metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­bis­­(1,10-phenanthroline)nickel(II) tetra­kis­(cyanido-κC)nickelate(II) tetra­hydro­furan solvate monohydrate

aSchool of Basic Science, East China Jiaotong University, Nanchang 330013, People's Republic of China, and bZhongshan Polytechnic, Zhongshan, Guangdong 528404, People's Republic of China
*Correspondence e-mail: wangjun7203@126.com

(Received 8 September 2010; accepted 15 September 2010; online 18 September 2010)

The title complex, [Ni(C12H8N2)2(H2O)2][Ni(CN)4]·C4H8O·H2O, consists of a cationic [Ni(C12H8N2)2(H2O)2]2+ unit, an anionic [Ni(CN)4]2− unit, one uncoordinated water and one tetra­hydro­furan mol­ecule. In the cationic unit, the Ni2+ atom is coordinated by four N atoms and two O atoms from two 1,10-phenanthroline ligands and two water mol­ecules in a distorted octa­hedral coordination environment. In the anionic unit, the Ni2+ atom is in a square-planar coordination by four C atoms from four monodentate terminal cyanide ligands. O—H⋯N and O—H⋯O hydrogen bonds link neighboring cationic and anionic units, forming a three-dimensional supra­molecular network. The inter­stitial tetra­hydro­furan mol­ecule is independently disordered over two sites in a 1:1 ratio.

Related literature

For general background to cyanido–metal complexes, see: Miyasaka et al. (2007[Miyasaka, H., Saitoh, A. & Abe, S. (2007). Coord. Chem. Rev. 251, 2622-2664.]); Shatruk et al. (2009[Shatruk, M., Avendano, C. & Dunbar, K. R. (2009). Prog. Inorg. Chem. 56, 155-334.]); Kou et al. (2001[Kou, H. Z., Gao, S., Bai, Q. & Wang, Z. M. (2001). Inorg. Chem. 40, 6287-6294.]); Paharova et al. (2003[Paharova, J., Cernak, J., Boca, R. & Zak, Z. (2003). Inorg. Chim. Acta, 346, 25-31.]); Yuge et al. (1996[Yuge, H., Noda, Y. & Iwamoto, T. (1996). Inorg. Chem. 35, 1842-1848.]); Yun et al. (2004[Yun, S. S., Moon, H. S., Kim, C. H. & Lee, S. G. (2004). J. Coord. Chem. 57, 17-23.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C12H8N2)2(H2O)2][Ni(CN)4]·C4H8O·H2O

  • Mr = 708.06

  • Monoclinic, P 21 /n

  • a = 11.4623 (3) Å

  • b = 14.3184 (4) Å

  • c = 19.2329 (4) Å

  • β = 91.189 (2)°

  • V = 3155.86 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.24 mm−1

  • T = 296 K

  • 0.25 × 0.23 × 0.18 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.746, Tmax = 0.807

  • 29619 measured reflections

  • 6199 independent reflections

  • 3756 reflections with I > 2σ(I)

  • Rint = 0.098

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.119

  • S = 1.02

  • 6199 reflections

  • 436 parameters

  • 70 restraints

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4A⋯N8i 0.84 2.02 2.857 (6) 173
O2—H2A⋯O4ii 0.82 2.30 3.116 (5) 173
O2—H2B⋯N5iii 0.79 2.60 3.154 (5) 128
O1—H1B⋯N5iii 0.86 2.63 3.377 (6) 147
O1—H1B⋯N5iii 0.86 2.63 3.377 (6) 147
O1—H1A⋯N6iv 0.90 2.39 3.250 (5) 161
O4—H4B⋯N7 0.83 1.99 2.804 (5) 167
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x+1, -y, -z+1; (iv) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The study of cyanide-bridged complexes has gained great recognition over the last decade not only owing to their fascinating structural diversity and their intriguing topological networks, but also because of interesting magnetic properties, such as spin-crossover behaviour or the formation of single-molecular or single-chain magnets (Miyasaka et al., 2007; Shatruk et al., 2009). To date, much effort has been invested to construct cyanide-based complexes by the choice of versatile metal cyanide or cyanide-based building units (Kou et al., 2001; Yun et al., 2004; Yuge et al., 1996). In this context we have chosen nickel cyanide as a potential bridging building block, and 1,10-phenanthroline as an auxilary ligand to construct new structures. Reaction of the two building blocks yielded the title compound [Ni(C12H8N2)2(H2O)2].[Ni(CN)4].C4H8O.H2O.

As depicted in Fig. 1, the structure of the title compound, consists of a cationic [Ni(C12H8N2)2(H2O)2]2+ unit, an anionic [Ni(CN)4]2- unit, and each one interstitial water and tetrahydrofuran molecule. Thus no cyano bridged complex with different nickel centers was formed but the nickel atoms are found in separate anionic and a cationic complex ions. In the cationic unit, the six-coordinate octahedral Ni2+ center is surrounded by four N atoms and two O atoms from two 1,10-phenanthroline ligands and two water molecules. In the anionic unit, the square planar Ni2+ center is coordinated by four C atoms from four mono-dentate terminal cyanide ligands. Similar structures containing Ni(CN)4 units have been observed in other complexes (Paharova et al., 2003). O—H···N and O—H···O hydrogen bonds (Table 1) are formed between the cationic units, the anionic units and the uncoordinating water molecules which assemble them to form a three-dimensional supramolecular network (Fig. 2). The network is also stabilized by π-π stacking interactions between the Ni(CN)4 units and the 1,10-phenanthroline ligands. The interplanar distance between them is ca. 3.60 Å (symmetry operator for the 1,10-phenanthroline ligand: 0.5+x, 0.5-y, -0.5+z). The interstitial tetrahydrofuran molecule is independently disordered over two sites in a one to one ratio (see refinement section for details).

Related literature top

For general background to cyano-metal complexes, see: Miyasaka et al. (2007); Shatruk et al. (2009); Kou et al. (2001); Paharova et al. (2003); Yuge et al. (1996); Yun et al. (2004).

Experimental top

Nickel cyanide (0.1107 g, 1 mmol) and 1,10-phenanthroline (0.1801 g, 1 mmol) were added to a mixture of water (10 mL) and tetrahydrofuran (5 mL). The resultant mixture was sealed in a 25 ml stainless steel reactor with a Teflon liner and kept under autogenous pressure at 413 K for 24 h, and then cooled to room temperature at a rate of 0.5 K/min. Green block shaped crystals of the title compound suitable for single-crystal X-ray diffraction analysis formed with a yield of approximately 56% based on 1,10-phenanthroline.

Refinement top

The tetrahydrofuran molecules are arranged as symmetry related pairs around a center of inversion. In the original refinement the oxygen atoms of the tetrahydrofuran molecules showed significantly elongated thermal ellipsoids indicating disorder. The THF molecule was thus refined as being disordered over two sites in a one to one ratio. Due to the significant overlap of the disordered atoms the following restraints and constraints were applied: The adps of the disordered atoms were restrained to be close to isotropic and those of equivalent atoms were set to be identical.

All water H atoms were tentatively located in difference density Fourier maps and were refined with O–H distance restraints of 0.83 (1) Å and with Uiso(H) = 1.5 Ueq(O). In the last stage of the refinement, they were treated as riding on their parent O atoms. All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.93 Å (aromatic) or 0.97Å (tetrahydrofuran ring) and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing the atomic numbering scheme. Non-H atoms are shown with 30% probability displacement ellipsoids. The disordered section is omitted for clarity.
[Figure 2] Fig. 2. View of the three-dimensional structure of the title compound, view down the direction of the a-axis. Dashed lines indicate hydrogen bonds.
Diaquabis(1,10-phenanthroline)nickel(II) tetrakis(cyanido-κC)nickelate(II) tetrahydrofuran solvate monohydrate top
Crystal data top
[Ni(C12H8N2)2(H2O)2][Ni(CN)4]·C4H8O·H2OF(000) = 1464
Mr = 708.06Dx = 1.490 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4500 reflections
a = 11.4623 (3) Åθ = 1.3–28.0°
b = 14.3184 (4) ŵ = 1.24 mm1
c = 19.2329 (4) ÅT = 296 K
β = 91.189 (2)°Block, green
V = 3155.86 (14) Å30.25 × 0.23 × 0.18 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
6199 independent reflections
Radiation source: fine-focus sealed tube3756 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.098
ϕ and ω scanθmax = 26.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1413
Tmin = 0.746, Tmax = 0.807k = 1715
29619 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0447P)2 + 1.097P]
where P = (Fo2 + 2Fc2)/3
6199 reflections(Δ/σ)max = 0.001
436 parametersΔρmax = 0.36 e Å3
70 restraintsΔρmin = 0.39 e Å3
Crystal data top
[Ni(C12H8N2)2(H2O)2][Ni(CN)4]·C4H8O·H2OV = 3155.86 (14) Å3
Mr = 708.06Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.4623 (3) ŵ = 1.24 mm1
b = 14.3184 (4) ÅT = 296 K
c = 19.2329 (4) Å0.25 × 0.23 × 0.18 mm
β = 91.189 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
6199 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3756 reflections with I > 2σ(I)
Tmin = 0.746, Tmax = 0.807Rint = 0.098
29619 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04870 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 1.02Δρmax = 0.36 e Å3
6199 reflectionsΔρmin = 0.39 e Å3
436 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.73838 (4)0.17737 (3)0.04274 (2)0.03482 (15)
Ni20.48209 (5)0.20766 (4)0.79200 (3)0.04305 (17)
C10.4836 (4)0.1426 (3)0.0908 (2)0.0572 (12)
H10.48280.09110.06130.069*
C20.3846 (4)0.1617 (4)0.1285 (3)0.0663 (14)
H20.31940.12320.12420.080*
C30.3831 (4)0.2367 (4)0.1717 (2)0.0600 (13)
H30.31710.24980.19730.072*
C40.4824 (4)0.2947 (3)0.1775 (2)0.0462 (11)
C50.4898 (4)0.3746 (3)0.2216 (2)0.0576 (13)
H50.42560.39170.24750.069*
C60.5879 (5)0.4254 (4)0.2262 (2)0.0605 (13)
H60.58980.47810.25460.073*
C70.6894 (4)0.4006 (3)0.1886 (2)0.0453 (11)
C80.7965 (4)0.4469 (3)0.1947 (2)0.0558 (12)
H80.80400.49910.22320.067*
C90.8898 (4)0.4154 (3)0.1589 (2)0.0576 (12)
H90.96190.44470.16410.069*
C100.8768 (4)0.3390 (3)0.1145 (2)0.0449 (10)
H100.94060.31940.08920.054*
C110.6845 (3)0.3236 (3)0.14461 (19)0.0374 (9)
C120.5792 (3)0.2690 (3)0.13842 (19)0.0385 (10)
C130.9954 (4)0.1386 (3)0.0009 (2)0.0487 (11)
H130.99900.09660.03780.058*
C141.0949 (4)0.1500 (3)0.0389 (2)0.0572 (12)
H141.16230.11630.02860.069*
C151.0920 (4)0.2110 (4)0.0931 (2)0.0600 (13)
H151.15740.21930.12020.072*
C160.9890 (4)0.2616 (3)0.1077 (2)0.0491 (11)
C170.9790 (5)0.3292 (4)0.1628 (2)0.0605 (13)
H171.04290.34160.19040.073*
C180.8782 (5)0.3746 (3)0.1747 (2)0.0590 (13)
H180.87380.41850.21030.071*
C190.7774 (4)0.3571 (3)0.1341 (2)0.0473 (11)
C200.6690 (5)0.4007 (3)0.1461 (2)0.0621 (13)
H200.66010.44480.18130.074*
C210.5770 (5)0.3779 (4)0.1056 (3)0.0673 (14)
H210.50430.40520.11370.081*
C220.5928 (4)0.3134 (3)0.0518 (2)0.0520 (12)
H220.52960.29930.02420.062*
C230.7853 (4)0.2925 (3)0.07893 (19)0.0381 (9)
C240.8938 (3)0.2446 (3)0.0653 (2)0.0373 (10)
C290.4221 (4)0.1348 (3)0.8642 (2)0.0472 (11)
C300.3446 (4)0.2780 (3)0.7844 (2)0.0446 (10)
C310.5426 (4)0.2827 (3)0.7224 (2)0.0491 (11)
C320.6215 (4)0.1392 (4)0.7953 (2)0.0558 (12)
N10.7769 (3)0.2932 (2)0.10702 (15)0.0370 (8)
N20.5797 (3)0.1947 (2)0.09474 (16)0.0420 (8)
N30.8970 (3)0.1838 (2)0.01070 (15)0.0364 (8)
N40.6931 (3)0.2713 (2)0.03846 (17)0.0402 (8)
N50.3878 (3)0.0904 (3)0.9091 (2)0.0645 (11)
N60.2622 (4)0.3222 (3)0.7757 (2)0.0596 (10)
N70.5781 (4)0.3302 (3)0.6793 (2)0.0723 (13)
N80.7067 (4)0.0987 (4)0.7970 (3)0.0916 (16)
O10.8002 (3)0.0868 (2)0.12306 (16)0.0744 (10)
H1A0.77130.10750.16340.112*
H1B0.77810.02980.12310.112*
O20.6793 (3)0.0641 (2)0.01813 (16)0.0699 (9)
H2B0.64330.01730.01620.105*
H2A0.73530.04800.04140.105*
O40.6238 (3)0.5037 (2)0.61803 (16)0.0754 (10)
H4B0.61040.45660.64210.113*
H4A0.67490.52740.64440.113*
C250.158 (5)0.469 (3)0.007 (2)0.102 (8)0.50
H25A0.16590.53670.00270.122*0.50
H25B0.09710.45680.04110.122*0.50
C260.272 (5)0.429 (4)0.032 (3)0.105 (6)0.50
H26A0.26020.38800.07130.126*0.50
H26B0.32790.47730.04260.126*0.50
C270.304 (6)0.377 (4)0.033 (3)0.097 (8)0.50
H27A0.36870.40850.05690.116*0.50
H27B0.33020.31460.02110.116*0.50
C280.202 (4)0.370 (4)0.082 (3)0.099 (7)0.50
H28A0.16820.30800.08060.119*0.50
H28B0.22530.38530.12900.119*0.50
O30.125 (2)0.4346 (14)0.0555 (12)0.149 (8)0.50
C26'0.264 (5)0.448 (4)0.024 (3)0.105 (6)0.50
H26C0.27880.43980.07310.126*0.50
H26D0.30390.50380.00790.126*0.50
C27'0.304 (6)0.365 (4)0.016 (3)0.097 (8)0.50
H27C0.37900.37490.03960.116*0.50
H27D0.30720.30870.01190.116*0.50
C28'0.204 (4)0.363 (4)0.067 (3)0.099 (7)0.50
H28C0.19590.30070.08620.119*0.50
H28D0.21950.40610.10470.119*0.50
C25'0.134 (5)0.457 (3)0.013 (2)0.102 (8)0.50
H25C0.11590.51760.00710.122*0.50
H25D0.09090.45060.05650.122*0.50
O3'0.1045 (16)0.3878 (11)0.0316 (9)0.097 (5)0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0352 (3)0.0362 (3)0.0333 (3)0.0028 (2)0.0057 (2)0.0022 (2)
Ni20.0407 (3)0.0463 (4)0.0423 (3)0.0016 (3)0.0050 (2)0.0095 (2)
C10.050 (3)0.065 (3)0.057 (3)0.013 (2)0.010 (2)0.008 (2)
C20.043 (3)0.085 (4)0.071 (3)0.016 (3)0.015 (3)0.002 (3)
C30.040 (3)0.086 (4)0.054 (3)0.002 (3)0.015 (2)0.000 (3)
C40.045 (3)0.058 (3)0.037 (2)0.009 (2)0.0071 (19)0.003 (2)
C50.053 (3)0.064 (3)0.056 (3)0.018 (3)0.013 (2)0.010 (2)
C60.070 (4)0.059 (3)0.053 (3)0.014 (3)0.007 (3)0.014 (2)
C70.056 (3)0.040 (3)0.040 (2)0.001 (2)0.002 (2)0.0076 (19)
C80.072 (4)0.042 (3)0.053 (3)0.003 (3)0.003 (3)0.015 (2)
C90.055 (3)0.050 (3)0.068 (3)0.011 (2)0.009 (3)0.002 (2)
C100.041 (3)0.046 (3)0.048 (2)0.008 (2)0.002 (2)0.006 (2)
C110.040 (2)0.036 (2)0.036 (2)0.0040 (19)0.0036 (18)0.0009 (18)
C120.036 (2)0.046 (3)0.033 (2)0.0026 (19)0.0032 (18)0.0014 (19)
C130.049 (3)0.052 (3)0.045 (2)0.007 (2)0.002 (2)0.001 (2)
C140.039 (3)0.066 (3)0.066 (3)0.010 (2)0.007 (2)0.005 (3)
C150.043 (3)0.078 (4)0.060 (3)0.001 (3)0.025 (2)0.005 (3)
C160.046 (3)0.052 (3)0.049 (3)0.005 (2)0.012 (2)0.004 (2)
C170.066 (3)0.068 (3)0.048 (3)0.017 (3)0.017 (2)0.004 (3)
C180.077 (4)0.062 (3)0.039 (2)0.007 (3)0.007 (2)0.010 (2)
C190.056 (3)0.045 (3)0.041 (2)0.006 (2)0.001 (2)0.000 (2)
C200.076 (4)0.056 (3)0.054 (3)0.005 (3)0.011 (3)0.014 (2)
C210.055 (3)0.074 (4)0.072 (3)0.009 (3)0.019 (3)0.002 (3)
C220.036 (3)0.064 (3)0.056 (3)0.006 (2)0.001 (2)0.001 (2)
C230.043 (2)0.037 (2)0.034 (2)0.0033 (19)0.0004 (18)0.0006 (18)
C240.036 (2)0.037 (2)0.039 (2)0.0033 (18)0.0063 (18)0.0044 (18)
C290.044 (3)0.046 (3)0.052 (3)0.004 (2)0.002 (2)0.004 (2)
C300.051 (3)0.049 (3)0.035 (2)0.005 (2)0.004 (2)0.007 (2)
C310.042 (3)0.060 (3)0.045 (2)0.001 (2)0.001 (2)0.004 (2)
C320.051 (3)0.065 (3)0.052 (3)0.001 (3)0.004 (2)0.016 (2)
N10.038 (2)0.0334 (19)0.0398 (18)0.0016 (15)0.0025 (15)0.0004 (15)
N20.038 (2)0.048 (2)0.0403 (18)0.0111 (17)0.0066 (15)0.0053 (16)
N30.0343 (19)0.040 (2)0.0347 (17)0.0029 (16)0.0027 (14)0.0003 (15)
N40.037 (2)0.038 (2)0.0459 (19)0.0004 (16)0.0036 (16)0.0017 (16)
N50.068 (3)0.062 (3)0.064 (2)0.005 (2)0.010 (2)0.024 (2)
N60.054 (3)0.063 (3)0.062 (2)0.009 (2)0.011 (2)0.009 (2)
N70.075 (3)0.079 (3)0.064 (3)0.016 (3)0.011 (2)0.026 (2)
N80.059 (3)0.104 (4)0.112 (4)0.027 (3)0.018 (3)0.042 (3)
O10.100 (3)0.067 (2)0.0558 (19)0.003 (2)0.0047 (19)0.0020 (17)
O20.079 (2)0.062 (2)0.070 (2)0.0121 (18)0.0100 (18)0.0100 (18)
O40.095 (3)0.067 (2)0.064 (2)0.014 (2)0.0115 (19)0.0090 (18)
C250.11 (2)0.109 (10)0.092 (7)0.014 (10)0.004 (10)0.025 (8)
C260.099 (8)0.131 (18)0.085 (12)0.029 (11)0.017 (7)0.027 (10)
C270.077 (5)0.122 (13)0.09 (2)0.020 (8)0.015 (14)0.009 (12)
C280.078 (5)0.135 (8)0.084 (18)0.023 (5)0.017 (8)0.027 (11)
O30.112 (15)0.155 (19)0.18 (2)0.059 (13)0.037 (12)0.055 (13)
C26'0.099 (8)0.131 (18)0.085 (12)0.029 (11)0.017 (7)0.027 (10)
C27'0.077 (5)0.122 (13)0.09 (2)0.020 (8)0.015 (14)0.009 (12)
C28'0.078 (5)0.135 (8)0.084 (18)0.023 (5)0.017 (8)0.027 (11)
C25'0.11 (2)0.109 (10)0.092 (7)0.014 (10)0.004 (10)0.025 (8)
O3'0.069 (7)0.111 (12)0.111 (10)0.004 (8)0.000 (6)0.046 (8)
Geometric parameters (Å, º) top
Ni1—O22.104 (3)C19—C201.405 (6)
Ni1—N22.108 (3)C19—C231.410 (5)
Ni1—N32.109 (3)C20—C211.364 (7)
Ni1—N12.110 (3)C20—H200.9300
Ni1—N42.118 (3)C21—C221.396 (6)
Ni1—O12.127 (3)C21—H210.9300
Ni2—C311.862 (5)C22—N41.318 (5)
Ni2—C301.873 (5)C22—H220.9300
Ni2—C321.875 (5)C23—N41.360 (5)
Ni2—C291.878 (5)C23—C241.439 (5)
C1—N21.331 (5)C24—N31.365 (5)
C1—C21.387 (6)C29—N51.149 (5)
C1—H10.9300C30—N61.147 (5)
C2—C31.359 (6)C31—N71.154 (5)
C2—H20.9300C32—N81.135 (6)
C3—C41.412 (6)O1—H1A0.9004
C3—H30.9300O1—H1B0.8553
C4—C121.402 (5)O2—H2B0.7882
C4—C51.424 (6)O2—H2A0.8229
C5—C61.341 (6)O4—H4B0.8335
C5—H50.9300O4—H4A0.8377
C6—C71.428 (6)C25—O31.356 (18)
C6—H60.9300C25—C261.512 (18)
C7—C111.390 (5)C25—H25A0.9700
C7—C81.398 (6)C25—H25B0.9700
C8—C91.361 (6)C26—C271.496 (19)
C8—H80.9300C26—H26A0.9700
C9—C101.394 (6)C26—H26B0.9700
C9—H90.9300C27—C281.517 (16)
C10—N11.325 (5)C27—H27A0.9700
C10—H100.9300C27—H27B0.9700
C11—N11.366 (5)C28—O31.365 (19)
C11—C121.442 (5)C28—H28A0.9700
C12—N21.356 (5)C28—H28B0.9700
C13—N31.315 (5)C26'—C27'1.495 (19)
C13—C141.396 (6)C26'—C25'1.513 (18)
C13—H130.9300C26'—H26C0.9700
C14—C151.359 (6)C26'—H26D0.9700
C14—H140.9300C27'—C28'1.516 (16)
C15—C161.408 (6)C27'—H27C0.9700
C15—H150.9300C27'—H27D0.9700
C16—C241.397 (5)C28'—O3'1.365 (19)
C16—C171.439 (6)C28'—H28C0.9700
C17—C181.341 (7)C28'—H28D0.9700
C17—H170.9300C25'—O3'1.356 (18)
C18—C191.430 (6)C25'—H25C0.9700
C18—H180.9300C25'—H25D0.9700
O2—Ni1—N294.81 (13)C22—C21—H21120.3
O2—Ni1—N391.89 (12)N4—C22—C21123.1 (4)
N2—Ni1—N3170.74 (13)N4—C22—H22118.4
O2—Ni1—N1173.25 (13)C21—C22—H22118.4
N2—Ni1—N178.57 (12)N4—C23—C19122.6 (4)
N3—Ni1—N194.55 (12)N4—C23—C24117.9 (3)
O2—Ni1—N490.46 (12)C19—C23—C24119.4 (4)
N2—Ni1—N494.27 (13)N3—C24—C16123.4 (4)
N3—Ni1—N479.26 (12)N3—C24—C23117.0 (3)
N1—Ni1—N488.75 (12)C16—C24—C23119.6 (4)
O2—Ni1—O191.88 (13)N5—C29—Ni2178.5 (4)
N2—Ni1—O190.27 (13)N6—C30—Ni2175.9 (4)
N3—Ni1—O195.91 (13)N7—C31—Ni2178.7 (4)
N1—Ni1—O189.48 (13)N8—C32—Ni2179.2 (5)
N4—Ni1—O1174.71 (13)C10—N1—C11117.5 (3)
C31—Ni2—C3087.64 (18)C10—N1—Ni1128.5 (3)
C31—Ni2—C3289.77 (19)C11—N1—Ni1114.0 (2)
C30—Ni2—C32177.23 (18)C1—N2—C12117.4 (4)
C31—Ni2—C29178.2 (2)C1—N2—Ni1128.9 (3)
C30—Ni2—C2992.06 (18)C12—N2—Ni1113.7 (3)
C32—Ni2—C2990.56 (19)C13—N3—C24117.0 (3)
N2—C1—C2123.1 (4)C13—N3—Ni1129.9 (3)
N2—C1—H1118.5C24—N3—Ni1113.2 (2)
C2—C1—H1118.5C22—N4—C23118.1 (4)
C3—C2—C1119.7 (5)C22—N4—Ni1129.3 (3)
C3—C2—H2120.1C23—N4—Ni1112.5 (3)
C1—C2—H2120.1Ni1—O1—H1A107.6
C2—C3—C4119.5 (4)Ni1—O1—H1B119.2
C2—C3—H3120.2H1A—O1—H1B101.6
C4—C3—H3120.2Ni1—O2—H2B142.3
C12—C4—C3116.7 (4)Ni1—O2—H2A105.8
C12—C4—C5119.5 (4)H2B—O2—H2A101.7
C3—C4—C5123.8 (4)H4B—O4—H4A97.2
C6—C5—C4121.0 (4)O3—C25—C26113 (4)
C6—C5—H5119.5O3—C25—H25A108.9
C4—C5—H5119.5C26—C25—H25A108.9
C5—C6—C7121.4 (4)O3—C25—H25B108.9
C5—C6—H6119.3C26—C25—H25B108.9
C7—C6—H6119.3H25A—C25—H25B107.7
C11—C7—C8116.8 (4)C27—C26—C2597 (5)
C11—C7—C6118.9 (4)C27—C26—H26A112.3
C8—C7—C6124.2 (4)C25—C26—H26A112.3
C9—C8—C7119.9 (4)C27—C26—H26B112.3
C9—C8—H8120.1C25—C26—H26B112.3
C7—C8—H8120.1C26—C27—C28111 (5)
C8—C9—C10119.7 (4)C26—C27—H27A109.4
C8—C9—H9120.2C28—C27—H27A109.4
C10—C9—H9120.2C26—C27—H27B109.4
N1—C10—C9122.4 (4)C28—C27—H27B109.4
N1—C10—H10118.8H27A—C27—H27B108.0
C9—C10—H10118.8O3—C28—C27104 (5)
N1—C11—C7123.6 (4)O3—C28—H28A111.1
N1—C11—C12116.1 (3)C27—C28—H28A111.1
C7—C11—C12120.2 (4)O3—C28—H28B111.1
N2—C12—C4123.5 (4)C27—C28—H28B111.1
N2—C12—C11117.5 (3)H28A—C28—H28B109.0
C4—C12—C11119.0 (4)C25—O3—C28113 (4)
N3—C13—C14123.8 (4)C27'—C26'—C25'107 (5)
N3—C13—H13118.1C27'—C26'—H26C110.4
C14—C13—H13118.1C25'—C26'—H26C110.4
C15—C14—C13119.2 (4)C27'—C26'—H26D110.4
C15—C14—H14120.4C25'—C26'—H26D110.4
C13—C14—H14120.4H26C—C26'—H26D108.6
C14—C15—C16119.4 (4)C26'—C27'—C28'97 (5)
C14—C15—H15120.3C26'—C27'—H27C112.4
C16—C15—H15120.3C28'—C27'—H27C112.4
C24—C16—C15117.1 (4)C26'—C27'—H27D112.4
C24—C16—C17119.7 (4)C28'—C27'—H27D112.4
C15—C16—C17123.2 (4)H27C—C27'—H27D110.0
C18—C17—C16120.5 (4)O3'—C28'—C27'108 (5)
C18—C17—H17119.8O3'—C28'—H28C110.0
C16—C17—H17119.8C27'—C28'—H28C110.0
C17—C18—C19121.7 (4)O3'—C28'—H28D110.0
C17—C18—H18119.1C27'—C28'—H28D110.0
C19—C18—H18119.1H28C—C28'—H28D108.4
C20—C19—C23117.2 (4)O3'—C25'—C26'107 (4)
C20—C19—C18123.7 (4)O3'—C25'—H25C110.4
C23—C19—C18119.1 (4)C26'—C25'—H25C110.4
C21—C20—C19119.4 (4)O3'—C25'—H25D110.4
C21—C20—H20120.3C26'—C25'—H25D110.4
C19—C20—H20120.3H25C—C25'—H25D108.6
C20—C21—C22119.4 (5)C25'—O3'—C28'107 (4)
C20—C21—H21120.3
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···N8i0.842.022.857 (6)173
O2—H2A···O4ii0.822.303.116 (5)173
O2—H2B···N5iii0.792.603.154 (5)128
O1—H1B···N5iii0.862.633.377 (6)147
O1—H1B···N5iii0.862.633.377 (6)147
O1—H1A···N6iv0.902.393.250 (5)161
O4—H4B···N70.831.992.804 (5)167
Symmetry codes: (i) x+3/2, y+1/2, z+3/2; (ii) x+3/2, y1/2, z+1/2; (iii) x+1, y, z+1; (iv) x+1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Ni(C12H8N2)2(H2O)2][Ni(CN)4]·C4H8O·H2O
Mr708.06
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)11.4623 (3), 14.3184 (4), 19.2329 (4)
β (°) 91.189 (2)
V3)3155.86 (14)
Z4
Radiation typeMo Kα
µ (mm1)1.24
Crystal size (mm)0.25 × 0.23 × 0.18
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.746, 0.807
No. of measured, independent and
observed [I > 2σ(I)] reflections
29619, 6199, 3756
Rint0.098
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.119, 1.02
No. of reflections6199
No. of parameters436
No. of restraints70
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.39

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···N8i0.842.022.857 (6)173.4
O2—H2A···O4ii0.822.303.116 (5)172.9
O2—H2B···N5iii0.792.603.154 (5)128.3
O1—H1B···N5iii0.862.633.377 (6)146.9
O1—H1B···N5iii0.862.633.377 (6)146.9
O1—H1A···N6iv0.902.393.250 (5)160.5
O4—H4B···N70.831.992.804 (5)167.4
Symmetry codes: (i) x+3/2, y+1/2, z+3/2; (ii) x+3/2, y1/2, z+1/2; (iii) x+1, y, z+1; (iv) x+1/2, y+1/2, z1/2.
 

Acknowledgements

This work was supported by East China Jiaotong University.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKou, H. Z., Gao, S., Bai, Q. & Wang, Z. M. (2001). Inorg. Chem. 40, 6287–6294.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMiyasaka, H., Saitoh, A. & Abe, S. (2007). Coord. Chem. Rev. 251, 2622–2664.  Web of Science CrossRef CAS Google Scholar
First citationPaharova, J., Cernak, J., Boca, R. & Zak, Z. (2003). Inorg. Chim. Acta, 346, 25–31.  Web of Science CSD CrossRef CAS Google Scholar
First citationShatruk, M., Avendano, C. & Dunbar, K. R. (2009). Prog. Inorg. Chem. 56, 155–334.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYuge, H., Noda, Y. & Iwamoto, T. (1996). Inorg. Chem. 35, 1842–1848.  CSD CrossRef CAS Web of Science Google Scholar
First citationYun, S. S., Moon, H. S., Kim, C. H. & Lee, S. G. (2004). J. Coord. Chem. 57, 17–23.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds