metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[(μ3-2-hy­dr­oxy-4-iso­propyl­cyclo­hepta-2,4,6-trien-1-onato)(μ2-2-hy­dr­oxy-4-iso­propyl­cyclo­hepta-2,4,6-trien-1-onato)lead(II)]

aInstitute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland
*Correspondence e-mail: k.lyczko@ichtj.waw.pl

(Received 9 September 2010; accepted 6 October 2010; online 13 October 2010)

In the title compound, [Pb(C10H11O2)2]n or [Pb(hino)2]n, the lead(II) ion is chelated by two hinokitiolate ligands in a distorted square-pyramidal configuration, with Pb—O bond lengths in the range 2.327 (6)–2.479 (9) Å. The 6s2 lone electron pair of the lead(II) ion becomes stereochemically active and is directed towards the apex of this pyramid. The crystal structure of the title compound consists of chains formed by the bis­(hinokitiolato)lead(II) mol­ecules situated along the twofold screw axis. The coordination sphere around the lead(II) ion is completed by three additional O atoms, at 2.625 (7), 3.016 (8) and 3.064 (8) Å, from the two neighbouring Pb(hino)2 units. Both isopropyl groups are rotationally disordered.

Related literature

For structural data on hinokitiolato–metal complexes, see: Abrahams et al. (1994[Abrahams, I., Choi, N., Hendrick, K., Joyce, H., Matthews, R. W. & McPartlin, M. (1994). Polyhedron, 13, 513-516.]); Barret et al. (2000[Barret, M. C., Mahon, M. F., Molloy, K. C. & Wright, P. (2000). Main Group Met. Chem. 23, 663-671.], 2001[Barret, M. C., Mahon, M. F., Molloy, K. C., Steed, J. W. & Wright, P. (2001). Inorg. Chem. 40, 4384-4388.], 2002[Barret, M. C., Mahon, M. F., Molloy, K. C., Wright, P. & Creeth, J. E. (2002). Polyhedron, 21, 1761-1766.]); Nomiya et al. (2004[Nomiya, K., Yoshizawa, A., Tsukagoshi, K., Kasuga, N. C., Hirakawa, S. & Watanabe, J. (2004). J. Inorg. Biochem. 98, 46-60.], 2009[Nomiya, K., Onodera, K., Tsukagoshi, K., Shimada, K., Yoshizawa, A., Itoyanagi, T., Sugie, A., Tsuruta, S., Sato, R. & Kasuga, N. Ch. (2009). Inorg. Chim. Acta, 362, 43-55.]); Ho (2010[Ho, D. M. (2010). Acta Cryst. C66, m145-m148.]). For related structures, see: Malik et al. (1999[Malik, M. A., O'Brien, P., Motevalli, M., Jones, A. C. & Leedham, T. (1999). Polyhedron, 18, 1641-1646.]); Harrowfield et al. (2004[Harrowfield, J. M., Maghaminia, S. & Soudi, A. A. (2004). Inorg. Chem. 43, 1810-1812.]); Lyczko et al. (2006[Lyczko, K., Narbutt, J., Paluchowska, B., Maurin, J. K. & Persson, I. (2006). Dalton Trans. pp. 3972-3976.], 2007[Lyczko, K., Starosta, W. & Persson, I. (2007). Inorg. Chem. 46, 4402-4410.]). For hemi- and holodirected geometries of lead(II) complexes, see: Shimoni-Livny et al. (1998[Shimoni-Livny, L., Glusker, J. P. & Bock, Ch. W. (1998). Inorg. Chem. 37, 1853-1867.]). For the van der Waals radii of lead and oxygen, see: Bondi (1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]).

[Scheme 1]

Experimental

Crystal data
  • [Pb(C10H11O2)2]

  • Mr = 533.57

  • Orthorhombic, P n a 21

  • a = 33.780 (7) Å

  • b = 8.2802 (17) Å

  • c = 7.3661 (15) Å

  • V = 2060.3 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 8.21 mm−1

  • T = 293 K

  • 0.35 × 0.05 × 0.03 mm

Data collection
  • Kuma KM-4 four-circle diffractometer

  • Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2000[Oxford Diffraction (2000). CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.527, Tmax = 0.789

  • 3452 measured reflections

  • 3063 independent reflections

  • 1969 reflections with I > 2σ(I)

  • Rint = 0.093

  • 3 standard reflections every 200 reflections intensity decay: 1.1%

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.093

  • S = 1.06

  • 3063 reflections

  • 216 parameters

  • 13 restraints

  • H-atom parameters constrained

  • Δρmax = 1.38 e Å−3

  • Δρmin = −2.11 e Å−3

Table 1
Selected bond lengths (Å)

Pb1—O11 2.327 (6)
Pb1—O12 2.420 (7)
Pb1—O1 2.422 (7)
Pb1—O2 2.479 (9)
Pb1—O12i 2.625 (7)
Pb1—O1i 3.016 (8)
Pb1—O11ii 3.064 (8)
Symmetry codes: (i) [-x+1, -y+1, z+{\script{1\over 2}}]; (ii) [-x+1, -y+1, z-{\script{1\over 2}}].

Data collection: KM-4 Software (Kuma, 1996[Kuma (1996). KM-4 Software. Kuma Diffraction Ltd, Wrocław, Poland.]); cell refinement: KM-4 Software; data reduction: DATAPROC (Kuma, 2001[Kuma (2001). DATAPROC. Kuma Diffraction Ltd, Wrocław, Poland.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Hinokitiol (2-hydroxy-4-isopropyl-2,4,6-cycloheptatrien-1-one), also called β-thujaplicin, abbreviated as Hhino, is a derivative of tropolone (Htrop) with isopropyl group in the position 4 of the aromatic seven-membered carbon ring. The hinokitiolate (hino-) anion, like the tropolonate (trop-) anion, is a bidentate oxygen donor ligand, which forms five-membered ring upon complexation to metal ions.

The structural data on metal complexes with hinokitiol are limited to only several examples. There are a few structures of homoleptic hinokitiolato-metal complexes such as [Cu(hino)2] (two forms, cis and trans, have been structurally characterized; Barret et al., 2002), [Pd(hino)2], [Sb(hino)3], [Zr(hino)4] (Nomiya et al., 2009), [In(hino)3] (Abrahams et al., 1994) and [Al(hino)3] (Nomiya et al., 2004). Moreover, some dimeric species, e.g. [Ag(hino)]2, [M(hino)2(EtOH)]2 (M = Co, Zn, Ni, Mg) (Nomiya et al., 2004, 2009; Barret et al., 2001), [Mn(hino)2(MeOH)]2 and [Bi(hino)3(EtOH)]2 (Nomiya et al., 2009), and one trimeric [Cu(hino)2]3 (Ho, 2010) have been reported. A small number of hinokitiolato-metal complexes with mixed ligands, e.g., [SnX2(hino)2] (X = F, Cl) (Barret et al., 2000) and [MoO2(hino)2] (Nomiya et al., 2009) have been structurally characterized.

The aim of this work was to determine the structure of the homoleptic complex formed by the lead(II) cation and hinokitiolate anions.

The molecular structure of the title compound consists of the lead(II) ion chelated by two hino- ions (Fig. 1). The lead atom and four oxygen atoms form a distorted square pyramid with Pb—O bond lengths of 2.327 (6), 2.420 (7), 2.422 (7) and 2.479 (9) Å, mean 2.412 Å. The bite angles in the chelate are equal to 64.1 (2) and 67.3 (2)°.

The square pyramidal configuration around metal ion (hemidirected geometry; Shimoni-Livny et al., 1998), is an evidence for the presence of a stereochemically active 6s2 lone electron pair of the lead(II) ion at the apex of this pyramid, like in bis(tropolonato)lead(II) (Lyczko et al., 2007) and bis(β-diketonato)lead(II) complexes (Malik et al., 1999; Harrowfield et al., 2004; Lyczko et al., 2006;).

The crystal structure of the studied compound consists of chains parallel to the c axis, formed by the Pb(hino)2 molecules situated around the twofold screw axis. The coordination sphere of the lead(II) ion can be completed by three additional bridging oxygen atoms from the adjacent ligands of two neighbouring Pb(hino)2 molecules (Fig. 2). These three Pb···O contacts, one rather short, 2.625 (7), and two more distant, 3.016 (8) and 3.064 (8) Å, are much longer than the Pb—O bonds in the chelate, but shorter than the sum of van der Waals radii of lead and oxygen (3.44 Å; Bondi, 1964), which points out to weak interactions. The additional Pb···O distances in the Pb(hino)2 structure lead to a formal increase of the coordination number of the lead(II) ion from four to seven.

A similar crystal structure with a bit longer additional Pb···O contacts at 3.013 (5), 3.159 (6) and 3.264 (6) Å was found for bis(acetylacetonato)lead(II), Pb(acac)2 (Lyczko et al., 2006). The crystal packing in the title compound significantly differs from that obtained for bis(tropolonato)lead(II) complex (Lyczko et al., 2007), in which the [Pb(trop)2]2 dimeric units can be observed. Nevertheless the main structural feature, which is the distorted square pyramid, looks very similar in all lead(II) α- or β-diketonates discussed above.

Related literature top

For structural data on hinokitiolato–metal complexes, see: Abrahams et al. (1994); Barret et al. (2000, 2001, 2002); Nomiya et al. (2004, 2009); Ho (2010). For related structures, see: Malik et al. (1999); Harrowfield et al. (2004); Lyczko et al. (2006, 2007). For hemi- and holodirected geometries of lead(II) complexes, see: Shimoni-Livny et al. (1998). For the van der Waals radii of lead and oxygen, see: Bondi (1964).

Experimental top

Lead(II) acetate trihydrate (0.188 g, 0.496 mmol) was dissolved in water (1.5 ml). A methanol solution (1.0 ml) of hinokitiol (0.171 g, 1.041 mmol) was added to the aqueous solution and the precipitation of the title compound took place. The bis(hinokitiolato)lead(II) compound was filtrated off and washed with methanol and acetone. By slow diffusion of n-hexane into a dichloromethane solution of the studied complex dark yellow crystals were obtained. Elemental analysis calculated for C20H22O4Pb: C 45.02, H 4.16%; found: C 44.86, H 4.15%. IR (KBr): 3035 (vw), 2959 (m), 2928 (vw), 2867 (vw), 1587 (s), 1497 (s), 1449 (w), 1442 (versus), 1383 (vw), 1364 (s), 296 (vw), 1239 (m), 1187 (vw), 960 (w), 924 (vw), 910 (vw), 883 (vw), 805 (w), 773 (vw), 756 (vw), 734 (w), 667 (vw), 641 (vw), 523 (vw), 494 (w), 416 (vw) cm-1.

Refinement top

H atoms were placed in calculated positions with C—H = 0.96 (methyl), 0.98 (methine) or 0.93 Å (aromatic) and were refined isotropic using a riding model with Uiso(H) = 1.5 Ueq(C) for methyl H atoms and Uiso(H) = 1.2 Ueq(C) for the rest H atoms. The structure of studied complex fits very well to the collected data. However, the absolute structure could not be determined because Friedel pairs were not measured and in fact the obtained Flack parameter has no physical sense. The structure was treated with two independent rotational disorders originating from two different isopropyl groups. For the first C3H7 group two-site disorder model consisting of two sets of atoms: C9A, C10A and C9B, C10B with site occupancy factors of 0.69 (4) and 0.31 (4), respectively was refined. The similar model containing C19A, C20A and C19B, C20B atoms with sof of 0.60 (6) and 0.40 (6), respectively was found for the second C3H7 group. C8 and C18 are shared atoms for both components of the disorder in the respective isopropyl groups. Rigid bonds and equal ADPs restraints in the isopropyl parts were employed in the refinement process.

Structure description top

Hinokitiol (2-hydroxy-4-isopropyl-2,4,6-cycloheptatrien-1-one), also called β-thujaplicin, abbreviated as Hhino, is a derivative of tropolone (Htrop) with isopropyl group in the position 4 of the aromatic seven-membered carbon ring. The hinokitiolate (hino-) anion, like the tropolonate (trop-) anion, is a bidentate oxygen donor ligand, which forms five-membered ring upon complexation to metal ions.

The structural data on metal complexes with hinokitiol are limited to only several examples. There are a few structures of homoleptic hinokitiolato-metal complexes such as [Cu(hino)2] (two forms, cis and trans, have been structurally characterized; Barret et al., 2002), [Pd(hino)2], [Sb(hino)3], [Zr(hino)4] (Nomiya et al., 2009), [In(hino)3] (Abrahams et al., 1994) and [Al(hino)3] (Nomiya et al., 2004). Moreover, some dimeric species, e.g. [Ag(hino)]2, [M(hino)2(EtOH)]2 (M = Co, Zn, Ni, Mg) (Nomiya et al., 2004, 2009; Barret et al., 2001), [Mn(hino)2(MeOH)]2 and [Bi(hino)3(EtOH)]2 (Nomiya et al., 2009), and one trimeric [Cu(hino)2]3 (Ho, 2010) have been reported. A small number of hinokitiolato-metal complexes with mixed ligands, e.g., [SnX2(hino)2] (X = F, Cl) (Barret et al., 2000) and [MoO2(hino)2] (Nomiya et al., 2009) have been structurally characterized.

The aim of this work was to determine the structure of the homoleptic complex formed by the lead(II) cation and hinokitiolate anions.

The molecular structure of the title compound consists of the lead(II) ion chelated by two hino- ions (Fig. 1). The lead atom and four oxygen atoms form a distorted square pyramid with Pb—O bond lengths of 2.327 (6), 2.420 (7), 2.422 (7) and 2.479 (9) Å, mean 2.412 Å. The bite angles in the chelate are equal to 64.1 (2) and 67.3 (2)°.

The square pyramidal configuration around metal ion (hemidirected geometry; Shimoni-Livny et al., 1998), is an evidence for the presence of a stereochemically active 6s2 lone electron pair of the lead(II) ion at the apex of this pyramid, like in bis(tropolonato)lead(II) (Lyczko et al., 2007) and bis(β-diketonato)lead(II) complexes (Malik et al., 1999; Harrowfield et al., 2004; Lyczko et al., 2006;).

The crystal structure of the studied compound consists of chains parallel to the c axis, formed by the Pb(hino)2 molecules situated around the twofold screw axis. The coordination sphere of the lead(II) ion can be completed by three additional bridging oxygen atoms from the adjacent ligands of two neighbouring Pb(hino)2 molecules (Fig. 2). These three Pb···O contacts, one rather short, 2.625 (7), and two more distant, 3.016 (8) and 3.064 (8) Å, are much longer than the Pb—O bonds in the chelate, but shorter than the sum of van der Waals radii of lead and oxygen (3.44 Å; Bondi, 1964), which points out to weak interactions. The additional Pb···O distances in the Pb(hino)2 structure lead to a formal increase of the coordination number of the lead(II) ion from four to seven.

A similar crystal structure with a bit longer additional Pb···O contacts at 3.013 (5), 3.159 (6) and 3.264 (6) Å was found for bis(acetylacetonato)lead(II), Pb(acac)2 (Lyczko et al., 2006). The crystal packing in the title compound significantly differs from that obtained for bis(tropolonato)lead(II) complex (Lyczko et al., 2007), in which the [Pb(trop)2]2 dimeric units can be observed. Nevertheless the main structural feature, which is the distorted square pyramid, looks very similar in all lead(II) α- or β-diketonates discussed above.

For structural data on hinokitiolato–metal complexes, see: Abrahams et al. (1994); Barret et al. (2000, 2001, 2002); Nomiya et al. (2004, 2009); Ho (2010). For related structures, see: Malik et al. (1999); Harrowfield et al. (2004); Lyczko et al. (2006, 2007). For hemi- and holodirected geometries of lead(II) complexes, see: Shimoni-Livny et al. (1998). For the van der Waals radii of lead and oxygen, see: Bondi (1964).

Computing details top

Data collection: KM-4 Software (Kuma, 1996); cell refinement: KM-4 Software (Kuma, 1996); data reduction: DATAPROC (Kuma, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with disordered methyl C atoms of isopropyl groups. Displacement ellipsoids of the non-hydrogen atoms are drawn at the 30% probability level.
[Figure 2] Fig. 2. A fragment of the crystal structure of Pb(hino)2. The additional weak Pb···O contacts shown with dashed line. [Symmetry codes: (i) -x + 1, -y + 1, z + 1/2; (ii) -x + 1, -y + 1, z - 1/2].
catena-Poly[(µ3-2-hydroxy-4-isopropylcyclohepta-2,4,6-trien-1-onato)(µ2-2-hydroxy-4-isopropylcyclohepta-2,4,6-trien-1-onato)lead(II)] top
Crystal data top
[Pb(C10H11O2)2]F(000) = 1024
Mr = 533.57Dx = 1.720 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 25 reflections
a = 33.780 (7) Åθ = 6–15°
b = 8.2802 (17) ŵ = 8.21 mm1
c = 7.3661 (15) ÅT = 293 K
V = 2060.3 (7) Å3Plate, dark yellow
Z = 40.35 × 0.05 × 0.03 mm
Data collection top
Kuma KM-4 four-circle
diffractometer
1969 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.093
Graphite monochromatorθmax = 30.0°, θmin = 1.2°
profile data from ω/2θ scanh = 045
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2000)
k = 111
Tmin = 0.527, Tmax = 0.789l = 010
3452 measured reflections3 standard reflections every 200 reflections
3063 independent reflections intensity decay: 1.1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.093 w = 1/[σ2(Fo2) + (0.0528P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
3063 reflectionsΔρmax = 1.38 e Å3
216 parametersΔρmin = 2.11 e Å3
13 restraintsAbsolute structure: 0 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.004 (18)
Crystal data top
[Pb(C10H11O2)2]V = 2060.3 (7) Å3
Mr = 533.57Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 33.780 (7) ŵ = 8.21 mm1
b = 8.2802 (17) ÅT = 293 K
c = 7.3661 (15) Å0.35 × 0.05 × 0.03 mm
Data collection top
Kuma KM-4 four-circle
diffractometer
1969 reflections with I > 2σ(I)
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2000)
Rint = 0.093
Tmin = 0.527, Tmax = 0.7893 standard reflections every 200 reflections
3452 measured reflections intensity decay: 1.1%
3063 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.093Δρmax = 1.38 e Å3
S = 1.06Δρmin = 2.11 e Å3
3063 reflectionsAbsolute structure: 0 Friedel pairs
216 parametersAbsolute structure parameter: 0.004 (18)
13 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pb10.481976 (9)0.57161 (3)0.75652 (10)0.03247 (9)
O10.4460 (2)0.4808 (9)0.4911 (10)0.0418 (16)
O110.4841 (2)0.3176 (7)0.8915 (10)0.0380 (15)
O120.5278 (2)0.3903 (9)0.6075 (9)0.0383 (18)
C60.3480 (4)0.4735 (14)0.285 (2)0.051 (3)
H60.34220.46910.16210.061*
C70.3888 (4)0.4763 (13)0.3168 (15)0.047 (3)
H70.40500.46960.21490.056*
C10.4082 (4)0.4881 (11)0.4871 (13)0.037 (2)
C20.3877 (4)0.5141 (14)0.6634 (14)0.041 (3)
C120.5365 (3)0.2592 (10)0.6953 (14)0.029 (2)
C110.5116 (3)0.2171 (12)0.8453 (13)0.034 (2)
C30.3461 (3)0.5041 (16)0.6895 (17)0.050 (3)
H30.33930.51130.81160.060*
C50.3149 (4)0.4757 (16)0.388 (2)0.062 (4)
H50.29090.46950.32690.075*
C40.3133 (4)0.486 (2)0.581 (2)0.065 (4)
O20.4095 (3)0.5386 (11)0.7952 (9)0.054 (2)
C170.5161 (4)0.0757 (11)0.9515 (17)0.047 (3)
H270.49750.06391.04370.057*
C140.5868 (4)0.0264 (15)0.6776 (18)0.049 (3)
C130.5692 (3)0.1717 (12)0.6255 (14)0.038 (2)
H230.58120.22050.52600.045*
C150.5738 (4)0.0695 (14)0.819 (2)0.060 (4)
H250.58800.16480.83530.072*
C180.6213 (5)0.0337 (18)0.559 (2)0.082 (4)
H180.63430.12020.62750.099*
C160.5434 (5)0.0469 (13)0.941 (2)0.066 (4)
H260.54100.12661.02910.079*
C80.2724 (4)0.483 (2)0.668 (2)0.087 (4)
H80.25340.48710.56790.104*
C9A0.2598 (7)0.613 (3)0.800 (4)0.087 (4)0.69 (4)
H9A0.26230.71680.74260.130*0.69 (4)
H9B0.27640.60940.90550.130*0.69 (4)
H9C0.23270.59590.83460.130*0.69 (4)
C10A0.2694 (7)0.314 (2)0.747 (5)0.087 (4)0.69 (4)
H10A0.27740.23670.65640.130*0.69 (4)
H10B0.24250.29260.78180.130*0.69 (4)
H10C0.28640.30500.85070.130*0.69 (4)
C9B0.2709 (15)0.656 (4)0.742 (9)0.087 (4)0.31 (4)
H9D0.28190.72870.65320.130*0.31 (4)
H9E0.28610.66280.85180.130*0.31 (4)
H9F0.24400.68570.76620.130*0.31 (4)
C10B0.2558 (15)0.367 (6)0.810 (6)0.087 (4)0.31 (4)
H10D0.22870.39430.83540.130*0.31 (4)
H10E0.27110.37440.91930.130*0.31 (4)
H10F0.25700.25830.76410.130*0.31 (4)
C19A0.6081 (9)0.107 (5)0.383 (4)0.082 (4)0.60 (6)
H19A0.58880.18930.40690.123*0.60 (6)
H19B0.63050.15310.32220.123*0.60 (6)
H19C0.59650.02450.30820.123*0.60 (6)
C20A0.6523 (9)0.101 (3)0.534 (6)0.082 (4)0.60 (6)
H20A0.65950.14350.65090.123*0.60 (6)
H20B0.64140.18510.46050.123*0.60 (6)
H20C0.67540.05680.47630.123*0.60 (6)
C19B0.6116 (14)0.039 (8)0.356 (4)0.082 (4)0.40 (6)
H19D0.58660.09220.33900.123*0.40 (6)
H19E0.63190.09750.29340.123*0.40 (6)
H19F0.61010.06890.30980.123*0.40 (6)
C20B0.6584 (9)0.057 (6)0.603 (8)0.082 (4)0.40 (6)
H20D0.66320.05230.73100.123*0.40 (6)
H20E0.65550.16760.56600.123*0.40 (6)
H20F0.68020.00930.53910.123*0.40 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pb10.04021 (16)0.03651 (14)0.02070 (12)0.00435 (15)0.0009 (6)0.0007 (4)
O10.044 (4)0.055 (4)0.026 (3)0.003 (4)0.001 (3)0.008 (3)
O110.046 (4)0.035 (3)0.033 (3)0.003 (3)0.005 (3)0.008 (3)
O120.058 (5)0.042 (4)0.016 (3)0.013 (3)0.004 (3)0.008 (3)
C60.069 (7)0.072 (6)0.013 (9)0.003 (5)0.007 (5)0.001 (5)
C70.069 (8)0.049 (5)0.023 (5)0.003 (5)0.007 (5)0.002 (4)
C10.055 (6)0.030 (4)0.027 (5)0.003 (5)0.004 (5)0.001 (4)
C20.052 (7)0.049 (6)0.021 (5)0.002 (5)0.007 (5)0.000 (4)
C120.037 (6)0.019 (4)0.033 (4)0.001 (4)0.004 (4)0.003 (3)
C110.052 (7)0.028 (4)0.022 (4)0.011 (4)0.001 (4)0.001 (4)
C30.039 (6)0.076 (8)0.035 (5)0.005 (6)0.006 (5)0.009 (6)
C50.054 (8)0.063 (8)0.070 (10)0.003 (6)0.030 (8)0.006 (7)
C40.059 (9)0.079 (9)0.057 (9)0.006 (7)0.007 (7)0.012 (8)
O20.049 (4)0.096 (6)0.017 (6)0.004 (4)0.001 (3)0.012 (4)
C170.073 (8)0.037 (5)0.032 (5)0.010 (6)0.001 (5)0.005 (4)
C140.060 (8)0.038 (6)0.050 (7)0.013 (6)0.009 (6)0.003 (5)
C130.050 (6)0.040 (5)0.023 (4)0.005 (4)0.001 (4)0.006 (4)
C150.069 (7)0.038 (5)0.072 (11)0.013 (6)0.004 (7)0.014 (6)
C180.070 (7)0.078 (8)0.098 (10)0.019 (6)0.023 (7)0.003 (7)
C160.115 (13)0.035 (6)0.047 (7)0.004 (6)0.018 (8)0.014 (5)
C80.042 (6)0.142 (11)0.077 (10)0.005 (6)0.002 (6)0.005 (9)
C9A0.042 (6)0.142 (11)0.077 (10)0.005 (6)0.002 (6)0.005 (9)
C10A0.042 (6)0.142 (11)0.077 (10)0.005 (6)0.002 (6)0.005 (9)
C9B0.042 (6)0.142 (11)0.077 (10)0.005 (6)0.002 (6)0.005 (9)
C10B0.042 (6)0.142 (11)0.077 (10)0.005 (6)0.002 (6)0.005 (9)
C19A0.070 (7)0.078 (8)0.098 (10)0.019 (6)0.023 (7)0.003 (7)
C20A0.070 (7)0.078 (8)0.098 (10)0.019 (6)0.023 (7)0.003 (7)
C19B0.070 (7)0.078 (8)0.098 (10)0.019 (6)0.023 (7)0.003 (7)
C20B0.070 (7)0.078 (8)0.098 (10)0.019 (6)0.023 (7)0.003 (7)
Geometric parameters (Å, º) top
Pb1—O112.327 (6)C18—C20B1.495 (18)
Pb1—O122.420 (7)C18—C19A1.496 (18)
Pb1—O12.422 (7)C18—C19B1.529 (19)
Pb1—O22.479 (9)C18—C20A1.539 (17)
Pb1—O12i2.625 (7)C18—H180.9800
Pb1—O1i3.016 (8)C16—H260.9300
Pb1—O11ii3.064 (8)C8—C9A1.509 (16)
O1—C11.278 (14)C8—C10A1.518 (17)
O11—C111.293 (12)C8—C10B1.526 (19)
O12—C121.297 (11)C8—C9B1.534 (19)
O12—Pb1ii2.626 (7)C8—H80.9800
C6—C51.35 (2)C9A—H9A0.9600
C6—C71.398 (17)C9A—H9B0.9600
C6—H60.9300C9A—H9C0.9600
C7—C11.419 (15)C10A—H10A0.9600
C7—H70.9300C10A—H10B0.9600
C1—C21.488 (15)C10A—H10C0.9600
C2—O21.237 (13)C9B—H9D0.9600
C2—C31.419 (17)C9B—H9E0.9600
C12—C131.418 (14)C9B—H9F0.9600
C12—C111.432 (13)C10B—H10D0.9600
C11—C171.416 (14)C10B—H10E0.9600
C3—C41.372 (18)C10B—H10F0.9600
C3—H30.9300C19A—H19A0.9600
C5—C41.43 (2)C19A—H19B0.9600
C5—H50.9300C19A—H19C0.9600
C4—C81.52 (2)C20A—H20A0.9600
C17—C161.375 (17)C20A—H20B0.9600
C17—H270.9300C20A—H20C0.9600
C14—C151.384 (17)C19B—H19D0.9600
C14—C131.396 (15)C19B—H19E0.9600
C14—C181.538 (19)C19B—H19F0.9600
C13—H230.9300C20B—H20D0.9600
C15—C161.37 (2)C20B—H20E0.9600
C15—H250.9300C20B—H20F0.9600
O11—Pb1—O1267.3 (2)C14—C18—H18106.5
O11—Pb1—O194.6 (3)C20A—C18—H18106.5
O12—Pb1—O176.2 (3)C15—C16—C17129.7 (12)
O11—Pb1—O283.2 (3)C15—C16—H26115.1
O12—Pb1—O2128.0 (3)C17—C16—H26115.1
O1—Pb1—O264.1 (2)C9A—C8—C10A113.4 (15)
O11—Pb1—O12i72.0 (2)C9A—C8—C4120.7 (16)
O12—Pb1—O12i126.99 (19)C10A—C8—C4103.7 (15)
O1—Pb1—O12i140.3 (3)C9A—C8—C10B85 (2)
O2—Pb1—O12i77.0 (2)C4—C8—C10B129 (2)
C1—O1—Pb1120.3 (6)C10A—C8—C9B137 (3)
C11—O11—Pb1119.4 (6)C4—C8—C9B99 (2)
C12—O12—Pb1115.9 (6)C10B—C8—C9B109.8 (18)
C12—O12—Pb1ii128.3 (6)C9A—C8—H8106.0
Pb1—O12—Pb1ii107.0 (3)C10A—C8—H8106.0
C5—C6—C7136.4 (13)C4—C8—H8106.0
C5—C6—H6111.8C10B—C8—H8107.3
C7—C6—H6111.8C9B—C8—H8102.3
C6—C7—C1127.1 (12)C8—C9A—H9A109.5
C6—C7—H7116.5C8—C9A—H9B109.5
C1—C7—H7116.5H9A—C9A—H9B109.5
O1—C1—C7118.5 (10)C8—C9A—H9C109.5
O1—C1—C2117.0 (9)H9A—C9A—H9C109.5
C7—C1—C2124.5 (11)H9B—C9A—H9C109.5
O2—C2—C3119.6 (11)C8—C10A—H10A109.5
O2—C2—C1115.5 (10)C8—C10A—H10B109.5
C3—C2—C1124.9 (11)H10A—C10A—H10B109.5
O12—C12—C13115.0 (9)C8—C10A—H10C109.5
O12—C12—C11117.1 (9)H10A—C10A—H10C109.5
C13—C12—C11127.8 (9)H10B—C10A—H10C109.5
O11—C11—C17117.7 (9)C8—C9B—H9D109.5
O11—C11—C12117.9 (9)C8—C9B—H9E109.5
C17—C11—C12124.3 (10)H9D—C9B—H9E109.5
C4—C3—C2136.5 (12)C8—C9B—H9F109.5
C4—C3—H3111.7H9D—C9B—H9F109.5
C2—C3—H3111.7H9E—C9B—H9F109.5
C6—C5—C4126.2 (13)C8—C10B—H10D109.5
C6—C5—H5116.9C8—C10B—H10E109.5
C4—C5—H5116.9H10D—C10B—H10E109.5
C3—C4—C5123.7 (15)C8—C10B—H10F109.5
C3—C4—C8119.3 (14)H10D—C10B—H10F109.5
C5—C4—C8116.9 (14)H10E—C10B—H10F109.5
C2—O2—Pb1121.1 (7)C18—C19A—H19A109.5
C16—C17—C11130.6 (12)C18—C19A—H19B109.5
C16—C17—H27114.7H19A—C19A—H19B109.5
C11—C17—H27114.7C18—C19A—H19C109.5
C15—C14—C13124.5 (12)H19A—C19A—H19C109.5
C15—C14—C18118.9 (11)H19B—C19A—H19C109.5
C13—C14—C18116.5 (12)C18—C20A—H20A109.5
C14—C13—C12132.3 (10)C18—C20A—H20B109.5
C14—C13—H23113.8H20A—C20A—H20B109.5
C12—C13—H23113.8C18—C20A—H20C109.5
C16—C15—C14130.6 (11)H20A—C20A—H20C109.5
C16—C15—H25114.7H20B—C20A—H20C109.5
C14—C15—H25114.7C18—C19B—H19D109.5
C20B—C18—C19A130 (2)C18—C19B—H19E109.5
C20B—C18—C19B113.9 (17)H19D—C19B—H19E109.5
C20B—C18—C14110 (2)C18—C19B—H19F109.5
C19A—C18—C14113.4 (16)H19D—C19B—H19F109.5
C19B—C18—C14114 (2)H19E—C19B—H19F109.5
C19A—C18—C20A113.1 (15)C18—C20B—H20D109.5
C19B—C18—C20A93 (2)C18—C20B—H20E109.5
C14—C18—C20A110.4 (15)H20D—C20B—H20E109.5
C20B—C18—H1883.2C18—C20B—H20F109.5
C19A—C18—H18106.5H20D—C20B—H20F109.5
C19B—C18—H18125.3H20E—C20B—H20F109.5
O11—Pb1—O1—C192.9 (8)C7—C6—C5—C42 (3)
O12—Pb1—O1—C1158.1 (8)C2—C3—C4—C51 (3)
O2—Pb1—O1—C112.7 (7)C2—C3—C4—C8179.4 (16)
O12i—Pb1—O1—C125.7 (10)C6—C5—C4—C33 (3)
O12—Pb1—O11—C1111.0 (7)C6—C5—C4—C8178.6 (15)
O1—Pb1—O11—C1184.0 (7)C3—C2—O2—Pb1176.8 (9)
O2—Pb1—O11—C11147.2 (7)C1—C2—O2—Pb16.5 (14)
O12i—Pb1—O11—C11134.3 (7)O11—Pb1—O2—C2108.3 (10)
O11—Pb1—O12—C1213.3 (7)O12—Pb1—O2—C254.3 (10)
O1—Pb1—O12—C12114.3 (7)O1—Pb1—O2—C29.8 (9)
O2—Pb1—O12—C1273.9 (8)O12i—Pb1—O2—C2178.6 (10)
O12i—Pb1—O12—C1229.5 (7)O11—C11—C17—C16176.5 (13)
O11—Pb1—O12—Pb1ii137.0 (4)C12—C11—C17—C160.7 (19)
O1—Pb1—O12—Pb1ii36.0 (3)C15—C14—C13—C121 (2)
O2—Pb1—O12—Pb1ii76.4 (4)C18—C14—C13—C12177.0 (12)
O12i—Pb1—O12—Pb1ii179.8 (3)O12—C12—C13—C14178.3 (12)
C5—C6—C7—C12 (2)C11—C12—C13—C141 (2)
Pb1—O1—C1—C7163.2 (7)C13—C14—C15—C162 (2)
Pb1—O1—C1—C214.9 (12)C18—C14—C15—C16178.0 (16)
C6—C7—C1—O1176.5 (11)C15—C14—C18—C20B106 (3)
C6—C7—C1—C25.5 (19)C13—C14—C18—C20B78 (3)
O1—C1—C2—O25.4 (16)C15—C14—C18—C19A100 (2)
C7—C1—C2—O2172.6 (11)C13—C14—C18—C19A76 (2)
O1—C1—C2—C3171.2 (11)C15—C14—C18—C19B125 (3)
C7—C1—C2—C310.9 (18)C13—C14—C18—C19B51 (3)
Pb1—O12—C12—C13167.3 (7)C15—C14—C18—C20A132 (2)
Pb1ii—O12—C12—C1349.7 (13)C13—C14—C18—C20A52 (3)
Pb1—O12—C12—C1114.6 (11)C14—C15—C16—C173 (3)
Pb1ii—O12—C12—C11128.3 (8)C11—C17—C16—C152 (3)
Pb1—O11—C11—C17169.3 (7)C3—C4—C8—C9A51 (2)
Pb1—O11—C11—C128.1 (11)C5—C4—C8—C9A127 (2)
O12—C12—C11—O115.0 (13)C3—C4—C8—C10A77 (2)
C13—C12—C11—O11177.3 (10)C5—C4—C8—C10A104 (2)
O12—C12—C11—C17177.9 (10)C3—C4—C8—C10B59 (4)
C13—C12—C11—C170.1 (16)C5—C4—C8—C10B122 (3)
O2—C2—C3—C4176.4 (17)C3—C4—C8—C9B66 (3)
C1—C2—C3—C47 (3)C5—C4—C8—C9B113 (3)
Symmetry codes: (i) x+1, y+1, z+1/2; (ii) x+1, y+1, z1/2.

Experimental details

Crystal data
Chemical formula[Pb(C10H11O2)2]
Mr533.57
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)293
a, b, c (Å)33.780 (7), 8.2802 (17), 7.3661 (15)
V3)2060.3 (7)
Z4
Radiation typeMo Kα
µ (mm1)8.21
Crystal size (mm)0.35 × 0.05 × 0.03
Data collection
DiffractometerKuma KM-4 four-circle
Absorption correctionAnalytical
(CrysAlis RED; Oxford Diffraction, 2000)
Tmin, Tmax0.527, 0.789
No. of measured, independent and
observed [I > 2σ(I)] reflections
3452, 3063, 1969
Rint0.093
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.093, 1.06
No. of reflections3063
No. of parameters216
No. of restraints13
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.38, 2.11
Absolute structure0 Friedel pairs
Absolute structure parameter0.004 (18)

Computer programs: KM-4 Software (Kuma, 1996), DATAPROC (Kuma, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Pb1—O112.327 (6)Pb1—O12i2.625 (7)
Pb1—O122.420 (7)Pb1—O1i3.016 (8)
Pb1—O12.422 (7)Pb1—O11ii3.064 (8)
Pb1—O22.479 (9)
O11—Pb1—O1267.3 (2)O1—Pb1—O264.1 (2)
Symmetry codes: (i) x+1, y+1, z+1/2; (ii) x+1, y+1, z1/2.
 

Acknowledgements

The authors thank the Institute of Nuclear Chemistry and Technology for financial support.

References

First citationAbrahams, I., Choi, N., Hendrick, K., Joyce, H., Matthews, R. W. & McPartlin, M. (1994). Polyhedron, 13, 513–516.  CSD CrossRef CAS Web of Science Google Scholar
First citationBarret, M. C., Mahon, M. F., Molloy, K. C., Steed, J. W. & Wright, P. (2001). Inorg. Chem. 40, 4384–4388.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBarret, M. C., Mahon, M. F., Molloy, K. C. & Wright, P. (2000). Main Group Met. Chem. 23, 663–671.  CrossRef CAS Google Scholar
First citationBarret, M. C., Mahon, M. F., Molloy, K. C., Wright, P. & Creeth, J. E. (2002). Polyhedron, 21, 1761–1766.  Web of Science CSD CrossRef CAS Google Scholar
First citationBondi, A. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science Google Scholar
First citationHarrowfield, J. M., Maghaminia, S. & Soudi, A. A. (2004). Inorg. Chem. 43, 1810–1812.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHo, D. M. (2010). Acta Cryst. C66, m145–m148.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKuma (1996). KM-4 Software. Kuma Diffraction Ltd, Wrocław, Poland.  Google Scholar
First citationKuma (2001). DATAPROC. Kuma Diffraction Ltd, Wrocław, Poland.  Google Scholar
First citationLyczko, K., Narbutt, J., Paluchowska, B., Maurin, J. K. & Persson, I. (2006). Dalton Trans. pp. 3972–3976.  Web of Science CSD CrossRef Google Scholar
First citationLyczko, K., Starosta, W. & Persson, I. (2007). Inorg. Chem. 46, 4402–4410.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMalik, M. A., O'Brien, P., Motevalli, M., Jones, A. C. & Leedham, T. (1999). Polyhedron, 18, 1641–1646.  Web of Science CSD CrossRef CAS Google Scholar
First citationNomiya, K., Onodera, K., Tsukagoshi, K., Shimada, K., Yoshizawa, A., Itoyanagi, T., Sugie, A., Tsuruta, S., Sato, R. & Kasuga, N. Ch. (2009). Inorg. Chim. Acta, 362, 43–55.  Web of Science CSD CrossRef CAS Google Scholar
First citationNomiya, K., Yoshizawa, A., Tsukagoshi, K., Kasuga, N. C., Hirakawa, S. & Watanabe, J. (2004). J. Inorg. Biochem. 98, 46–60.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2000). CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShimoni-Livny, L., Glusker, J. P. & Bock, Ch. W. (1998). Inorg. Chem. 37, 1853–1867.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds