metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[2-amino-6-methyl­pyrimidin-4(1H)-one-κ2N3,O]di­chloridocadmium(II)

aLaboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna, Tunisia, and bCEMDRX, Physics Department, University of Coimbra, P-3004-516 Coimbra, Portugal
*Correspondence e-mail: Cherif.BenNasr@fsb.rnu.tn

(Received 9 August 2010; accepted 31 August 2010; online 8 September 2010)

In the title compound, [CdCl2(C5H7N3O)2], the CdII atom is six-coordinated by two heterocyclic N atoms [Cd—N = 2.261 (2) and 2.286 (2) Å] and two O atoms [Cd—O = 2.624 (2) and 2.692 (2) Å] from two bidentate chelate 2-amino-6-methyl­pyrimidin-4(1H)-one ligands and two chloride ions [Cd—Cl = 2.4674 (6) and 2.4893 (7) Å]. The crystal packing is characterized by an open-framework architecture with the crystal packing stabilized by inter­molecular N—H⋯Cl and N—H⋯O hydrogen bonds.

Related literature

For common applications of materials with open framework structures, see: Yaghi et al. (2003[Yaghi, O. M., O'Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M. & Kim, J. (2003). Nature (London), 423, 705-714.]); Kitagawa et al. (2004[Kitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334-2375.]). For literature on metal-organic compounds, see: Kaabi et al. (2010[Kaabi, K., El Glaoui, M., Pereira Silva, P. S., Ramos Silva, M. & Ben Nasr, C. (2010). Acta Cryst. E66, m617.]). For a discussion of geometrical features in related structures, see: Min et al. (2009[Min, H., Kun, Z., Yi-Zhi, L. & Jin, Z. (2009). Polyhedron, 28, 445-452]); Qing-Yan & Li (2005[Qing-Yan, L. & Li, X. (2005). Inorg. Chem. Commun. 8, 401-405.]); Moloto et al. (2003[Moloto, M. J., Malik, M. A., O'Brien, P., Motevalli, M. & Kolawole, G. A. (2003). Polyhedron, 22, 595-603.]).

[Scheme 1]

Experimental

Crystal data
  • [CdCl2(C5H7N3O)2]

  • Mr = 433.57

  • Monoclinic, C 2/c

  • a = 17.4204 (5) Å

  • b = 7.5467 (2) Å

  • c = 25.4422 (6) Å

  • β = 106.1333 (11)°

  • V = 3213.07 (15) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.70 mm−1

  • T = 293 K

  • 0.32 × 0.20 × 0.13 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.676, Tmax = 0.801

  • 41891 measured reflections

  • 4494 independent reflections

  • 3924 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.108

  • S = 1.27

  • 4494 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.74 e Å−3

  • Δρmin = −1.06 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5⋯O2Ai 0.86 1.92 2.704 (3) 151
N6—H6A⋯Cl3 0.86 2.62 3.417 (3) 155
N6—H6B⋯O2Ai 0.86 2.47 3.116 (3) 132
N6—H6B⋯Cl3i 0.86 2.80 3.383 (2) 127
N5A—H5A⋯O2ii 0.86 1.87 2.692 (2) 158
N6A—H6A1⋯Cl2 0.86 2.51 3.336 (3) 161
N6A—H6A2⋯Cl3iii 0.86 2.73 3.430 (2) 139
Symmetry codes: (i) [-x, y, -z+{\script{1\over 2}}]; (ii) -x, -y+2, -z; (iii) -x, -y+1, -z.

Data collection: APEX2 (Bruker, 2003[Bruker (2003). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Open framework crystalline solids containing micro or mesoporisity have been studied extensively in recent years, due to their intriguing structures and considerable technological importance in magnetic, luminescent, porous and catalytic materials (Yaghi, et al., 2003; Kitagawa, et al., 2004). In this work a new member of this family is presented, the title complex involving CdCl2 and the ligand 2-amino-4-hydroxy-6-methylpyrimidine, [Cd(C5H7N3O)2Cl2], (I) which was obtained during our studies on the preparation of new organometallic materials (Kaabi, et al., 2010).

In the atomic arrangement of the title compound, the distorted octahedral Cd environment comprises two chloride donor atoms and two N and two O donor atoms from two bidentate chelate organic ligands (Fig. 1). The bond distances around the Cd atom [Cd—N, 2.261 (2), 2.286 (2) Å; Cd—O, 2.624 (2), 2.692 (2) Å; Cd—Cl, 2.4674 (6), 2.4893 (7) Å] are normal (Min et al., 2009; Qing-Yan & Li, 2005; Moloto et al., 2003). The octahedra have intramolecular N—H···Cl hydrogen bonds and are interconnected by a set of N—H···Cl and N—H···O hydrogen bonds (Table 1) leading to the formation of a three-dimensional network structure (Fig. 2). Among the hydrogen bonds, one is three-centred [N6—H6B···(O2A,Cl3)]. The overall packing pattern, presented in Fig. 3, shows that the different components of the title material are arranged so as to create pores extending along the c axis and located at (0, 0, 0) and (1/2, 1/2, 0). Thus, this organic-inorganic hybrid open framework material could have potential application as a molecular sieve. An examination of the organic moiety features shows that the bond distances for C2—O2 [1.248 (3) Å] and C2A—O2A [1.255 (3) Å] clearly indicate two double bonds. This allows us to confirm that the first step of the preparation of the title compound consists of the transformation of the 2-amino-6-methyl-4-pyrimidinol into 2-amino-6-methylpyrimidin-4-(1H)-one. However, the present investigation clearly shows that the N6—C6 [1.332 (3) Å] and N6A—C6A [1.324 (3) Å] distances are approximately equal to that of a C=N double bond length, indicating that N3 and N6 nitrogen atoms of the amino group are probably in an sp2 hybridization. These bond length features are consistent with imino resonance and suggest a large contribution from it to the stability of the title compound.

Related literature top

For common applications of this material, see: Yaghi et al. (2003); Kitagawa et al. (2004). For literature on metal-organic compounds, see: Kaabi et al. (2010). For a discussion of geometrical features in related structures, see: Min et al. (2009); Qing-Yan & Li (2005); Moloto et al. (2003).

Experimental top

A solution of CdCl2 (37 mg, 0.2 mmol) in water (6 ml) was added dropwise to a solution of 2-amino-4-hydroxy-6-methylpyrimidine (50 mg, 0.4 mmol) in ethanol (6 ml). After stirring for 30 min, the mixture was filtered and the resultant solution allowed to evaporate at room temperature. Crystals of the title compound, which remained stable under normal conditions of temperature and humidity, were isolated after several days and subjected to X-ray diffraction analysis (yield 58%).

Refinement top

All H atoms were located in a difference Fourier synthesis but were placed in calculated positions and allowed to ride on their parent atoms, with C—Haromatic = 0.93 Å, C—Hmethyl = 0.96 Å and N—H = 0.86 Å, and with Uiso = 1.2–1.5U</ieq(C).

Computing details top

Data collection: APEX2 (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound, showing the atom numbering scheme. with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The packing of (I) viewed down the b axis. Hydrogen bonds are denoted by dashed lines.
[Figure 3] Fig. 3. The packing of (I) viewed down the c axis. Hydrogen bonds are denoted by dashed lines.
Bis[2-amino-6-methylpyrimidin-4(1H)-one- κ2N3,O]dichloridocadmium(II) top
Crystal data top
[CdCl2(C5H7N3O)2]F(000) = 1712
Mr = 433.57Dx = 1.793 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 9775 reflections
a = 17.4204 (5) Åθ = 3.0–29.3°
b = 7.5467 (2) ŵ = 1.70 mm1
c = 25.4422 (6) ÅT = 293 K
β = 106.1333 (11)°Flat prism, colourless
V = 3213.07 (15) Å30.32 × 0.20 × 0.13 mm
Z = 8
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4494 independent reflections
Radiation source: fine-focus sealed tube3924 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ϕ and ω scansθmax = 29.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 2424
Tmin = 0.676, Tmax = 0.801k = 1010
41891 measured reflectionsl = 3535
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 1.27 w = 1/[σ2(Fo2) + (0.0634P)2 + 0.0986P]
where P = (Fo2 + 2Fc2)/3
4494 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.74 e Å3
0 restraintsΔρmin = 1.06 e Å3
Crystal data top
[CdCl2(C5H7N3O)2]V = 3213.07 (15) Å3
Mr = 433.57Z = 8
Monoclinic, C2/cMo Kα radiation
a = 17.4204 (5) ŵ = 1.70 mm1
b = 7.5467 (2) ÅT = 293 K
c = 25.4422 (6) Å0.32 × 0.20 × 0.13 mm
β = 106.1333 (11)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4494 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
3924 reflections with I > 2σ(I)
Tmin = 0.676, Tmax = 0.801Rint = 0.033
41891 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0230 restraints
wR(F2) = 0.108H-atom parameters constrained
S = 1.27Δρmax = 0.74 e Å3
4494 reflectionsΔρmin = 1.06 e Å3
190 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. 5 reflections were affected by the beamstop.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.049831 (10)0.66207 (2)0.118222 (6)0.03647 (9)
Cl20.14243 (4)0.55912 (10)0.06682 (3)0.05302 (18)
Cl30.00058 (5)0.38970 (10)0.15353 (3)0.05174 (18)
O20.11698 (14)0.9762 (3)0.13204 (7)0.0528 (5)
N10.10788 (13)0.7995 (3)0.19965 (8)0.0359 (4)
N50.13746 (13)0.9069 (3)0.28892 (8)0.0403 (5)
H50.13850.88860.32250.048*
N60.09525 (17)0.6185 (3)0.26931 (9)0.0538 (6)
H6A0.08020.53320.24630.065*
H6B0.09860.60230.30330.065*
C20.12795 (15)0.9609 (3)0.18243 (9)0.0383 (5)
C30.15860 (17)1.0967 (3)0.22184 (10)0.0432 (6)
H30.17701.20290.21130.052*
C40.16041 (15)1.0686 (3)0.27419 (10)0.0381 (5)
C60.11331 (14)0.7758 (4)0.25216 (9)0.0365 (5)
C70.1859 (2)1.2017 (4)0.31928 (12)0.0556 (7)
H7A0.19921.31120.30470.083*
H7B0.23191.15800.34650.083*
H7C0.14311.22130.33560.083*
O2A0.08881 (13)0.8086 (3)0.12328 (7)0.0480 (5)
N1A0.04596 (12)0.7847 (3)0.04894 (7)0.0329 (4)
N5A0.12319 (13)0.8922 (3)0.03495 (8)0.0358 (4)
H5A0.12840.91000.06920.043*
N6A0.00074 (14)0.7722 (3)0.02733 (9)0.0439 (5)
H6A10.04470.72610.00800.053*
H6A20.00630.79130.06170.053*
C2A0.10327 (16)0.8387 (3)0.07295 (10)0.0352 (5)
C3A0.17409 (16)0.9202 (4)0.04057 (10)0.0416 (5)
H3A0.21380.95650.05620.050*
C4A0.18262 (14)0.9439 (3)0.01337 (10)0.0382 (5)
C6A0.05619 (15)0.8137 (3)0.00417 (9)0.0334 (5)
C7A0.25489 (18)1.0267 (4)0.05236 (12)0.0544 (7)
H7A10.29611.04180.03430.082*
H7A20.27400.95120.08360.082*
H7A30.24071.14010.06400.082*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.03843 (13)0.04544 (14)0.02572 (12)0.00425 (7)0.00919 (8)0.00182 (6)
Cl20.0401 (3)0.0646 (4)0.0606 (4)0.0029 (3)0.0243 (3)0.0193 (3)
Cl30.0707 (5)0.0453 (3)0.0463 (4)0.0026 (3)0.0282 (4)0.0019 (3)
O20.0827 (15)0.0568 (11)0.0220 (8)0.0044 (10)0.0196 (9)0.0058 (7)
N10.0453 (12)0.0419 (10)0.0224 (9)0.0027 (9)0.0125 (8)0.0001 (7)
N50.0474 (12)0.0558 (12)0.0186 (8)0.0015 (10)0.0108 (8)0.0001 (8)
N60.0727 (18)0.0589 (13)0.0322 (12)0.0167 (13)0.0189 (12)0.0060 (10)
C20.0455 (13)0.0467 (13)0.0234 (10)0.0014 (11)0.0110 (10)0.0034 (9)
C30.0525 (16)0.0434 (13)0.0336 (12)0.0048 (12)0.0121 (11)0.0021 (10)
C40.0347 (12)0.0483 (13)0.0298 (11)0.0013 (10)0.0066 (9)0.0026 (9)
C60.0379 (12)0.0479 (12)0.0262 (11)0.0005 (10)0.0128 (9)0.0057 (10)
C70.0622 (19)0.0615 (16)0.0383 (14)0.0043 (15)0.0059 (13)0.0127 (13)
O2A0.0588 (12)0.0672 (12)0.0216 (8)0.0185 (10)0.0173 (8)0.0067 (7)
N1A0.0368 (10)0.0419 (10)0.0218 (9)0.0025 (8)0.0112 (8)0.0004 (7)
N5A0.0423 (11)0.0450 (10)0.0194 (8)0.0070 (9)0.0076 (8)0.0030 (8)
N6A0.0480 (12)0.0592 (13)0.0298 (10)0.0047 (11)0.0199 (9)0.0062 (10)
C2A0.0417 (13)0.0421 (12)0.0239 (11)0.0031 (9)0.0127 (10)0.0028 (8)
C3A0.0399 (13)0.0533 (14)0.0346 (12)0.0079 (11)0.0156 (10)0.0093 (11)
C4A0.0364 (12)0.0440 (12)0.0318 (12)0.0039 (10)0.0055 (10)0.0080 (9)
C6A0.0402 (13)0.0391 (11)0.0222 (10)0.0098 (9)0.0110 (9)0.0044 (8)
C7A0.0479 (16)0.0656 (18)0.0435 (15)0.0020 (14)0.0023 (13)0.0191 (13)
Geometric parameters (Å, º) top
Cd1—N1A2.261 (2)C7—H7A0.9600
Cd1—N12.286 (2)C7—H7B0.9600
Cd1—Cl22.4674 (6)C7—H7C0.9600
Cd1—Cl32.4893 (7)O2A—C2A1.255 (3)
Cd1—O22.624 (2)N1A—C6A1.331 (3)
Cd1—O2A2.692 (2)N1A—C2A1.369 (3)
O2—C21.248 (3)N5A—C6A1.348 (3)
N1—C61.325 (3)N5A—C4A1.357 (3)
N1—C21.372 (3)N5A—H5A0.8600
N5—C61.346 (3)N6A—C6A1.324 (3)
N5—C41.369 (3)N6A—H6A10.8600
N5—H50.8600N6A—H6A20.8600
N6—C61.332 (3)C2A—C3A1.419 (4)
N6—H6A0.8600C3A—C4A1.351 (3)
N6—H6B0.8600C3A—H3A0.9300
C2—C31.429 (3)C4A—C7A1.505 (3)
C3—C41.340 (3)C7A—H7A10.9600
C3—H30.9300C7A—H7A20.9600
C4—C71.496 (4)C7A—H7A30.9600
Cl2—Cd1—Cl3105.84 (3)N1—C6—N5121.5 (2)
Cl2—Cd1—O291.30 (5)N6—C6—N5118.9 (2)
Cl2—Cd1—O2A151.90 (4)C4—C7—H7A109.5
Cl2—Cd1—N1115.69 (6)C4—C7—H7B109.5
Cl2—Cd1—N1A99.51 (5)H7A—C7—H7B109.5
Cl3—Cd1—O2152.05 (4)C4—C7—H7C109.5
Cl3—Cd1—O2A85.31 (5)H7A—C7—H7C109.5
Cl3—Cd1—N199.07 (6)H7B—C7—H7C109.5
Cl3—Cd1—N1A111.44 (6)C6A—N1A—C2A119.7 (2)
O2—Cd1—O2A89.71 (7)C6A—N1A—Cd1136.08 (17)
O2—Cd1—N153.14 (7)C2A—N1A—Cd1104.22 (14)
O2—Cd1—N1A86.54 (7)C6A—N5A—C4A121.7 (2)
O2A—Cd1—N186.97 (7)C6A—N5A—H5A119.1
O2A—Cd1—N1A52.52 (6)C4A—N5A—H5A119.1
N1—Cd1—N1A124.44 (8)C6A—N6A—H6A1120.0
C2—O2—Cd189.39 (15)C6A—N6A—H6A2120.0
C6—N1—C2119.2 (2)H6A1—N6A—H6A2120.0
C6—N1—Cd1137.93 (17)O2A—C2A—N1A115.9 (2)
C2—N1—Cd1101.61 (14)O2A—C2A—C3A124.5 (2)
C6—N5—C4121.6 (2)N1A—C2A—C3A119.6 (2)
C6—N5—H5119.2C4A—C3A—C2A118.7 (2)
C4—N5—H5119.2C4A—C3A—H3A120.7
C6—N6—H6A120.0C2A—C3A—H3A120.7
C6—N6—H6B120.0C3A—C4A—N5A119.5 (2)
H6A—N6—H6B120.0C3A—C4A—C7A124.1 (3)
O2—C2—N1115.5 (2)N5A—C4A—C7A116.4 (2)
O2—C2—C3125.1 (2)N6A—C6A—N1A120.5 (2)
N1—C2—C3119.4 (2)N6A—C6A—N5A118.7 (2)
C4—C3—C2119.0 (2)N1A—C6A—N5A120.8 (2)
C4—C3—H3120.5C4A—C7A—H7A1109.5
C2—C3—H3120.5C4A—C7A—H7A2109.5
C3—C4—N5119.0 (2)H7A1—C7A—H7A2109.5
C3—C4—C7125.1 (3)C4A—C7A—H7A3109.5
N5—C4—C7115.8 (2)H7A1—C7A—H7A3109.5
N1—C6—N6119.5 (2)H7A2—C7A—H7A3109.5
N1A—Cd1—O2—C2135.12 (17)Cd1—N1—C6—N5164.08 (19)
N1—Cd1—O2—C23.77 (15)C4—N5—C6—N12.5 (4)
Cl2—Cd1—O2—C2125.43 (16)C4—N5—C6—N6176.9 (2)
Cl3—Cd1—O2—C23.3 (2)N1—Cd1—N1A—C6A126.3 (2)
N1A—Cd1—N1—C6117.1 (3)Cl2—Cd1—N1A—C6A4.0 (2)
Cl2—Cd1—N1—C6119.4 (2)Cl3—Cd1—N1A—C6A115.3 (2)
Cl3—Cd1—N1—C66.8 (3)O2—Cd1—N1A—C6A86.7 (2)
O2—Cd1—N1—C6169.8 (3)N1—Cd1—N1A—C2A52.71 (18)
N1A—Cd1—N1—C249.21 (18)Cl2—Cd1—N1A—C2A176.92 (14)
Cl2—Cd1—N1—C274.29 (16)Cl3—Cd1—N1A—C2A65.63 (15)
Cl3—Cd1—N1—C2173.16 (14)O2—Cd1—N1A—C2A92.33 (15)
O2—Cd1—N1—C23.50 (14)C6A—N1A—C2A—O2A179.1 (2)
Cd1—O2—C2—N15.6 (2)Cd1—N1A—C2A—O2A0.1 (3)
Cd1—O2—C2—C3174.0 (3)C6A—N1A—C2A—C3A1.9 (3)
C6—N1—C2—O2176.1 (2)Cd1—N1A—C2A—C3A178.86 (19)
Cd1—N1—C2—O26.5 (3)O2A—C2A—C3A—C4A179.5 (3)
C6—N1—C2—C33.6 (4)N1A—C2A—C3A—C4A0.7 (4)
Cd1—N1—C2—C3173.1 (2)C2A—C3A—C4A—N5A1.0 (4)
O2—C2—C3—C4173.8 (3)C2A—C3A—C4A—C7A179.4 (2)
N1—C2—C3—C45.8 (4)C6A—N5A—C4A—C3A1.5 (4)
C2—C3—C4—N54.0 (4)C6A—N5A—C4A—C7A178.9 (2)
C2—C3—C4—C7176.0 (3)C2A—N1A—C6A—N6A175.9 (2)
C6—N5—C4—C30.1 (4)Cd1—N1A—C6A—N6A3.0 (4)
C6—N5—C4—C7179.9 (2)C2A—N1A—C6A—N5A1.5 (3)
C2—N1—C6—N6178.8 (2)Cd1—N1A—C6A—N5A179.61 (17)
Cd1—N1—C6—N616.5 (4)C4A—N5A—C6A—N6A177.6 (2)
C2—N1—C6—N50.5 (4)C4A—N5A—C6A—N1A0.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5···O2Ai0.861.922.704 (3)151
N6—H6A···Cl30.862.623.417 (3)155
N6—H6B···O2Ai0.862.473.116 (3)132
N6—H6B···Cl3i0.862.803.383 (2)127
N5A—H5A···O2ii0.861.872.692 (2)158
N6A—H6A1···Cl20.862.513.336 (3)161
N6A—H6A2···Cl3iii0.862.733.430 (2)139
Symmetry codes: (i) x, y, z+1/2; (ii) x, y+2, z; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[CdCl2(C5H7N3O)2]
Mr433.57
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)17.4204 (5), 7.5467 (2), 25.4422 (6)
β (°) 106.1333 (11)
V3)3213.07 (15)
Z8
Radiation typeMo Kα
µ (mm1)1.70
Crystal size (mm)0.32 × 0.20 × 0.13
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.676, 0.801
No. of measured, independent and
observed [I > 2σ(I)] reflections
41891, 4494, 3924
Rint0.033
(sin θ/λ)max1)0.694
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.108, 1.27
No. of reflections4494
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.74, 1.06

Computer programs: APEX2 (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5···O2Ai0.861.922.704 (3)151.1
N6—H6A···Cl30.862.623.417 (3)155.2
N6—H6B···O2Ai0.862.473.116 (3)132.1
N6—H6B···Cl3i0.862.803.383 (2)126.8
N5A—H5A···O2ii0.861.872.692 (2)158.2
N6A—H6A1···Cl20.862.513.336 (3)160.7
N6A—H6A2···Cl3iii0.862.733.430 (2)139.2
Symmetry codes: (i) x, y, z+1/2; (ii) x, y+2, z; (iii) x, y+1, z.
 

Acknowledgements

This work was supported by the Fundação para a Ciência e a Tecnologia (FCT), under the scholarship SFRH/BD/38387/2008.

References

First citationBruker (2003). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKaabi, K., El Glaoui, M., Pereira Silva, P. S., Ramos Silva, M. & Ben Nasr, C. (2010). Acta Cryst. E66, m617.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334–2375.  Web of Science CrossRef CAS Google Scholar
First citationMin, H., Kun, Z., Yi-Zhi, L. & Jin, Z. (2009). Polyhedron, 28, 445–452  Google Scholar
First citationMoloto, M. J., Malik, M. A., O'Brien, P., Motevalli, M. & Kolawole, G. A. (2003). Polyhedron, 22, 595–603.  Web of Science CSD CrossRef CAS Google Scholar
First citationQing-Yan, L. & Li, X. (2005). Inorg. Chem. Commun. 8, 401–405.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYaghi, O. M., O'Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M. & Kim, J. (2003). Nature (London), 423, 705–714.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds