, S.-K., Li, L., Tian, L. & Wu, J.-Y. (2007). Acta Cryst. E63, o1126-o1127.]); Wang et al. (2007[Wang, M., Cheng, L.-H. & Wang, A.-M. (2007). Acta Cryst. E63, o3296.]); Wu et al. (2007a[Wu, G.-H., Liu, T.-B., Peng, Y.-F. & Wu, G.-Z. (2007a). Acta Cryst. E63, o4349.],b[Wu, G.-H., Wu, X.-M., Zhang, J.-P. & Liu, T.-B. (2007b). Acta Cryst. E63, o3776.]).

[Scheme 1]

Experimental

Crystal data
  • C32H44N10S4

  • Mr = 697.01

  • Triclinic, [P \overline 1]

  • a = 11.7626 (5) Å

  • b = 12.7672 (6) Å

  • c = 13.7444 (7) Å

  • α = 106.382 (4)°

  • β = 103.276 (4)°

  • γ = 102.294 (4)°

  • V = 1840.15 (17) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 2.67 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire 3 diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.947, Tmax = 1.000

  • 11434 measured reflections

  • 7060 independent reflections

  • 5177 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.081

  • wR(F2) = 0.252

  • S = 1.07

  • 7060 reflections

  • 423 parameters

  • 4 restraints

  • H-atom parameters constrained

  • Δρmax = 1.45 e Å−3

  • Δρmin = −0.75 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

We are interested in synthesizing flexible ligands having two 4,6-dimethylpyridimin-2-ylsulfanyl units linked to a hydrocarbon chain; compounds such as 2,2'-bis(4,6-dimethylpyrimidn-2-ylsulfanyl)methane (Chen et al., 2007) and its ethane (Wu et al., 2007b), propane (Wu et al., 2007a) and butane (Wang et al., 2007) analogs have been synthesized for the purpose of studying its coordination chemistry in metal adducts. The coordination chemistry can be expanded in bis[2-(4,6-dimethylpyrimidin-2-ysulfanyl)ethyl]amine, whose synthesis has not been reported yet. However, the attempted complexation with copper ions under hydrothermal conditions yielded bis{2-[(4,6-dimethylpyrimidin-1-yl)(4,6-dimethylpyrimidin-1-ylsulfanyl-2-ethyl)amino]ethyl}disulfide (Scheme I, Fig. 1), a more interesting ligand whose exocyclic sulfur and endocyclic nitrogen sites offer many more sites for coordination.

Related literature top

For the crystal structures of ligands having two 4,6-dimethylpyridimin-2-ylsulfanyl units linked to a hydrocarbon chain, see: Chen et al. (2007); Wang et al. (2007); Wu et al. (2007a,b).

Experimental top

Bis[2-(4,6-dimethylpyrimidin-2-ylsulfanyl)ethyl]amine was synthesized from the reaction of bis(2-chloroethyl)ammonium hydrochloride (1.78 g, 0.01 mol) dissolved in ethanol (100 ml) and 4,6-dimethylpyrimidine-2-thiol (2.80 g, 0.02 mol)/sodium hydroxide (0.8 g, 0.02 mol) dissolved in ethanol (200 ml). The solution was heated at 353 K for 8 h. The solvent was removed and the residue was column chromatographed with ethly acetate/petroleum ether (1/1 v/v) as eluent to yield a white powder; yield 63%. The formulation was confirmed by 1H NMR (CDCl3, 400 MHz) spectroscopy: 1.36–1.402(m, 1H), 2.274 (d,6H), 2.403–2.426 (d,6H), 2.813–2.871(m, 2H), 3.343–3.380 (m, 2H), 6.279 (s, 1H), 6.715 (s, 1H). This compound has not been reported in the chemical literature yet.

The title compound was the unexpected product obtained in the reaction of bis(2-(4,6-dimethylpyrimidin-2-ylthio)ethyl)amine (0.175 g, 0.5 mmol), copper perchlorate (0.132 g, 0.5 mmol) and water (8 ml). The reactants were heated in a 23-ml Teflon-lined Parr reactor at 413 K for 3 days. The mixture was cooled to room temperature at a rate of 5 K h-1. The prismatic crystals were collected and washed with water; yield: 40%. MS (ESI) m/z(%): 698.2 (M+1). CH&N elemental analysis, calculated for C32H44N10S4: C 55.14, H 6.36, N 20.09%. Found: C 55.50, H 6.56, N 19.56%.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93 to 0.96 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2–1.5 times Ueq(C). The final difference Fourier map had a peak in the vicinity of N6.

For the ethyl portions, the carbon-carbon distance was restrained to 1.53±0.01 Å.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of C32H44N10S4 at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
Bis[2-((4,6-dimethylpyrimidin-2-yl){2-[(4,6-dimethylpyrimidin-2- yl)sulfanyl]ethyl}amino)ethyl] disulfide top
Crystal data top
C32H44N10S4Z = 2
Mr = 697.01F(000) = 740
Triclinic, P1Dx = 1.258 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54184 Å
a = 11.7626 (5) ÅCell parameters from 5344 reflections
b = 12.7672 (6) Åθ = 4.6–74.5°
c = 13.7444 (7) ŵ = 2.67 mm1
α = 106.382 (4)°T = 293 K
β = 103.276 (4)°Prism, colorless
γ = 102.294 (4)°0.30 × 0.25 × 0.20 mm
V = 1840.15 (17) Å3
Data collection top
Oxford Diffraction Xcalibur Sapphire 3
diffractometer
7060 independent reflections
Radiation source: fine-focus sealed tube5177 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
Detector resolution: 16.0855 pixels mm-1θmax = 72.6°, θmin = 4.6°
ω scansh = 1411
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
k = 1515
Tmin = 0.947, Tmax = 1.000l = 1616
11434 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.081Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.252H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.1399P)2 + 1.4306P]
where P = (Fo2 + 2Fc2)/3
7060 reflections(Δ/σ)max = 0.001
423 parametersΔρmax = 1.45 e Å3
4 restraintsΔρmin = 0.75 e Å3
Crystal data top
C32H44N10S4γ = 102.294 (4)°
Mr = 697.01V = 1840.15 (17) Å3
Triclinic, P1Z = 2
a = 11.7626 (5) ÅCu Kα radiation
b = 12.7672 (6) ŵ = 2.67 mm1
c = 13.7444 (7) ÅT = 293 K
α = 106.382 (4)°0.30 × 0.25 × 0.20 mm
β = 103.276 (4)°
Data collection top
Oxford Diffraction Xcalibur Sapphire 3
diffractometer
7060 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
5177 reflections with I > 2σ(I)
Tmin = 0.947, Tmax = 1.000Rint = 0.020
11434 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0814 restraints
wR(F2) = 0.252H-atom parameters constrained
S = 1.07Δρmax = 1.45 e Å3
7060 reflectionsΔρmin = 0.75 e Å3
423 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.74226 (10)0.71528 (10)0.39171 (9)0.0696 (3)
S20.57455 (12)0.67895 (10)0.41240 (10)0.0812 (4)
S30.96757 (10)0.65326 (9)0.03184 (10)0.0661 (3)
S40.36046 (14)0.95980 (10)0.78051 (12)0.0903 (5)
N10.6607 (3)0.6061 (3)0.1261 (3)0.0538 (7)
N20.5256 (3)0.4838 (3)0.1734 (3)0.0527 (7)
N30.6443 (3)0.4147 (3)0.0636 (2)0.0531 (7)
N40.9874 (3)0.8593 (3)0.1672 (3)0.0582 (8)
N51.0838 (3)0.8487 (3)0.0304 (3)0.0598 (8)
N60.6477 (4)0.9727 (4)0.6648 (4)0.0905 (14)
N70.7688 (3)1.0764 (3)0.5901 (3)0.0745 (11)
N80.6908 (4)1.1703 (3)0.7257 (3)0.0685 (10)
N90.3262 (4)0.7490 (3)0.6468 (3)0.0712 (10)
N100.1976 (4)0.7779 (3)0.7571 (3)0.0731 (10)
C10.7241 (4)0.7789 (3)0.2897 (3)0.0645 (11)
H1A0.70280.84860.31620.077*
H1B0.80210.80000.27700.077*
C20.6275 (4)0.7027 (3)0.1837 (3)0.0590 (9)
H2A0.55140.67460.19720.071*
H2B0.61320.74850.13920.071*
C30.6078 (3)0.4974 (3)0.1210 (3)0.0484 (8)
C40.4770 (3)0.3770 (3)0.1680 (3)0.0554 (9)
C50.3843 (5)0.3613 (4)0.2253 (4)0.0772 (13)
H5A0.41170.42180.29320.116*
H5B0.37430.28910.23580.116*
H5C0.30750.36280.18370.116*
C60.5088 (4)0.2862 (3)0.1110 (3)0.0588 (9)
H60.47390.21220.10750.071*
C70.5939 (3)0.3083 (3)0.0593 (3)0.0537 (9)
C80.6332 (5)0.2155 (4)0.0056 (4)0.0706 (11)
H8A0.72000.23080.02270.106*
H8B0.61300.21290.07820.106*
H8C0.59180.14340.00310.106*
C90.7418 (3)0.6247 (3)0.0630 (3)0.0537 (9)
H9A0.74890.69960.05710.064*
H9B0.70490.56840.00840.064*
C100.8697 (3)0.6174 (4)0.1083 (3)0.0591 (9)
H10A0.86430.54040.10810.071*
H10B0.90510.66930.18160.071*
C111.0171 (3)0.8040 (3)0.0842 (3)0.0551 (9)
C121.0309 (4)0.9735 (4)0.2019 (4)0.0638 (10)
C130.9967 (5)1.0376 (4)0.2947 (5)0.0839 (14)
H13A1.01561.00760.35110.126*
H13B0.91061.02910.27290.126*
H13C1.04181.11720.31960.126*
C141.1014 (4)1.0279 (4)0.1525 (4)0.0691 (11)
H141.13081.10730.17680.083*
C151.1274 (4)0.9623 (4)0.0662 (4)0.0611 (10)
C161.2025 (4)1.0147 (4)0.0081 (4)0.0761 (13)
H16A1.17980.96390.06430.114*
H16B1.28761.02770.04250.114*
H16C1.18831.08620.00880.114*
C170.5658 (5)0.8234 (6)0.4963 (4)0.112 (2)
H17A0.57900.87830.46040.134*
H17B0.48570.81490.50610.134*
C180.6604 (5)0.8636 (5)0.5998 (4)0.0878 (15)
H18A0.74090.87590.59060.105*
H18B0.64950.80760.63470.105*
C190.7040 (5)1.0778 (4)0.6585 (4)0.0789 (14)
C200.8330 (4)1.1790 (4)0.5960 (3)0.0659 (11)
C210.9099 (5)1.1770 (6)0.5229 (5)0.0984 (18)
H21A0.85791.14870.45030.148*
H21B0.96001.12800.53200.148*
H21C0.96131.25300.53930.148*
C220.8282 (4)1.2782 (4)0.6648 (4)0.0668 (11)
H220.87421.34900.66850.080*
C230.7540 (4)1.2708 (3)0.7285 (3)0.0590 (9)
C240.7415 (5)1.3748 (4)0.8051 (4)0.0796 (14)
H24A0.65941.37860.78270.119*
H24B0.79771.44220.80620.119*
H24C0.75951.37010.87520.119*
C250.5709 (5)0.9658 (4)0.7391 (4)0.0811 (14)
H25A0.55340.89040.74490.097*
H25B0.61471.02190.80970.097*
C260.4571 (4)0.9884 (4)0.6943 (5)0.0888 (16)
H26A0.41720.93810.62080.107*
H26B0.47271.06710.69710.107*
C270.2882 (4)0.8113 (4)0.7202 (4)0.0642 (10)
C280.2640 (5)0.6370 (4)0.6049 (4)0.0784 (13)
C290.3050 (7)0.5657 (5)0.5205 (5)0.106 (2)
H29A0.32610.60810.47620.159*
H29B0.23990.49680.47760.159*
H29C0.37510.54680.55360.159*
C300.1711 (6)0.5938 (4)0.6403 (5)0.0937 (17)
H300.13000.51590.61270.112*
C310.1387 (5)0.6670 (5)0.7175 (5)0.0860 (15)
C320.0362 (7)0.6270 (6)0.7581 (7)0.132 (3)
H32A0.05880.66710.83350.198*
H32B0.01970.54640.74450.198*
H32C0.03570.64190.72250.198*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0649 (6)0.0682 (7)0.0666 (7)0.0186 (5)0.0204 (5)0.0108 (5)
S20.0860 (8)0.0554 (6)0.0813 (8)0.0002 (5)0.0436 (7)0.0057 (5)
S30.0617 (6)0.0514 (5)0.0835 (7)0.0110 (4)0.0360 (5)0.0143 (5)
S40.0995 (9)0.0567 (6)0.1033 (10)0.0047 (6)0.0636 (8)0.0056 (6)
N10.0538 (17)0.0440 (16)0.0608 (18)0.0087 (13)0.0228 (15)0.0141 (14)
N20.0541 (17)0.0459 (16)0.0562 (18)0.0106 (13)0.0209 (14)0.0152 (13)
N30.0549 (17)0.0450 (16)0.0532 (17)0.0090 (13)0.0192 (14)0.0104 (13)
N40.0518 (17)0.0540 (18)0.068 (2)0.0145 (14)0.0229 (15)0.0174 (15)
N50.0507 (17)0.0581 (19)0.070 (2)0.0102 (15)0.0252 (16)0.0213 (16)
N60.100 (3)0.061 (2)0.101 (3)0.008 (2)0.057 (3)0.005 (2)
N70.066 (2)0.075 (2)0.067 (2)0.0054 (18)0.0332 (18)0.0032 (18)
N80.079 (2)0.0455 (17)0.073 (2)0.0055 (16)0.0401 (19)0.0054 (16)
N90.074 (2)0.054 (2)0.077 (2)0.0105 (17)0.0210 (19)0.0160 (18)
N100.072 (2)0.064 (2)0.078 (2)0.0025 (18)0.0258 (19)0.0287 (19)
C10.067 (2)0.0390 (19)0.082 (3)0.0097 (17)0.031 (2)0.0108 (18)
C20.061 (2)0.049 (2)0.071 (2)0.0184 (17)0.0242 (19)0.0219 (18)
C30.0443 (17)0.0452 (18)0.0489 (19)0.0073 (14)0.0111 (14)0.0135 (15)
C40.051 (2)0.055 (2)0.056 (2)0.0070 (16)0.0172 (17)0.0192 (17)
C50.080 (3)0.067 (3)0.096 (3)0.015 (2)0.048 (3)0.033 (3)
C60.063 (2)0.0431 (19)0.066 (2)0.0081 (17)0.0184 (19)0.0184 (17)
C70.054 (2)0.0458 (19)0.051 (2)0.0107 (16)0.0103 (16)0.0107 (15)
C80.081 (3)0.050 (2)0.073 (3)0.018 (2)0.026 (2)0.010 (2)
C90.054 (2)0.051 (2)0.057 (2)0.0110 (16)0.0187 (17)0.0218 (17)
C100.056 (2)0.055 (2)0.068 (2)0.0122 (17)0.0220 (19)0.0270 (19)
C110.0441 (18)0.054 (2)0.065 (2)0.0122 (16)0.0185 (17)0.0168 (18)
C120.054 (2)0.056 (2)0.072 (3)0.0145 (18)0.0188 (19)0.012 (2)
C130.083 (3)0.068 (3)0.095 (4)0.020 (2)0.041 (3)0.011 (3)
C140.061 (2)0.047 (2)0.087 (3)0.0054 (18)0.020 (2)0.016 (2)
C150.048 (2)0.062 (2)0.073 (3)0.0114 (17)0.0171 (18)0.027 (2)
C160.064 (3)0.078 (3)0.089 (3)0.007 (2)0.028 (2)0.040 (3)
C170.074 (3)0.142 (6)0.083 (4)0.004 (3)0.042 (3)0.008 (4)
C180.099 (4)0.084 (3)0.088 (4)0.034 (3)0.035 (3)0.031 (3)
C190.082 (3)0.056 (2)0.085 (3)0.000 (2)0.047 (3)0.002 (2)
C200.046 (2)0.090 (3)0.061 (2)0.012 (2)0.0162 (18)0.032 (2)
C210.078 (3)0.140 (5)0.105 (4)0.038 (3)0.053 (3)0.059 (4)
C220.054 (2)0.064 (3)0.078 (3)0.0054 (19)0.015 (2)0.031 (2)
C230.055 (2)0.050 (2)0.061 (2)0.0077 (17)0.0109 (18)0.0150 (17)
C240.075 (3)0.044 (2)0.100 (4)0.008 (2)0.020 (3)0.009 (2)
C250.122 (4)0.055 (2)0.060 (3)0.028 (3)0.016 (3)0.018 (2)
C260.071 (3)0.058 (3)0.124 (5)0.009 (2)0.011 (3)0.036 (3)
C270.064 (2)0.054 (2)0.069 (3)0.0066 (19)0.021 (2)0.022 (2)
C280.082 (3)0.053 (2)0.088 (3)0.014 (2)0.013 (3)0.022 (2)
C290.125 (5)0.063 (3)0.107 (4)0.026 (3)0.023 (4)0.008 (3)
C300.104 (4)0.050 (3)0.104 (4)0.004 (3)0.019 (3)0.024 (3)
C310.088 (3)0.065 (3)0.091 (4)0.005 (3)0.022 (3)0.032 (3)
C320.127 (6)0.103 (5)0.149 (6)0.024 (4)0.059 (5)0.048 (5)
Geometric parameters (Å, º) top
S1—C11.802 (5)C9—H9B0.9700
S1—S22.0323 (17)C10—H10A0.9700
S2—C171.918 (7)C10—H10B0.9700
S3—C111.764 (4)C12—C141.382 (6)
S3—C101.801 (4)C12—C131.499 (6)
S4—C271.763 (4)C13—H13A0.9600
S4—C261.874 (6)C13—H13B0.9600
N1—C31.369 (5)C13—H13C0.9600
N1—C21.449 (5)C14—C151.385 (6)
N1—C91.456 (5)C14—H140.9300
N2—C41.335 (5)C15—C161.497 (6)
N2—C31.343 (5)C16—H16A0.9600
N3—C71.339 (5)C16—H16B0.9600
N3—C31.342 (5)C16—H16C0.9600
N4—C111.324 (5)C17—C181.464 (6)
N4—C121.339 (5)C17—H17A0.9700
N5—C151.331 (5)C17—H17B0.9700
N5—C111.343 (5)C18—H18A0.9700
N6—C191.399 (6)C18—H18B0.9700
N6—C181.486 (7)C20—C221.371 (6)
N6—C251.520 (7)C20—C211.497 (6)
N7—C201.336 (6)C21—H21A0.9600
N7—C191.338 (6)C21—H21B0.9600
N8—C231.325 (5)C21—H21C0.9600
N8—C191.342 (5)C22—C231.378 (6)
N9—C271.324 (6)C22—H220.9300
N9—C281.345 (6)C23—C241.503 (6)
N10—C271.324 (6)C24—H24A0.9600
N10—C311.325 (6)C24—H24B0.9600
C1—C21.526 (5)C24—H24C0.9600
C1—H1A0.9700C25—C261.464 (6)
C1—H1B0.9700C25—H25A0.9700
C2—H2A0.9700C25—H25B0.9700
C2—H2B0.9700C26—H26A0.9700
C4—C61.380 (6)C26—H26B0.9700
C4—C51.498 (6)C28—C301.369 (8)
C5—H5A0.9600C28—C291.501 (8)
C5—H5B0.9600C29—H29A0.9600
C5—H5C0.9600C29—H29B0.9600
C6—C71.380 (6)C29—H29C0.9600
C6—H60.9300C30—C311.387 (8)
C7—C81.497 (5)C30—H300.9300
C8—H8A0.9600C31—C321.495 (8)
C8—H8B0.9600C32—H32A0.9600
C8—H8C0.9600C32—H32B0.9600
C9—C101.524 (5)C32—H32C0.9600
C9—H9A0.9700
C1—S1—S2104.28 (16)N5—C15—C14120.6 (4)
C17—S2—S1104.44 (18)N5—C15—C16117.3 (4)
C11—S3—C10102.6 (2)C14—C15—C16122.1 (4)
C27—S4—C26102.5 (2)C15—C16—H16A109.5
C3—N1—C2121.5 (3)C15—C16—H16B109.5
C3—N1—C9119.8 (3)H16A—C16—H16B109.5
C2—N1—C9118.3 (3)C15—C16—H16C109.5
C4—N2—C3116.0 (3)H16A—C16—H16C109.5
C7—N3—C3116.3 (3)H16B—C16—H16C109.5
C11—N4—C12115.6 (4)C18—C17—S2108.2 (5)
C15—N5—C11116.0 (4)C18—C17—H17A110.0
C19—N6—C18121.8 (4)S2—C17—H17A110.0
C19—N6—C25121.0 (4)C18—C17—H17B110.0
C18—N6—C25117.2 (4)S2—C17—H17B110.0
C20—N7—C19115.3 (4)H17A—C17—H17B108.4
C23—N8—C19116.3 (4)C17—C18—N6107.1 (5)
C27—N9—C28115.1 (4)C17—C18—H18A110.3
C27—N10—C31115.9 (5)N6—C18—H18A110.3
C2—C1—S1114.9 (3)C17—C18—H18B110.3
C2—C1—H1A108.5N6—C18—H18B110.3
S1—C1—H1A108.5H18A—C18—H18B108.6
C2—C1—H1B108.5N7—C19—N8126.8 (4)
S1—C1—H1B108.5N7—C19—N6117.4 (4)
H1A—C1—H1B107.5N8—C19—N6115.7 (4)
N1—C2—C1113.8 (3)N7—C20—C22121.7 (4)
N1—C2—H2A108.8N7—C20—C21115.1 (5)
C1—C2—H2A108.8C22—C20—C21123.2 (5)
N1—C2—H2B108.8C20—C21—H21A109.5
C1—C2—H2B108.8C20—C21—H21B109.5
H2A—C2—H2B107.7H21A—C21—H21B109.5
N3—C3—N2126.5 (3)C20—C21—H21C109.5
N3—C3—N1116.0 (3)H21A—C21—H21C109.5
N2—C3—N1117.5 (3)H21B—C21—H21C109.5
N2—C4—C6121.8 (4)C20—C22—C23118.6 (4)
N2—C4—C5116.2 (4)C20—C22—H22120.7
C6—C4—C5122.0 (4)C23—C22—H22120.7
C4—C5—H5A109.5N8—C23—C22121.0 (4)
C4—C5—H5B109.5N8—C23—C24116.6 (4)
H5A—C5—H5B109.5C22—C23—C24122.4 (4)
C4—C5—H5C109.5C23—C24—H24A109.5
H5A—C5—H5C109.5C23—C24—H24B109.5
H5B—C5—H5C109.5H24A—C24—H24B109.5
C4—C6—C7118.2 (4)C23—C24—H24C109.5
C4—C6—H6120.9H24A—C24—H24C109.5
C7—C6—H6120.9H24B—C24—H24C109.5
N3—C7—C6121.3 (3)C26—C25—N6107.6 (4)
N3—C7—C8116.5 (4)C26—C25—H25A110.2
C6—C7—C8122.2 (4)N6—C25—H25A110.2
C7—C8—H8A109.5C26—C25—H25B110.2
C7—C8—H8B109.5N6—C25—H25B110.2
H8A—C8—H8B109.5H25A—C25—H25B108.5
C7—C8—H8C109.5C25—C26—S4104.7 (4)
H8A—C8—H8C109.5C25—C26—H26A110.8
H8B—C8—H8C109.5S4—C26—H26A110.8
N1—C9—C10114.3 (3)C25—C26—H26B110.8
N1—C9—H9A108.7S4—C26—H26B110.8
C10—C9—H9A108.7H26A—C26—H26B108.9
N1—C9—H9B108.7N10—C27—N9128.7 (4)
C10—C9—H9B108.7N10—C27—S4111.4 (3)
H9A—C9—H9B107.6N9—C27—S4119.9 (3)
C9—C10—S3111.4 (3)N9—C28—C30120.5 (5)
C9—C10—H10A109.4N9—C28—C29115.7 (5)
S3—C10—H10A109.4C30—C28—C29123.8 (5)
C9—C10—H10B109.4C28—C29—H29A109.5
S3—C10—H10B109.4C28—C29—H29B109.5
H10A—C10—H10B108.0H29A—C29—H29B109.5
N4—C11—N5127.8 (4)C28—C29—H29C109.5
N4—C11—S3120.2 (3)H29A—C29—H29C109.5
N5—C11—S3111.9 (3)H29B—C29—H29C109.5
N4—C12—C14121.1 (4)C28—C30—C31119.5 (5)
N4—C12—C13116.3 (4)C28—C30—H30120.2
C14—C12—C13122.6 (4)C31—C30—H30120.2
C12—C13—H13A109.5N10—C31—C30120.3 (5)
C12—C13—H13B109.5N10—C31—C32117.0 (6)
H13A—C13—H13B109.5C30—C31—C32122.8 (5)
C12—C13—H13C109.5C31—C32—H32A109.5
H13A—C13—H13C109.5C31—C32—H32B109.5
H13B—C13—H13C109.5H32A—C32—H32B109.5
C12—C14—C15118.9 (4)C31—C32—H32C109.5
C12—C14—H14120.6H32A—C32—H32C109.5
C15—C14—H14120.6H32B—C32—H32C109.5
C1—S1—S2—C1777.4 (3)S1—S2—C17—C1863.6 (5)
S2—S1—C1—C259.5 (3)S2—C17—C18—N6177.4 (4)
C3—N1—C2—C1105.5 (4)C19—N6—C18—C1785.7 (7)
C9—N1—C2—C181.3 (4)C25—N6—C18—C1794.5 (6)
S1—C1—C2—N169.4 (4)C20—N7—C19—N85.0 (8)
C7—N3—C3—N20.5 (6)C20—N7—C19—N6172.1 (5)
C7—N3—C3—N1179.3 (3)C23—N8—C19—N74.0 (8)
C4—N2—C3—N30.7 (6)C23—N8—C19—N6173.2 (5)
C4—N2—C3—N1179.1 (3)C18—N6—C19—N71.0 (8)
C2—N1—C3—N3178.8 (3)C25—N6—C19—N7179.2 (5)
C9—N1—C3—N35.8 (5)C18—N6—C19—N8176.5 (5)
C2—N1—C3—N21.3 (5)C25—N6—C19—N83.4 (8)
C9—N1—C3—N2174.3 (3)C19—N7—C20—C222.4 (7)
C3—N2—C4—C60.6 (6)C19—N7—C20—C21177.2 (5)
C3—N2—C4—C5179.4 (4)N7—C20—C22—C230.7 (7)
N2—C4—C6—C70.4 (6)C21—C20—C22—C23179.7 (4)
C5—C4—C6—C7179.1 (4)C19—N8—C23—C220.4 (7)
C3—N3—C7—C60.3 (5)C19—N8—C23—C24178.9 (4)
C3—N3—C7—C8179.3 (3)C20—C22—C23—N81.8 (7)
C4—C6—C7—N30.2 (6)C20—C22—C23—C24179.1 (4)
C4—C6—C7—C8179.2 (4)C19—N6—C25—C2671.8 (6)
C3—N1—C9—C1077.2 (4)C18—N6—C25—C26108.3 (5)
C2—N1—C9—C10109.6 (4)N6—C25—C26—S4173.0 (3)
N1—C9—C10—S3175.1 (3)C27—S4—C26—C2586.1 (4)
C11—S3—C10—C982.3 (3)C31—N10—C27—N91.8 (8)
C12—N4—C11—N50.9 (6)C31—N10—C27—S4179.1 (4)
C12—N4—C11—S3179.1 (3)C28—N9—C27—N100.2 (7)
C15—N5—C11—N41.5 (6)C28—N9—C27—S4179.3 (4)
C15—N5—C11—S3178.5 (3)C26—S4—C27—N10167.7 (3)
C10—S3—C11—N45.5 (4)C26—S4—C27—N911.5 (4)
C10—S3—C11—N5174.5 (3)C27—N9—C28—C301.7 (7)
C11—N4—C12—C140.4 (6)C27—N9—C28—C29179.1 (5)
C11—N4—C12—C13179.1 (4)N9—C28—C30—C312.0 (9)
N4—C12—C14—C150.4 (7)C29—C28—C30—C31178.9 (5)
C13—C12—C14—C15179.1 (4)C27—N10—C31—C301.4 (8)
C11—N5—C15—C141.4 (6)C27—N10—C31—C32179.8 (6)
C11—N5—C15—C16179.8 (4)C28—C30—C31—N100.3 (9)
C12—C14—C15—N51.0 (7)C28—C30—C31—C32178.4 (6)
C12—C14—C15—C16179.7 (4)

Experimental details

Crystal data
Chemical formulaC32H44N10S4
Mr697.01
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)11.7626 (5), 12.7672 (6), 13.7444 (7)
α, β, γ (°)106.382 (4), 103.276 (4), 102.294 (4)
V3)1840.15 (17)
Z2
Radiation typeCu Kα
µ (mm1)2.67
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire 3
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.947, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
11434, 7060, 5177
Rint0.020
(sin θ/λ)max1)0.619
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.081, 0.252, 1.07
No. of reflections7060
No. of parameters423
No. of restraints4
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.45, 0.75

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

 

Acknowledgements

We thank the Special Foundation for Nano Technology of the Shanghai Committee for S&T (1052 nm00600), the Foundation of the S&T Program of Shanghai Maritime University (20100128), the State Key Laboratory of Pollution Control and Resource Reuse Foundation (PCRRF09001) and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationChen, S.-K., Li, L., Tian, L. & Wu, J.-Y. (2007). Acta Cryst. E63, o1126–o1127.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, M., Cheng, L.-H. & Wang, A.-M. (2007). Acta Cryst. E63, o3296.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, G.-H., Liu, T.-B., Peng, Y.-F. & Wu, G.-Z. (2007a). Acta Cryst. E63, o4349.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWu, G.-H., Wu, X.-M., Zhang, J.-P. & Liu, T.-B. (2007b). Acta Cryst. E63, o3776.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds