metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[{μ-η5:η5-1-[2-(di­methyl­amino)­ethyl-κN]cyclo­penta­dien­yl}-lithium(I)-(μ-1,1,3,3-tetra-tert-butyl­triphosphane-κ3P2:P1,P3)lithium(I)]

aChemical Faculty, Gdansk University of Technology, G. Narutowicza 11/12, Gdansk PL-80233, Poland
*Correspondence e-mail: jaroslaw.chojnacki@chem.pg.gda.pl

(Received 21 September 2010; accepted 5 October 2010; online 13 October 2010)

The title compound, [Li2(C9H14N)(C16H36P3)]n, is a by-product of the reaction of [Cp(C5H4CH2CH2NMe2)ZrCl2]n with tBu2P–P(SiMe3)Li in toluene. It is a coordination polymer composed of infinite chains running along [010]. One Li(I) atom is chelated by the cyclo­penta­dienyl ring and and the N atom of the scorpionate ligand and a P atom, whereas the other Li(I) atom is coordinated by the backside of the cyclo­penta­dienyl ring and two P atoms. Both Li(I) atoms adopt a distorted trigonal coordination. The structure was determined from a twinned crystal, but only the data from the main twin component was used. The fraction of components in the crystal was 0.555:0.445 and the twin matrix corresponds to twofold rotation about the c axis ([\overline{1}]00/0[\overline{1}]0/001).

Related literature

For the synthesis, see: Chojnacki et al. (2007[Chojnacki, J., Grubba, R., Kugiel-Rachwalska, B. & Pikies, J. (2007). Polyhedron, 26, 1579-1582.]); Kovacs et al. (1996b[Kovacs, I., Matern, E. & Fritz, G. Z. (1996b). Z. Anorg. Allg. Chem. 622, 935-941.]). For related structures, see: Kovacs et al. (1996a[Kovacs, I., Krautscheid, H., Matern, E., Sattler, E., Fritz, G., Hönle, W., Borrmann, H. & von Schnering, H. G. (1996a). Z. Anorg. Allg. Chem. 622, 1564-1572.]); Kunz et al. (2000[Kunz, K., Pflug, J., Bertuleit, A., Frohlich, R., Wegelius, E., Erker, G. & Wurthwein, E.-U. (2000). Organometallics, 19, 4208-4216.]).

[Scheme 1]

Experimental

Crystal data
  • [Li2(C9H14N)(C16H36P3)]

  • Mr = 471.45

  • Monoclinic, P 21 /c

  • a = 8.9063 (6) Å

  • b = 18.8522 (8) Å

  • c = 19.3934 (17) Å

  • β = 115.314 (6)°

  • V = 2943.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 120 K

  • 0.44 × 0.23 × 0.20 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire2 detector

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.734, Tmax = 1

  • 14505 measured reflections

  • 4818 independent reflections

  • 3492 reflections with I > 2σ(I)

  • Rint = 0.093

Refinement
  • R[F2 > 2σ(F2)] = 0.095

  • wR(F2) = 0.258

  • S = 1.13

  • 4818 reflections

  • 294 parameters

  • H-atom parameters constrained

  • Δρmax = 0.72 e Å−3

  • Δρmin = −0.61 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The schematic structure of the linear coordination polymer of (I) is shown in Fig.1. The monomeric unit of the title compound consists of two lithium atoms and two ligands: (tBu2P)2P and C5H4CH2CH2NMe2. Both lithium atoms adopt distorted trigonal geometry. Li1 atom is bonded in a η5-fashion from the one face of C5H4 ring system and is also bonded with two terminal phosphorous atoms P2, P3 from a (tBu2P)2P ligand. Atom Li2 is coordinated by atom P1 from another triphosphane ligand and is η5-coordinated to the other face of the C5H4 ring system, assisted by κN-coordination of the attached dimethylamino substituent. Atoms Li1, P1, P2, P3 form a planar ring (maximum deviation 0.069 Å). The two lithium atoms and C5H4 ring form an "inverse sandwich". The structure of (tBu2P)2P ligand in complex (I) is similar to the one found for [Li(THF)2{η2-(tBu2P)2P}] (Kovacs et al., 1996a) with comparable P–P and P–Li distances. To the best of our knowledge only one example of lithium complex with substituted Cp ligand which exhibits κN and η5-coordination to the same lithium atom is known (Kunz et al., 2000). Li–N distance in complex [{C5H4CH(Ph)NMe2}Li]n (Kunz et al., 2000) and in the title compound are similar [2.227 (5) Å; 2.237 (12) Å].

Related literature top

For the synthesis, see: Chojnacki et al. (2007); Kovacs et al. (1996b). For related structures, see: Kovacs et al. (1996a); Kunz et al. (2000).

Experimental top

The work was carried out using the standard vacuum-nitrogen line and Schlenk techniques. [Cp(C5H4CH2CH2NMe2)ZrCl2]n and tBu2P—P(SiMe3)Li . 3 THF were prepared according to the procedure described in the literature (Chojnacki et al., 2007; Kovacs et al., 1996b). Suspension of 0.105 g (0.289 mmole) [Cp(C5H4CH2CH2NMe2)ZrCl2]n in 2 ml toluene was added dropwise into solution of 0.264 g (0.559 mmole) tBu2P—P(SiMe3)Li.3THF in 2 ml of toluene at 233 K. The mixture immediately turned red. Then the volume was reduced to about 2 ml and the concentrate was stored for a few weeks at room temperature. After this time the solution yielded colourless crystals of (I).

Refinement top

The structure turned out to be a rotational twin, only the data from the main twin component was used. The fraction of components in crystal was 0.555 / 0.444. The twin matrix corresponds to 2-fold rotation about c axis (-1 0 0 / 0 -1 0 / 0 0 1).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Coordination polymer of the title compound.
catena-Poly[{µ-η5:η5-1-[2-(dimethylamino)ethyl- κN]cyclopentadienyl}-lithium(I)-(µ-1,1,3,3-tetra-tert- butyltriphosphane-κ3P2:P1,P3)lithium(I)] top
Crystal data top
[Li2(C9H14N)(C16H36P3)]F(000) = 1032
Mr = 471.45Dx = 1.064 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9383 reflections
a = 8.9063 (6) Åθ = 2.4–32.4°
b = 18.8522 (8) ŵ = 0.21 mm1
c = 19.3934 (17) ÅT = 120 K
β = 115.314 (6)°Block, colourless
V = 2943.5 (3) Å30.44 × 0.23 × 0.2 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire2 (large Be window) detector
4818 independent reflections
Graphite monochromator3492 reflections with I > 2σ(I)
Detector resolution: 8.1883 pixels mm-1Rint = 0.093
ω scansθmax = 25.1°, θmin = 2.5°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
h = 1010
Tmin = 0.734, Tmax = 1k = 2221
14505 measured reflectionsl = 2321
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.095Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.258H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0825P)2 + 14.0784P]
where P = (Fo2 + 2Fc2)/3
4818 reflections(Δ/σ)max = 0.001
294 parametersΔρmax = 0.72 e Å3
0 restraintsΔρmin = 0.61 e Å3
Crystal data top
[Li2(C9H14N)(C16H36P3)]V = 2943.5 (3) Å3
Mr = 471.45Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.9063 (6) ŵ = 0.21 mm1
b = 18.8522 (8) ÅT = 120 K
c = 19.3934 (17) Å0.44 × 0.23 × 0.2 mm
β = 115.314 (6)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire2 (large Be window) detector
4818 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
3492 reflections with I > 2σ(I)
Tmin = 0.734, Tmax = 1Rint = 0.093
14505 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0950 restraints
wR(F2) = 0.258H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0825P)2 + 14.0784P]
where P = (Fo2 + 2Fc2)/3
4818 reflectionsΔρmax = 0.72 e Å3
294 parametersΔρmin = 0.61 e Å3
Special details top

Experimental. Absorption correction: CrysAlisPro, Oxford Diffraction (2009). Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.3565 (2)0.56638 (7)0.24090 (8)0.0290 (4)
P20.51867 (18)0.63068 (7)0.33654 (8)0.0269 (4)
P30.33668 (18)0.64220 (7)0.15340 (8)0.0260 (4)
N10.9399 (6)0.9125 (3)0.2580 (3)0.0349 (12)
Li10.5000 (13)0.7397 (5)0.2529 (6)0.032 (2)
Li20.3071 (13)0.4320 (5)0.2412 (6)0.036 (2)
C10.7050 (7)0.8108 (3)0.2625 (3)0.0319 (13)
C20.5670 (8)0.8291 (3)0.1954 (3)0.0369 (14)
H20.55780.82350.1450.044*
C30.4453 (8)0.8569 (3)0.2148 (4)0.0450 (17)
H30.33840.87270.17990.054*
C40.5056 (9)0.8575 (3)0.2927 (4)0.0460 (17)
H40.44780.87380.3210.055*
C50.6659 (9)0.8301 (3)0.3232 (3)0.0400 (16)
H50.7370.82520.3760.048*
C60.8712 (9)0.7859 (4)0.2700 (5)0.0536 (19)
H6A0.86190.77040.22060.064*
H6B0.90750.74580.30460.064*
C70.9994 (9)0.8457 (4)0.3003 (5)0.0528 (19)
H7A1.02610.85380.35370.063*
H7B1.10050.83120.29690.063*
C81.0617 (9)0.9682 (4)0.2961 (4)0.0498 (17)
H8A1.02491.01190.26870.075*
H8B1.1670.95510.29730.075*
H8C1.07310.9740.34730.075*
C90.9215 (10)0.9045 (4)0.1805 (4)0.0552 (19)
H9A1.02350.88710.18120.083*
H9B0.89520.94960.15510.083*
H9C0.83360.87150.15370.083*
C100.7138 (8)0.5767 (4)0.3918 (4)0.0415 (15)
C110.6889 (11)0.5100 (4)0.4292 (4)0.060 (2)
H11A0.65980.52260.46990.09*
H11B0.78980.48280.44930.09*
H11C0.60120.48220.39210.09*
C120.8439 (10)0.6256 (5)0.4510 (4)0.062 (2)
H12A0.8590.6670.4260.093*
H12B0.94750.60070.47530.093*
H12C0.80640.63940.48870.093*
C130.7840 (9)0.5558 (4)0.3354 (4)0.0536 (19)
H13A0.80410.59770.31250.08*
H13B0.70570.5260.29640.08*
H13C0.88640.53050.36170.08*
C140.4030 (9)0.6415 (4)0.3992 (3)0.0427 (16)
C150.3039 (12)0.5759 (5)0.4005 (5)0.067 (2)
H15A0.22490.56480.34950.1*
H15B0.24630.58510.43160.1*
H15C0.37810.53660.42130.1*
C160.5123 (11)0.6646 (5)0.4799 (4)0.063 (2)
H16A0.58160.70320.47890.094*
H16B0.58070.62550.50760.094*
H16C0.44410.67960.50430.094*
C170.2809 (10)0.7008 (4)0.3627 (4)0.055 (2)
H17A0.20750.68780.31130.082*
H17B0.340.74320.36210.082*
H17C0.21740.7090.39140.082*
C180.4247 (8)0.5971 (3)0.0903 (3)0.0340 (13)
C190.3811 (13)0.5198 (4)0.0759 (5)0.062 (2)
H19A0.2650.51510.04290.093*
H19B0.40510.49640.12350.093*
H19C0.44530.49850.05230.093*
C200.3761 (12)0.6371 (4)0.0141 (4)0.059 (2)
H20A0.41160.68560.02430.089*
H20B0.25780.63550.0150.089*
H20C0.42890.6150.01440.089*
C210.6111 (10)0.6071 (5)0.1337 (4)0.064 (2)
H21A0.63540.65650.14520.096*
H21B0.66490.59070.1030.096*
H21C0.6510.58040.18030.096*
C220.1056 (7)0.6575 (3)0.0937 (3)0.0343 (14)
C230.0350 (9)0.6805 (4)0.1482 (4)0.0488 (17)
H23A0.09280.7220.17530.073*
H23B0.04810.6430.18380.073*
H23C0.08080.69120.12010.073*
C240.0087 (9)0.5933 (4)0.0490 (4)0.055 (2)
H24A0.04510.58120.01050.082*
H24B0.10770.60430.02520.082*
H24C0.02750.55390.0830.082*
C250.0831 (10)0.7205 (4)0.0392 (4)0.0540 (19)
H25A0.11630.70650.00020.081*
H25B0.15050.75960.06740.081*
H25C0.03140.73460.01610.081*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0402 (9)0.0167 (7)0.0282 (8)0.0029 (6)0.0129 (7)0.0010 (5)
P20.0360 (8)0.0175 (7)0.0253 (8)0.0028 (6)0.0113 (6)0.0008 (5)
P30.0339 (8)0.0165 (7)0.0256 (8)0.0011 (6)0.0108 (6)0.0011 (5)
N10.035 (3)0.026 (3)0.047 (3)0.002 (2)0.021 (2)0.003 (2)
Li10.041 (5)0.018 (5)0.040 (6)0.001 (4)0.021 (4)0.001 (4)
Li20.043 (6)0.019 (5)0.049 (6)0.004 (4)0.023 (5)0.002 (4)
C10.036 (3)0.012 (3)0.048 (4)0.000 (2)0.017 (3)0.001 (2)
C20.051 (4)0.027 (3)0.034 (3)0.015 (3)0.018 (3)0.001 (2)
C30.035 (3)0.020 (3)0.072 (5)0.005 (3)0.015 (3)0.012 (3)
C40.059 (4)0.020 (3)0.074 (5)0.008 (3)0.043 (4)0.013 (3)
C50.060 (4)0.025 (3)0.030 (3)0.018 (3)0.015 (3)0.004 (2)
C60.046 (4)0.027 (4)0.094 (6)0.005 (3)0.035 (4)0.004 (3)
C70.035 (4)0.044 (4)0.076 (5)0.001 (3)0.022 (4)0.010 (4)
C80.044 (4)0.040 (4)0.061 (5)0.007 (3)0.018 (3)0.008 (3)
C90.062 (5)0.054 (5)0.059 (5)0.011 (4)0.035 (4)0.008 (3)
C100.043 (4)0.041 (4)0.031 (3)0.006 (3)0.007 (3)0.003 (3)
C110.087 (6)0.038 (4)0.042 (4)0.027 (4)0.016 (4)0.017 (3)
C120.049 (4)0.061 (5)0.049 (5)0.001 (4)0.003 (4)0.012 (4)
C130.044 (4)0.059 (5)0.053 (5)0.016 (3)0.016 (3)0.003 (3)
C140.051 (4)0.053 (4)0.027 (3)0.012 (3)0.018 (3)0.005 (3)
C150.089 (6)0.074 (6)0.061 (5)0.005 (5)0.054 (5)0.011 (4)
C160.081 (6)0.069 (6)0.034 (4)0.026 (4)0.019 (4)0.006 (3)
C170.064 (5)0.062 (5)0.045 (4)0.026 (4)0.029 (4)0.002 (3)
C180.048 (4)0.024 (3)0.032 (3)0.006 (3)0.019 (3)0.000 (2)
C190.108 (7)0.033 (4)0.068 (5)0.007 (4)0.058 (5)0.008 (3)
C200.091 (6)0.053 (5)0.045 (4)0.004 (4)0.040 (4)0.009 (3)
C210.057 (5)0.088 (7)0.054 (5)0.013 (4)0.031 (4)0.003 (4)
C220.033 (3)0.031 (3)0.030 (3)0.005 (2)0.005 (3)0.001 (2)
C230.038 (4)0.052 (4)0.048 (4)0.011 (3)0.010 (3)0.002 (3)
C240.048 (4)0.048 (5)0.048 (4)0.008 (3)0.001 (3)0.006 (3)
C250.058 (4)0.044 (4)0.048 (4)0.015 (3)0.010 (3)0.017 (3)
Geometric parameters (Å, º) top
P1—P32.168 (2)C9—H9C0.96
P1—P22.169 (2)C10—C111.515 (10)
P1—Li22.571 (10)C10—C131.527 (10)
P2—C101.900 (7)C10—C121.540 (10)
P2—C141.910 (7)C11—H11A0.96
P2—Li12.579 (10)C11—H11B0.96
P3—C221.903 (6)C11—H11C0.96
P3—C181.912 (6)C12—H12A0.96
P3—Li12.611 (10)C12—H12B0.96
N1—C91.448 (8)C12—H12C0.96
N1—C81.463 (8)C13—H13A0.96
N1—C71.472 (9)C13—H13B0.96
N1—Li2i2.237 (12)C13—H13C0.96
Li1—C12.208 (11)C14—C171.508 (10)
Li1—C22.238 (11)C14—C161.511 (10)
Li1—C52.286 (11)C14—C151.525 (12)
Li1—C32.314 (11)C15—H15A0.96
Li1—C42.345 (11)C15—H15B0.96
Li2—N1ii2.237 (12)C15—H15C0.96
Li2—C1ii2.287 (11)C16—H16A0.96
Li2—C2ii2.314 (12)C16—H16B0.96
Li2—C5ii2.359 (12)C16—H16C0.96
Li2—C3ii2.447 (12)C17—H17A0.96
Li2—C4ii2.475 (12)C17—H17B0.96
C1—C21.398 (9)C17—H17C0.96
C1—C51.410 (9)C18—C191.503 (10)
C1—C61.500 (9)C18—C211.518 (11)
C1—Li2i2.287 (11)C18—C201.547 (9)
C2—C31.394 (10)C19—H19A0.96
C2—Li2i2.314 (12)C19—H19B0.96
C2—H20.95C19—H19C0.96
C3—C41.370 (10)C20—H20A0.96
C3—Li2i2.447 (12)C20—H20B0.96
C3—H30.95C20—H20C0.96
C4—C51.390 (10)C21—H21A0.96
C4—Li2i2.475 (12)C21—H21B0.96
C4—H40.95C21—H21C0.96
C5—Li2i2.359 (12)C22—C231.506 (9)
C5—H50.9501C22—C241.524 (9)
C6—C71.533 (10)C22—C251.546 (9)
C6—H6A0.97C23—H23A0.96
C6—H6B0.97C23—H23B0.96
C7—H7A0.97C23—H23C0.96
C7—H7B0.97C24—H24A0.96
C8—H8A0.96C24—H24B0.96
C8—H8B0.96C24—H24C0.96
C8—H8C0.96C25—H25A0.96
C9—H9A0.96C25—H25B0.96
C9—H9B0.96C25—H25C0.96
P3—P1—P295.87 (8)C7—C6—H6B109.6
P3—P1—Li2134.0 (2)H6A—C6—H6B108.1
P2—P1—Li2126.9 (2)N1—C7—C6112.6 (6)
C10—P2—C14108.1 (3)N1—C7—H7A109.1
C10—P2—P1107.3 (2)C6—C7—H7A109.1
C14—P2—P1105.1 (2)N1—C7—H7B109.1
C10—P2—Li1125.4 (3)C6—C7—H7B109.1
C14—P2—Li1114.1 (3)H7A—C7—H7B107.8
P1—P2—Li193.8 (2)N1—C8—H8A109.5
C22—P3—C18108.1 (3)N1—C8—H8B109.5
C22—P3—P1106.3 (2)H8A—C8—H8B109.5
C18—P3—P1106.83 (19)N1—C8—H8C109.5
C22—P3—Li1117.3 (3)H8A—C8—H8C109.5
C18—P3—Li1122.3 (3)H8B—C8—H8C109.5
P1—P3—Li193.0 (2)N1—C9—H9A109.5
C9—N1—C8109.2 (5)N1—C9—H9B109.5
C9—N1—C7110.1 (6)H9A—C9—H9B109.5
C8—N1—C7108.6 (5)N1—C9—H9C109.5
C9—N1—Li2i110.5 (5)H9A—C9—H9C109.5
C8—N1—Li2i113.4 (5)H9B—C9—H9C109.5
C7—N1—Li2i104.9 (5)C11—C10—C13108.5 (6)
C1—Li1—C236.6 (3)C11—C10—C12110.9 (6)
C1—Li1—C536.5 (3)C13—C10—C12106.3 (6)
C2—Li1—C559.6 (3)C11—C10—P2115.4 (5)
C1—Li1—C360.0 (3)C13—C10—P2106.9 (4)
C2—Li1—C335.6 (3)C12—C10—P2108.4 (5)
C5—Li1—C358.2 (3)C10—C11—H11A109.5
C1—Li1—C459.8 (3)C10—C11—H11B109.5
C2—Li1—C458.6 (3)H11A—C11—H11B109.5
C5—Li1—C434.9 (3)C10—C11—H11C109.5
C3—Li1—C434.2 (3)H11A—C11—H11C109.5
C1—Li1—P2127.0 (5)H11B—C11—H11C109.5
C2—Li1—P2162.6 (5)C10—C12—H12A109.5
C5—Li1—P2111.6 (4)C10—C12—H12B109.5
C3—Li1—P2155.4 (5)H12A—C12—H12B109.5
C4—Li1—P2124.1 (4)C10—C12—H12C109.5
C1—Li1—P3132.0 (5)H12A—C12—H12C109.5
C2—Li1—P3110.2 (4)H12B—C12—H12C109.5
C5—Li1—P3168.4 (5)C10—C13—H13A109.5
C3—Li1—P3117.5 (4)C10—C13—H13B109.5
C4—Li1—P3146.8 (5)H13A—C13—H13B109.5
P2—Li1—P376.7 (3)C10—C13—H13C109.5
N1ii—Li2—C1ii78.6 (4)H13A—C13—H13C109.5
N1ii—Li2—C2ii96.4 (4)H13B—C13—H13C109.5
C1ii—Li2—C2ii35.4 (3)C17—C14—C16106.8 (6)
N1ii—Li2—C5ii101.1 (4)C17—C14—C15107.5 (7)
C1ii—Li2—C5ii35.3 (3)C16—C14—C15109.7 (6)
C2ii—Li2—C5ii57.5 (3)C17—C14—P2104.9 (4)
N1ii—Li2—C3ii130.1 (5)C16—C14—P2113.9 (5)
C1ii—Li2—C3ii57.0 (3)C15—C14—P2113.5 (5)
C2ii—Li2—C3ii33.9 (3)C14—C15—H15A109.5
C5ii—Li2—C3ii55.4 (3)C14—C15—H15B109.5
N1ii—Li2—C4ii133.2 (5)H15A—C15—H15B109.5
C1ii—Li2—C4ii56.8 (3)C14—C15—H15C109.5
C2ii—Li2—C4ii55.7 (3)H15A—C15—H15C109.5
C5ii—Li2—C4ii33.3 (3)H15B—C15—H15C109.5
C3ii—Li2—C4ii32.3 (3)C14—C16—H16A109.5
N1ii—Li2—P1109.4 (4)C14—C16—H16B109.5
C1ii—Li2—P1171.8 (5)H16A—C16—H16B109.5
C2ii—Li2—P1141.5 (5)C14—C16—H16C109.5
C5ii—Li2—P1138.1 (5)H16A—C16—H16C109.5
C3ii—Li2—P1116.2 (4)H16B—C16—H16C109.5
C4ii—Li2—P1115.0 (4)C14—C17—H17A109.5
C2—C1—C5106.4 (6)C14—C17—H17B109.5
C2—C1—C6127.2 (6)H17A—C17—H17B109.5
C5—C1—C6125.9 (6)C14—C17—H17C109.5
C2—C1—Li172.9 (4)H17A—C17—H17C109.5
C5—C1—Li174.7 (4)H17B—C17—H17C109.5
C6—C1—Li1124.3 (5)C19—C18—C21111.0 (7)
C2—C1—Li2i73.4 (4)C19—C18—C20110.5 (6)
C5—C1—Li2i75.2 (4)C21—C18—C20105.2 (6)
C6—C1—Li2i110.3 (5)C19—C18—P3113.9 (5)
Li1—C1—Li2i125.3 (5)C21—C18—P3103.9 (4)
C3—C2—C1108.4 (6)C20—C18—P3111.8 (4)
C3—C2—Li175.2 (4)C18—C19—H19A109.5
C1—C2—Li170.5 (4)C18—C19—H19B109.5
C3—C2—Li2i78.3 (5)H19A—C19—H19B109.5
C1—C2—Li2i71.2 (4)C18—C19—H19C109.5
Li1—C2—Li2i122.6 (4)H19A—C19—H19C109.5
C3—C2—H2125.8H19B—C19—H19C109.5
C1—C2—H2125.8C18—C20—H20A109.5
Li1—C2—H2120.3C18—C20—H20B109.5
Li2i—C2—H2116.6H20A—C20—H20B109.5
C4—C3—C2108.5 (6)C18—C20—H20C109.5
C4—C3—Li174.1 (4)H20A—C20—H20C109.5
C2—C3—Li169.2 (4)H20B—C20—H20C109.5
C4—C3—Li2i75.0 (5)C18—C21—H21A109.5
C2—C3—Li2i67.8 (4)C18—C21—H21B109.5
Li1—C3—Li2i113.9 (4)H21A—C21—H21B109.5
C4—C3—H3125.7C18—C21—H21C109.5
C2—C3—H3125.7H21A—C21—H21C109.5
Li1—C3—H3122.5H21B—C21—H21C109.5
Li2i—C3—H3123.1C23—C22—C24108.9 (6)
C3—C4—C5108.2 (6)C23—C22—C25106.7 (6)
C3—C4—Li171.7 (4)C24—C22—C25110.2 (5)
C5—C4—Li170.2 (4)C23—C22—P3106.5 (4)
C3—C4—Li2i72.7 (4)C24—C22—P3115.4 (5)
C5—C4—Li2i68.8 (4)C25—C22—P3108.8 (5)
Li1—C4—Li2i111.8 (4)C22—C23—H23A109.5
C3—C4—H4125.9C22—C23—H23B109.5
C5—C4—H4125.9H23A—C23—H23B109.5
Li1—C4—H4123.8C22—C23—H23C109.5
Li2i—C4—H4124.2H23A—C23—H23C109.5
C4—C5—C1108.4 (6)H23B—C23—H23C109.5
C4—C5—Li174.9 (4)C22—C24—H24A109.5
C1—C5—Li168.7 (4)C22—C24—H24B109.5
C4—C5—Li2i77.9 (5)H24A—C24—H24B109.5
C1—C5—Li2i69.5 (4)C22—C24—H24C109.5
Li1—C5—Li2i118.5 (4)H24A—C24—H24C109.5
C4—C5—H5125.8H24B—C24—H24C109.5
C1—C5—H5125.8C22—C25—H25A109.5
Li1—C5—H5122.3C22—C25—H25B109.5
Li2i—C5—H5118.5H25A—C25—H25B109.5
C1—C6—C7110.4 (6)C22—C25—H25C109.5
C1—C6—H6A109.6H25A—C25—H25C109.5
C7—C6—H6A109.6H25B—C25—H25C109.5
C1—C6—H6B109.6
P3—P1—P2—C10122.7 (2)C5—Li1—C3—C436.5 (4)
Li2—P1—P2—C1039.2 (4)P2—Li1—C3—C435.0 (12)
P3—P1—P2—C14122.5 (2)P3—Li1—C3—C4155.9 (6)
Li2—P1—P2—C1475.6 (4)C1—Li1—C3—C238.2 (4)
P3—P1—P2—Li16.3 (2)C5—Li1—C3—C281.0 (4)
Li2—P1—P2—Li1168.2 (4)C4—Li1—C3—C2117.5 (6)
P2—P1—P3—C22125.8 (2)P2—Li1—C3—C2152.5 (12)
Li2—P1—P3—C2274.4 (4)P3—Li1—C3—C286.6 (5)
P2—P1—P3—C18118.9 (2)C1—Li1—C3—Li2i14.2 (5)
Li2—P1—P3—C1840.9 (4)C2—Li1—C3—Li2i52.4 (5)
P2—P1—P3—Li16.2 (2)C5—Li1—C3—Li2i28.6 (5)
Li2—P1—P3—Li1166.0 (4)C4—Li1—C3—Li2i65.1 (5)
C10—P2—Li1—C124.0 (7)P2—Li1—C3—Li2i100.1 (12)
C14—P2—Li1—C1113.2 (5)P3—Li1—C3—Li2i139.0 (5)
P1—P2—Li1—C1138.4 (5)C2—C3—C4—C50.0 (7)
C10—P2—Li1—C26.4 (17)Li1—C3—C4—C561.0 (5)
C14—P2—Li1—C2130.8 (15)Li2i—C3—C4—C559.9 (5)
P1—P2—Li1—C2120.8 (16)C2—C3—C4—Li161.0 (5)
C10—P2—Li1—C562.4 (5)Li2i—C3—C4—Li1120.9 (4)
C14—P2—Li1—C574.8 (5)C2—C3—C4—Li2i59.8 (5)
P1—P2—Li1—C5176.7 (4)Li1—C3—C4—Li2i120.9 (4)
C10—P2—Li1—C3122.4 (11)C1—Li1—C4—C380.2 (4)
C14—P2—Li1—C314.8 (13)C2—Li1—C4—C337.3 (4)
P1—P2—Li1—C3123.2 (12)C5—Li1—C4—C3118.0 (6)
C10—P2—Li1—C499.5 (6)P2—Li1—C4—C3163.3 (6)
C14—P2—Li1—C437.7 (6)P3—Li1—C4—C341.4 (9)
P1—P2—Li1—C4146.1 (5)C1—Li1—C4—C537.8 (4)
C10—P2—Li1—P3109.1 (3)C2—Li1—C4—C580.7 (5)
C14—P2—Li1—P3113.7 (3)C3—Li1—C4—C5118.0 (6)
P1—P2—Li1—P35.3 (2)P2—Li1—C4—C578.7 (6)
C22—P3—Li1—C1116.3 (6)P3—Li1—C4—C5159.4 (9)
C18—P3—Li1—C121.5 (7)C1—Li1—C4—Li2i18.2 (4)
P1—P3—Li1—C1133.6 (6)C2—Li1—C4—Li2i24.7 (4)
C22—P3—Li1—C281.3 (5)C5—Li1—C4—Li2i56.0 (5)
C18—P3—Li1—C256.5 (5)C3—Li1—C4—Li2i62.0 (5)
P1—P3—Li1—C2168.6 (4)P2—Li1—C4—Li2i134.8 (5)
C22—P3—Li1—C5108 (2)P3—Li1—C4—Li2i103.4 (9)
C18—P3—Li1—C530 (3)C3—C4—C5—C11.0 (7)
P1—P3—Li1—C5142 (2)Li1—C4—C5—C160.9 (5)
C22—P3—Li1—C343.1 (6)Li2i—C4—C5—C163.4 (5)
C18—P3—Li1—C394.7 (5)C3—C4—C5—Li161.9 (5)
P1—P3—Li1—C3153.2 (4)Li2i—C4—C5—Li1124.3 (4)
C22—P3—Li1—C418.3 (10)C3—C4—C5—Li2i62.4 (5)
C18—P3—Li1—C4119.5 (8)Li1—C4—C5—Li2i124.3 (4)
P1—P3—Li1—C4128.4 (8)C2—C1—C5—C41.6 (7)
C22—P3—Li1—P2115.4 (3)C6—C1—C5—C4173.5 (6)
C18—P3—Li1—P2106.8 (3)Li1—C1—C5—C464.9 (5)
P1—P3—Li1—P25.3 (2)Li2i—C1—C5—C468.9 (5)
P3—P1—Li2—N1ii101.3 (4)C2—C1—C5—Li166.5 (5)
P2—P1—Li2—N1ii104.1 (4)C6—C1—C5—Li1121.6 (6)
P3—P1—Li2—C2ii129.4 (7)Li2i—C1—C5—Li1133.8 (4)
P2—P1—Li2—C2ii25.2 (9)C2—C1—C5—Li2i67.3 (5)
P3—P1—Li2—C5ii33.1 (9)C6—C1—C5—Li2i104.6 (7)
P2—P1—Li2—C5ii121.5 (6)Li1—C1—C5—Li2i133.8 (4)
P3—P1—Li2—C3ii99.6 (5)C1—Li1—C5—C4117.2 (6)
P2—P1—Li2—C3ii55.0 (6)C2—Li1—C5—C477.6 (5)
P3—P1—Li2—C4ii63.7 (6)C3—Li1—C5—C435.7 (4)
P2—P1—Li2—C4ii91.0 (5)P2—Li1—C5—C4119.2 (5)
C5—Li1—C1—C2112.9 (6)P3—Li1—C5—C4107 (2)
C3—Li1—C1—C237.1 (4)C2—Li1—C5—C139.6 (4)
C4—Li1—C1—C276.8 (4)C3—Li1—C5—C181.4 (4)
P2—Li1—C1—C2171.2 (6)C4—Li1—C5—C1117.2 (6)
P3—Li1—C1—C264.3 (6)P2—Li1—C5—C1123.7 (5)
C2—Li1—C1—C5112.9 (6)P3—Li1—C5—C110 (2)
C3—Li1—C1—C575.8 (4)C1—Li1—C5—Li2i50.3 (5)
C4—Li1—C1—C536.1 (4)C2—Li1—C5—Li2i10.7 (5)
P2—Li1—C1—C575.8 (6)C3—Li1—C5—Li2i31.1 (5)
P3—Li1—C1—C5177.2 (7)C4—Li1—C5—Li2i66.8 (5)
C2—Li1—C1—C6123.8 (8)P2—Li1—C5—Li2i174.0 (4)
C5—Li1—C1—C6123.3 (7)P3—Li1—C5—Li2i40 (3)
C3—Li1—C1—C6160.9 (7)C2—C1—C6—C7103.9 (8)
C4—Li1—C1—C6159.4 (7)C5—C1—C6—C766.4 (9)
P2—Li1—C1—C647.5 (9)Li1—C1—C6—C7162.1 (6)
P3—Li1—C1—C659.5 (9)Li2i—C1—C6—C719.7 (8)
C2—Li1—C1—Li2i54.2 (5)C9—N1—C7—C666.8 (8)
C5—Li1—C1—Li2i58.8 (6)C8—N1—C7—C6173.6 (6)
C3—Li1—C1—Li2i17.1 (5)Li2i—N1—C7—C652.1 (8)
C4—Li1—C1—Li2i22.7 (5)C1—C6—C7—N149.6 (9)
P2—Li1—C1—Li2i134.6 (5)C14—P2—C10—C1147.7 (6)
P3—Li1—C1—Li2i118.5 (6)P1—P2—C10—C1165.1 (5)
C5—C1—C2—C31.6 (6)Li1—P2—C10—C11173.0 (5)
C6—C1—C2—C3173.4 (6)C14—P2—C10—C13168.4 (5)
Li1—C1—C2—C366.2 (5)P1—P2—C10—C1355.6 (5)
Li2i—C1—C2—C370.2 (5)Li1—P2—C10—C1352.3 (6)
C5—C1—C2—Li167.8 (5)C14—P2—C10—C1277.4 (6)
C6—C1—C2—Li1120.4 (7)P1—P2—C10—C12169.8 (5)
Li2i—C1—C2—Li1136.4 (4)Li1—P2—C10—C1261.9 (6)
C5—C1—C2—Li2i68.5 (5)C10—P2—C14—C17164.2 (5)
C6—C1—C2—Li2i103.2 (7)P1—P2—C14—C1781.5 (5)
Li1—C1—C2—Li2i136.4 (4)Li1—P2—C14—C1719.8 (6)
C1—Li1—C2—C3116.1 (6)C10—P2—C14—C1647.7 (6)
C5—Li1—C2—C376.7 (5)P1—P2—C14—C16162.0 (5)
C4—Li1—C2—C335.8 (4)Li1—P2—C14—C1696.6 (6)
P2—Li1—C2—C3140.1 (16)C10—P2—C14—C1578.7 (6)
P3—Li1—C2—C3109.4 (5)P1—P2—C14—C1535.6 (6)
C5—Li1—C2—C139.5 (4)Li1—P2—C14—C15136.9 (5)
C3—Li1—C2—C1116.1 (6)C22—P3—C18—C1975.4 (6)
C4—Li1—C2—C180.4 (4)P1—P3—C18—C1938.6 (6)
P2—Li1—C2—C123.9 (16)Li1—P3—C18—C19143.5 (5)
P3—Li1—C2—C1134.5 (5)C22—P3—C18—C21163.7 (5)
C1—Li1—C2—Li2i50.9 (5)P1—P3—C18—C2182.2 (5)
C5—Li1—C2—Li2i11.4 (5)Li1—P3—C18—C2122.6 (6)
C3—Li1—C2—Li2i65.3 (6)C22—P3—C18—C2050.8 (6)
C4—Li1—C2—Li2i29.5 (5)P1—P3—C18—C20164.8 (5)
P2—Li1—C2—Li2i74.8 (17)Li1—P3—C18—C2090.3 (6)
P3—Li1—C2—Li2i174.6 (4)C18—P3—C22—C23170.0 (4)
C1—C2—C3—C41.0 (7)P1—P3—C22—C2355.6 (5)
Li1—C2—C3—C464.2 (5)Li1—P3—C22—C2346.7 (6)
Li2i—C2—C3—C464.4 (5)C18—P3—C22—C2449.0 (6)
C1—C2—C3—Li163.1 (5)P1—P3—C22—C2465.4 (5)
Li2i—C2—C3—Li1128.6 (4)Li1—P3—C22—C24167.6 (5)
C1—C2—C3—Li2i65.5 (5)C18—P3—C22—C2575.4 (5)
Li1—C2—C3—Li2i128.6 (4)P1—P3—C22—C25170.2 (4)
C1—Li1—C3—C479.3 (5)Li1—P3—C22—C2568.0 (5)
C2—Li1—C3—C4117.5 (6)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Li2(C9H14N)(C16H36P3)]
Mr471.45
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)8.9063 (6), 18.8522 (8), 19.3934 (17)
β (°) 115.314 (6)
V3)2943.5 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.44 × 0.23 × 0.2
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire2 (large Be window) detector
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.734, 1
No. of measured, independent and
observed [I > 2σ(I)] reflections
14505, 4818, 3492
Rint0.093
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.095, 0.258, 1.13
No. of reflections4818
No. of parameters294
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0825P)2 + 14.0784P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.72, 0.61

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

 

Acknowledgements

We thank the Polish State Committee of Scientific Research (project No. NN204271535) for financial support.

References

First citationChojnacki, J., Grubba, R., Kugiel-Rachwalska, B. & Pikies, J. (2007). Polyhedron, 26, 1579–1582.  Web of Science CSD CrossRef CAS
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals
First citationKovacs, I., Krautscheid, H., Matern, E., Sattler, E., Fritz, G., Hönle, W., Borrmann, H. & von Schnering, H. G. (1996a). Z. Anorg. Allg. Chem. 622, 1564–1572.  CSD CrossRef CAS Web of Science
First citationKovacs, I., Matern, E. & Fritz, G. Z. (1996b). Z. Anorg. Allg. Chem. 622, 935–941.  CrossRef CAS Web of Science
First citationKunz, K., Pflug, J., Bertuleit, A., Frohlich, R., Wegelius, E., Erker, G. & Wurthwein, E.-U. (2000). Organometallics, 19, 4208–4216.  Web of Science CSD CrossRef CAS
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds