organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Z)-Ethyl 2-(4-chloro­phen­yl)-3-[(2,4-di­fluoro­phen­yl)amino]­prop-2-enoate

aCollege of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, People's Republic of China
*Correspondence e-mail: xiaozhuping2005@163.com

(Received 21 October 2010; accepted 27 October 2010; online 31 October 2010)

In the title compound, C17H14ClF2NO2, the amino­acrylo­yloxy group makes dihedral angles of 47.55 (11)° with the 4-chloro­phenyl group and 8.74 (12)° with the difluoro­phenyl group; the dihedral angle between the rings is 52.32 (11)°. The structure of the title compound reveals a Z configuration with respect to the C=C double bond in the amino­acrylate fragment. A bifurcated intramolecular N—H⋯(O,F) hydrogen bond occurs. In the crystal, molecules are linked into chains by C—H⋯O hydrogen bonds.

Related literature

For background to Schiff bases, see: You & Zhu, 2006[You, Z.-L. & Zhu, H. L. (2006). Z. Anorg. Allg. Chem. 632, 140-146.]. For applications of enamines, see: Xiao et al. (2007[Xiao, Z.-P., Xue, J.-Y., Tan, S.-H., Li, H.-Q. & Zhu, H. L. (2007). Bioorg. Med. Chem. 15, 4212-4219.], 2008a[Xiao, Z.-P., Fang, R.-Q., Li, H.-Q., Xue, J.-Y., Zheng, Y. & Zhu, H.-L. (2008a). Eur. J. Med. Chem. 43, 1828-1836.],b[Xiao, Z.-P., Li, H.-Q., Shi, L., Lv, P.-C., Song, Z.-C. & Zhu, H.-L. (2008b). ChemMedChem, 3, 1077-1082.],c[Xiao, Z.-P., Lv, P.-C., Xu, S.-P., Zhu, T.-T. & Zhu, H.-L. (2008c). ChemMedChem 3, 1516-1519.]).

[Scheme 1]

Experimental

Crystal data
  • C17H14ClF2NO2

  • Mr = 337.74

  • Monoclinic, P 21 /c

  • a = 16.276 (3) Å

  • b = 7.5030 (15) Å

  • c = 13.812 (3) Å

  • β = 111.11 (3)°

  • V = 1573.5 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 298 K

  • 0.30 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.923, Tmax = 0.973

  • 2957 measured reflections

  • 2824 independent reflections

  • 1566 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.170

  • S = 0.99

  • 2824 reflections

  • 213 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H18⋯F1 0.83 (3) 2.29 (3) 2.674 (3) 108 (3)
N1—H18⋯O1 0.83 (3) 2.07 (3) 2.675 (4) 129 (3)
C6—H6⋯O1i 0.93 2.51 3.321 (4) 146
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SMART; data reduction: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

A 2-aryl-3-arylaminoacrylate contains characteristic N—CC bond and is therefore identified as enamine. It is well known that Schiff base harbors an NC—C bond, which indicates that an enamine is the tautomeric isomer of the correspond Schiff base. Enamines, like Schiff bases (You & Zhu, 2006), show good antimicrobial activities (Xiao et al., 2007; Xiao et al., 2008a), especially against bacterium. On the other hand, an enamine is the key intermediate for anticancer agents, 3-arylquinolone (Xiao et al., 2008b) and 3-arylquinoline (Xiao et al., 2008c). In a continuation of our work on the structural characterization of enamine derivatives, we report herein the crystal structure of the title compound, (I).

The bond length of C13—N1 (1.344 (4) Å) is shorter than standard C—N single bond (1.48 Å) but longer than C—N double bond (1.28 Å), indicating that the p orbital of N1 is conjugated with the π molecular orbital of C13—C14 double bond. For the same reason, C1—N1 (1.394 (4) Å) is single bond with some double-bond character. The stereochemistry of the double bond in aminoacrylate moiety was assigned as (E)-configuration based on X-ray crystallography (Fig. 1) of the title compound.

Aminoacryloyloxy moiety, O2—C15—O1—C14—C13, forms a plane with the mean deviation of 0.0249 Å, which makes a dihedral angle of 47.55 (11) ° with the 4-chlorophenyl group and 8.74 (12) ° with the difluorophenyl group. The molecules are linked through intermolecular C—H···O hydrogen bonds, forming an infinite one-dimensional ribbons (Table 1, Fig. 2).

Related literature top

For background to Schiff bases, see: You & Zhu, 2006. For applications of enamines, see: Xiao et al. (2007, 2008a,b,c). [Please check amended text]

Experimental top

Equimolar quantities (6 mmol) of ethyl 2-(4-chlorophenyl)-3-oxopropanoate (1.36 g) and 2,4-difluorobenzenamine (0.77 g) in absolute alcohol (18 ml) were heated at 344–354 K for 2 h. The excess solvent was removed under reduced pressure. The residue was purified by a flash chromatography with EtOAc–petrolum ether (1:6, v/v) to afford two fractions. The second fraction gave a E-isomer, and the first fraction, after partial solvent evaporated, furnished colorless blocks of (I) suitable for single-crystal structure determination.

Refinement top

The H atom bonded to N1 was located in a difference Fourier map. All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H = 0.93, 0.96 and 0.97 Å for the aromatic, CH3 and CH2 type H atoms, respectively. Uiso = 1.2Ueq(parent atoms) were assigned for aromatic and CH2 type H-atoms and 1.5Ueq(parent atoms) for CH3 type H-atoms.

Structure description top

A 2-aryl-3-arylaminoacrylate contains characteristic N—CC bond and is therefore identified as enamine. It is well known that Schiff base harbors an NC—C bond, which indicates that an enamine is the tautomeric isomer of the correspond Schiff base. Enamines, like Schiff bases (You & Zhu, 2006), show good antimicrobial activities (Xiao et al., 2007; Xiao et al., 2008a), especially against bacterium. On the other hand, an enamine is the key intermediate for anticancer agents, 3-arylquinolone (Xiao et al., 2008b) and 3-arylquinoline (Xiao et al., 2008c). In a continuation of our work on the structural characterization of enamine derivatives, we report herein the crystal structure of the title compound, (I).

The bond length of C13—N1 (1.344 (4) Å) is shorter than standard C—N single bond (1.48 Å) but longer than C—N double bond (1.28 Å), indicating that the p orbital of N1 is conjugated with the π molecular orbital of C13—C14 double bond. For the same reason, C1—N1 (1.394 (4) Å) is single bond with some double-bond character. The stereochemistry of the double bond in aminoacrylate moiety was assigned as (E)-configuration based on X-ray crystallography (Fig. 1) of the title compound.

Aminoacryloyloxy moiety, O2—C15—O1—C14—C13, forms a plane with the mean deviation of 0.0249 Å, which makes a dihedral angle of 47.55 (11) ° with the 4-chlorophenyl group and 8.74 (12) ° with the difluorophenyl group. The molecules are linked through intermolecular C—H···O hydrogen bonds, forming an infinite one-dimensional ribbons (Table 1, Fig. 2).

For background to Schiff bases, see: You & Zhu, 2006. For applications of enamines, see: Xiao et al. (2007, 2008a,b,c). [Please check amended text]

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SMART (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. An infinite two-dimensional ribbon is formed through intermolecular C—H···O hydrogen bonds.
(Z)-Ethyl 2-(4-chlorophenyl)-3-[(2,4-difluorophenyl)amino]prop-2-enoate top
Crystal data top
C17H14ClF2NO2F(000) = 696
Mr = 337.74Dx = 1.426 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1318 reflections
a = 16.276 (3) Åθ = 1.8–24.7°
b = 7.5030 (15) ŵ = 0.27 mm1
c = 13.812 (3) ÅT = 298 K
β = 111.11 (3)°Block, colourless
V = 1573.5 (5) Å30.30 × 0.10 × 0.10 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2824 independent reflections
Radiation source: fine-focus sealed tube1566 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
φ and ω scansθmax = 25.3°, θmin = 1.3°
Absorption correction: ψ scan
(North et al., 1968)
h = 1918
Tmin = 0.923, Tmax = 0.973k = 90
2957 measured reflectionsl = 016
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.170H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.0804P)2]
where P = (Fo2 + 2Fc2)/3
2824 reflections(Δ/σ)max < 0.001
213 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C17H14ClF2NO2V = 1573.5 (5) Å3
Mr = 337.74Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.276 (3) ŵ = 0.27 mm1
b = 7.5030 (15) ÅT = 298 K
c = 13.812 (3) Å0.30 × 0.10 × 0.10 mm
β = 111.11 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2824 independent reflections
Absorption correction: ψ scan
(North et al., 1968)
1566 reflections with I > 2σ(I)
Tmin = 0.923, Tmax = 0.973Rint = 0.027
2957 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0650 restraints
wR(F2) = 0.170H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 0.26 e Å3
2824 reflectionsΔρmin = 0.29 e Å3
213 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.0185 (2)0.7793 (5)0.9700 (2)0.0447 (9)
C21.1023 (2)0.7723 (5)1.0451 (2)0.0473 (9)
C31.1764 (2)0.8338 (5)1.0316 (3)0.0575 (10)
H31.23160.82671.08410.069*
C41.1653 (2)0.9062 (6)0.9370 (3)0.0591 (10)
C51.0852 (3)0.9180 (5)0.8598 (3)0.0614 (11)
H51.07990.96960.79660.074*
C61.0122 (2)0.8536 (5)0.8756 (3)0.0561 (10)
H60.95750.85980.82220.067*
C70.7054 (2)0.6470 (5)0.8669 (2)0.0418 (8)
C80.6325 (2)0.7235 (5)0.8805 (3)0.0534 (10)
H80.63770.76690.94560.064*
C90.5528 (2)0.7365 (5)0.7997 (3)0.0568 (10)
H90.50460.78720.81030.068*
C100.5451 (2)0.6741 (5)0.7036 (3)0.0538 (10)
C110.6148 (2)0.5949 (5)0.6881 (3)0.0567 (10)
H110.60870.55070.62290.068*
C120.6946 (2)0.5807 (5)0.7697 (2)0.0474 (9)
H120.74180.52550.75900.057*
C130.8638 (2)0.7024 (5)0.9292 (2)0.0463 (9)
H130.85240.73700.86100.056*
C140.7936 (2)0.6482 (5)0.9515 (2)0.0423 (8)
C150.8066 (2)0.5946 (5)1.0578 (2)0.0480 (9)
C160.7412 (2)0.4743 (6)1.1713 (2)0.0622 (11)
H16A0.75790.57511.21840.075*
H16B0.78560.38211.19720.075*
C170.6536 (2)0.4057 (6)1.1638 (3)0.0708 (12)
H17A0.60940.49361.13120.106*
H17B0.65400.38071.23210.106*
H17C0.64080.29851.12310.106*
Cl10.44479 (7)0.69755 (18)0.60035 (8)0.0887 (5)
F11.10991 (12)0.7013 (3)1.13887 (14)0.0654 (7)
F21.23767 (15)0.9700 (4)0.92091 (18)0.0856 (8)
N10.94818 (18)0.7123 (4)0.9939 (2)0.0483 (8)
O10.87698 (16)0.6036 (4)1.13063 (17)0.0660 (8)
O20.73408 (15)0.5283 (3)1.06790 (16)0.0521 (7)
H180.961 (2)0.673 (4)1.054 (3)0.050 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0458 (19)0.047 (2)0.0377 (18)0.0000 (17)0.0109 (15)0.0070 (17)
C20.047 (2)0.056 (2)0.0355 (18)0.0045 (18)0.0104 (15)0.0033 (17)
C30.041 (2)0.077 (3)0.049 (2)0.006 (2)0.0093 (16)0.010 (2)
C40.052 (2)0.070 (3)0.062 (2)0.007 (2)0.028 (2)0.011 (2)
C50.070 (3)0.073 (3)0.044 (2)0.002 (2)0.024 (2)0.001 (2)
C60.049 (2)0.073 (3)0.0389 (19)0.004 (2)0.0072 (16)0.0010 (19)
C70.0405 (18)0.043 (2)0.0397 (18)0.0037 (16)0.0115 (14)0.0044 (16)
C80.047 (2)0.063 (2)0.045 (2)0.0019 (19)0.0100 (16)0.0049 (19)
C90.043 (2)0.062 (3)0.061 (2)0.0066 (19)0.0144 (18)0.005 (2)
C100.045 (2)0.055 (2)0.046 (2)0.0034 (19)0.0015 (16)0.0091 (18)
C110.058 (2)0.065 (3)0.0392 (19)0.005 (2)0.0082 (17)0.0021 (19)
C120.0463 (19)0.054 (2)0.0399 (18)0.0003 (18)0.0130 (15)0.0008 (17)
C130.047 (2)0.053 (2)0.0334 (17)0.0049 (18)0.0082 (15)0.0008 (16)
C140.0426 (19)0.048 (2)0.0317 (17)0.0011 (17)0.0079 (14)0.0009 (15)
C150.047 (2)0.052 (2)0.0404 (19)0.0026 (18)0.0103 (16)0.0019 (17)
C160.069 (3)0.077 (3)0.0365 (19)0.007 (2)0.0138 (18)0.001 (2)
C170.075 (3)0.081 (3)0.058 (2)0.013 (3)0.026 (2)0.000 (2)
Cl10.0566 (7)0.1127 (10)0.0672 (7)0.0014 (7)0.0135 (5)0.0174 (7)
F10.0531 (12)0.0978 (18)0.0363 (11)0.0016 (12)0.0051 (9)0.0110 (12)
F20.0689 (15)0.119 (2)0.0838 (17)0.0253 (15)0.0458 (13)0.0121 (16)
N10.0402 (17)0.063 (2)0.0353 (16)0.0006 (15)0.0063 (13)0.0050 (16)
O10.0500 (15)0.099 (2)0.0373 (14)0.0152 (15)0.0018 (12)0.0058 (14)
O20.0481 (14)0.0676 (17)0.0374 (12)0.0045 (13)0.0116 (10)0.0026 (12)
Geometric parameters (Å, º) top
C1—C21.385 (4)C10—C111.364 (5)
C1—C61.387 (5)C10—Cl11.747 (3)
C1—N11.394 (4)C11—C121.384 (5)
C2—F11.365 (4)C11—H110.9300
C2—C31.365 (5)C12—H120.9300
C3—C41.366 (5)C13—N11.344 (4)
C3—H30.9300C13—C141.348 (5)
C4—C51.357 (5)C13—H130.9300
C4—F21.362 (4)C14—C151.463 (4)
C5—C61.371 (5)C15—O11.225 (4)
C5—H50.9300C15—O21.333 (4)
C6—H60.9300C16—O21.449 (4)
C7—C121.383 (4)C16—C171.484 (5)
C7—C81.390 (5)C16—H16A0.9700
C7—C141.489 (4)C16—H16B0.9700
C8—C91.377 (4)C17—H17A0.9600
C8—H80.9300C17—H17B0.9600
C9—C101.370 (5)C17—H17C0.9600
C9—H90.9300N1—H180.83 (3)
C2—C1—C6116.0 (3)C10—C11—H11120.2
C2—C1—N1118.7 (3)C12—C11—H11120.2
C6—C1—N1125.3 (3)C7—C12—C11121.1 (3)
F1—C2—C3118.6 (3)C7—C12—H12119.4
F1—C2—C1117.0 (3)C11—C12—H12119.4
C3—C2—C1124.4 (3)N1—C13—C14127.8 (3)
C2—C3—C4116.4 (3)N1—C13—H13116.1
C2—C3—H3121.8C14—C13—H13116.1
C4—C3—H3121.8C13—C14—C15119.0 (3)
C5—C4—F2119.4 (4)C13—C14—C7118.7 (3)
C5—C4—C3122.5 (4)C15—C14—C7122.4 (3)
F2—C4—C3118.1 (4)O1—C15—O2122.4 (3)
C4—C5—C6119.6 (4)O1—C15—C14124.3 (3)
C4—C5—H5120.2O2—C15—C14113.2 (3)
C6—C5—H5120.2O2—C16—C17107.1 (3)
C5—C6—C1121.1 (3)O2—C16—H16A110.3
C5—C6—H6119.5C17—C16—H16A110.3
C1—C6—H6119.5O2—C16—H16B110.3
C12—C7—C8117.7 (3)C17—C16—H16B110.3
C12—C7—C14120.8 (3)H16A—C16—H16B108.6
C8—C7—C14121.3 (3)C16—C17—H17A109.5
C9—C8—C7121.3 (3)C16—C17—H17B109.5
C9—C8—H8119.3H17A—C17—H17B109.5
C7—C8—H8119.3C16—C17—H17C109.5
C10—C9—C8119.5 (4)H17A—C17—H17C109.5
C10—C9—H9120.3H17B—C17—H17C109.5
C8—C9—H9120.3C13—N1—C1126.4 (3)
C11—C10—C9120.7 (3)C13—N1—H18118 (2)
C11—C10—Cl1120.1 (3)C1—N1—H18116 (2)
C9—C10—Cl1119.3 (3)C15—O2—C16116.6 (3)
C10—C11—C12119.7 (3)
C6—C1—C2—F1179.4 (3)C8—C7—C12—C111.9 (5)
N1—C1—C2—F10.8 (5)C14—C7—C12—C11173.6 (3)
C6—C1—C2—C30.4 (6)C10—C11—C12—C70.6 (6)
N1—C1—C2—C3179.8 (4)N1—C13—C14—C151.0 (6)
F1—C2—C3—C4179.0 (3)N1—C13—C14—C7179.7 (3)
C1—C2—C3—C40.1 (6)C12—C7—C14—C1344.5 (5)
C2—C3—C4—C50.3 (6)C8—C7—C14—C13130.9 (4)
C2—C3—C4—F2179.6 (3)C12—C7—C14—C15136.2 (3)
F2—C4—C5—C6179.8 (4)C8—C7—C14—C1548.4 (5)
C3—C4—C5—C60.9 (6)C13—C14—C15—O13.8 (6)
C4—C5—C6—C11.2 (6)C7—C14—C15—O1175.5 (4)
C2—C1—C6—C51.0 (5)C13—C14—C15—O2174.1 (3)
N1—C1—C6—C5179.2 (4)C7—C14—C15—O26.5 (5)
C12—C7—C8—C91.3 (6)C14—C13—N1—C1175.8 (4)
C14—C7—C8—C9174.2 (3)C2—C1—N1—C13177.2 (3)
C7—C8—C9—C100.5 (6)C6—C1—N1—C132.6 (6)
C8—C9—C10—C111.9 (6)O1—C15—O2—C162.9 (5)
C8—C9—C10—Cl1177.9 (3)C14—C15—O2—C16179.2 (3)
C9—C10—C11—C121.3 (6)C17—C16—O2—C15180.0 (3)
Cl1—C10—C11—C12178.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H18···F10.83 (3)2.29 (3)2.674 (3)108 (3)
N1—H18···O10.83 (3)2.07 (3)2.675 (4)129 (3)
C6—H6···O1i0.932.513.321 (4)146
Symmetry code: (i) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC17H14ClF2NO2
Mr337.74
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)16.276 (3), 7.5030 (15), 13.812 (3)
β (°) 111.11 (3)
V3)1573.5 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.30 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.923, 0.973
No. of measured, independent and
observed [I > 2σ(I)] reflections
2957, 2824, 1566
Rint0.027
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.170, 0.99
No. of reflections2824
No. of parameters213
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.29

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H18···F10.83 (3)2.29 (3)2.674 (3)108 (3)
N1—H18···O10.83 (3)2.07 (3)2.675 (4)129 (3)
C6—H6···O1i0.932.513.321 (4)146.0
Symmetry code: (i) x, y+3/2, z1/2.
 

Acknowledgements

This work was financed by the Scientific Research Fund of Hunan Provincial Education Department (Project No. 09B083) and by a grant from Jishou University for talent introduction (project No. JSDXKYZZ0801).

References

First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXiao, Z.-P., Fang, R.-Q., Li, H.-Q., Xue, J.-Y., Zheng, Y. & Zhu, H.-L. (2008a). Eur. J. Med. Chem. 43, 1828–1836.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationXiao, Z.-P., Li, H.-Q., Shi, L., Lv, P.-C., Song, Z.-C. & Zhu, H.-L. (2008b). ChemMedChem, 3, 1077–1082.  Web of Science CrossRef PubMed CAS Google Scholar
First citationXiao, Z.-P., Lv, P.-C., Xu, S.-P., Zhu, T.-T. & Zhu, H.-L. (2008c). ChemMedChem 3, 1516–1519.  Web of Science CrossRef PubMed CAS Google Scholar
First citationXiao, Z.-P., Xue, J.-Y., Tan, S.-H., Li, H.-Q. & Zhu, H. L. (2007). Bioorg. Med. Chem. 15, 4212–4219.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationYou, Z.-L. & Zhu, H. L. (2006). Z. Anorg. Allg. Chem. 632, 140–146.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds