metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

mer-[3-Phenyl-5-(2-pyridyl-κN)-1,2,4-triazol-1-ido-κN1]bis­­(2-quinolylphenyl-κ2C1,N)iridium(III) deutero­chloro­form disolvate

aInstitut für Anorganische und Analytische Chemie, Technical University of Braunschweig, Postfach 3329, 38023 Braunschweig, Germany, and bLabor für Elektrooptik am Institut für Hochfrequenztechnik, Technical University of Braunschweig, Postfach 3329, 38023 Braunschweig, Germany
*Correspondence e-mail: p.jones@tu-bs.de

(Received 24 September 2010; accepted 27 September 2010; online 13 October 2010)

In the title compound, [Ir(C13H9N4)(C15H10N)2]·2CDCl3, the coordination at iridium is octa­hedral, but with narrow ligand bite angles ranging from 74.85 (8) to 83.99 (8)°. The bond lengths at iridium show the expected trans influence, with Ir—N trans to C being appreciably longer than trans to N. The chelate rings are mutually perpendicular to a reasonable approximation [interplanar angles ranging from 77.79 (6) to 83.93 (7)°]. All ligands are approximately planar; the maximum inter­planar angles within ligands are ca 12°. One CDCl3 solvent molecule is severly disordered and was excluded from the refinement.

Related literature

For the preparation of iridium complexes, see: Lamansky et al. (2001[Lamansky, S., Djurovich, P., Murphy, D., Abdel-Razzaq, F., Kwong, R., Tsyba, I., Bortz, M., Mui, B., Bau, R. & Thompson, M. E. (2001). Inorg. Chem. 40, 1704-1711.]); Coppo et al. (2004[Coppo, P., Plummer, E. A. & De Cola, L. (2004). Chem. Commun. pp. 1774-1775.]). For the photoluminescent properties and color tuning of cyclo­metalated iridium complexes, see: Grushin et al. (2001[Grushin, V. V., Herron, N., LeCloux, D. D., Marshall, W. J., Petrov, V. A. & Wang, Y. (2001). Chem. Commun. pp. 1494-1495.]); You & Park (2005[You, Y. & Park, S. Y. (2005). J. Am. Chem. Soc. 127, 12438-12439.]); Stagni et al. (2008[Stagni, S., Colella, S., Palazzi, A., Valenti, G., Zacchini, S., Paolucci, F., Marcaccio, M., Albuquerque, R. Q. & De Cola, L. (2008). Inorg. Chem. 47, 10509-10521.]). For general background to organic light-emitting diodes (OLEDs), see: Hertel et al. (2005[Hertel, D., Müller, C. D. & Meerholz, K. (2005). Chem. Ztg, 39, 336-347.]); Holder et al. (2005[Holder, E., Langeveld, B. M. W. & Schubert, U. S. (2005). Adv. Mater. 17, 1109-1121.]). For two recent related publications from our groups, see: Jones et al. (2010a[Jones, P. G., Debeaux, M., Weinkauf, A., Hopf, H., Kowalsky, W. & Johannes, H.-H. (2010a). Acta Cryst. E66, m66-m67.],b[Jones, P. G., Freund, A., Weinkauf, A., Kowalsky, W. & Johannes, H.-H. (2010b). Acta Cryst. E66, m1088-m1089.]).

[Scheme 1]

Experimental

Crystal data
  • [Ir(C13H9N4)(C15H10N)2]·2CDCl3

  • Mr = 1062.67

  • Triclinic, [P \overline 1]

  • a = 9.1399 (3) Å

  • b = 12.4430 (5) Å

  • c = 17.6762 (6) Å

  • α = 81.493 (4)°

  • β = 81.509 (4)°

  • γ = 85.193 (4)°

  • V = 1962.41 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.86 mm−1

  • T = 100 K

  • 0.25 × 0.20 × 0.05 mm

Data collection
  • Oxford Diffraction Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Limited, Yarnton, England.]) Tmin = 0.739, Tmax = 1.000

  • 78670 measured reflections

  • 9739 independent reflections

  • 8125 reflections with I > 2σ(I)

  • Rint = 0.062

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.048

  • S = 0.93

  • 9739 reflections

  • 487 parameters

  • 134 restraints

  • H-atom parameters constrained

  • Δρmax = 1.03 e Å−3

  • Δρmin = −1.08 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Limited, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP (Siemens, 1994[Siemens (1994). XP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Electrophosphorescent materials based on iridium(III) have been one of the most important developments in the field of organic light-emitting diodes (OLEDs) because both singlet and triplet excitons can be harvested for light emission, giving OLEDs with theoretically 100% internal quantum efficiencies. Furthermore, iridium(III) complexes possess relatively short excited state lifetimes, high quantum efficiencies and remarkable colour tuning by modification of the ligand structures. The simple method of tuning the emission colour is to vary the combination of cyclometallating and ancillary ligands (e.g. acetylacetonate, picolinate or triazolate derivatives) coordinated to the iridium core. These heteroleptic complexes are particularly interesting as emitters for OLED applications. Quinoline-based iridium(III) complexes have proved to be especially efficient materials for red OLEDs. In this regard, we have synthesized and characterized the title compound, a new iridium(III) complex with 2-phenylquinoline as chromophoric ligands and 3-phenyl-5-(2-pyridyl)-1,2,4-triazole as ancillary ligand, and report here its crystal structure.

The structure of the title complex is shown in Fig. 1. It crystallizes with two molecules of deuterochloroform, one of which is severely disordered (see refinement details). The general features of the complex are similar to those of our other recent related structures (Jones et al., 2010a,b). The coordination at iridium is octahedral, whereby the major deviations in angles arise from the restricted bite of the chelating ligands: N1—Ir—C12 79.82 (10), N17—Ir—C28 79.82 (12), N33—Ir—N39 74.85 (8)°. The bond lengths at iridium show the expected trans influence, with Ir—N33 and Ir—N39, 2.129 (2) and 2.196 (2) Å respectively, trans to C being appreciably longer than the mutually trans Ir—N1 2.084 (2) and Ir—N17 2.093 (2) Å. The interplanar angles between the chelate rings amount to 78.8 (1)° from the IrN2C2 ring to both IrNC3 rings, and 83.9 (1)° between the latter. Within the ligands, the interplanar angles between phenyl and quinoline are 11.8 (1) and 12.3 (1)°, whereas in the triazole ligand the pyridyl and phenyl rings subtend angles of 1.8 (1) and 11.0 (1)° respectively to the triazole ring.

Related literature top

For the preparation of iridium complexes, see: Lamansky et al. (2001); Coppo et al. (2004). For the photoluminescent properties and color tuning of cyclometalated iridium complexes, see: Grushin et al. (2001); You & Park (2005); Stagni et al. (2008). For general background to organic light-emitting diodes (OLEDs), see: Hertel et al. (2005); Holder et al. (2005). For two recent related publications from our groups, see: Jones et al. (2010a,b).

Experimental top

A mixture of bis(2-phenylquinoline)-iridium(III)-µ-chloro bridged dimer complex (230 mg, 180 µmol), 3-phenyl-5-(2-pyridyl)-1,2,4-triazole (100 mg, 450 µmol) and potassium tert-butoxide (50 mg, 450 µmol) in dry dichloromethane (10 ml) and dry ethanol (3 ml) was stirred overnight at room temperature under nitrogen atmosphere. The solvent was removed under reduced pressure and the residue was purified via flash chromatography on silica gel (eluent: dichloromethane/acetone = 20:1, Rf = 0.31) to yield a red solid (115 mg, 39%). m.p. 326 °C.

1H NMR (CDCl3, 600 MHz): δ 8.13 (d, J = 9.0 Hz, 1H), 8.04–8.00 (m, 3H), 7.93–7.86 (m, 6H), 7.77 (d, J = 7.7 Hz, 1H), 7.52–7.47 (m, 3H), 7.29 (d, J = 8.9 Hz, 1H), 7.23 (dd, J = 7.6, 7.6 Hz, 2H), 7.18–7.14 (m, 2H), 7.11 (ddd, J = 7.9, 6.9, 1.0 Hz, 1H), 7.07–7.03 (m, 2H), 7.01 (dd, J = 7.3, 7.3 Hz, 1H), 6.95 (ddd, J = 7.2, 5.7, 1.3 Hz, 1H), 6.78–6.74 (m, 3H), 6.67 (dd, J = 7.0, 7.0 Hz, 1H), 6.46 (d, J = 7.5 Hz, 1H) p.p.m..

13C NMR (CDCl3, 150 MHz): δ 170.95, 170.01, 164.55, 162.54, 156.82, 151.88, 149.90, 148.24, 147.54, 146.98, 146.73, 146.61, 138.78, 138.31, 137.61, 136.01, 134.22, 133.17, 131.33, 130.06, 129.57, 129.47, 128.48, 128.14, 127.87, 127.49, 127.46, 127.26, 127.14, 126.53, 126.21, 126.05, 125.98, 125.54, 125.48, 123.23, 121.76, 121.65, 120.71, 116.99, 116.54 p.p.m..

EI—MS: m/z (%) = 822 (28) [M]+., 601 (46) [M–C13H9N4]+., 470 (4), 205 (100).

IR: = 3045 (w), 1604 (s), 1579 (m), 1544 (m), 1513 (m), 1460 (m), 1447 (m), 1421 (m), 1335 (m), 1288 (m), 1275 (m), 1242 (w), 1146 (m), 1070 (w), 1026 (m), 828 (m), 789 (m), 760 (versus), 724 (s), 695 (s), 640 (w), 569 (w), 539 (w) cm-1.

UV/Vis (CH2Cl2): λ (ε) = 446 (br. 4500), 337 (23600), 269 (58500), 227 (40300) nm.

Single crystals were obtained by evaporation from CDCl3 in an NMR tube.

Refinement top

Hydrogen atoms were included at calculated positions using a riding model with aromatic C—H 0.95, sp3-C—H 1.00 Å. The U(H) values were fixed at 1.2 × Ueq(C) of the parent C atom. Anisotropic displacement parameters of the N and C atoms were restrained to have approximately equal components along mutual bonds (command DELU).

One deuterochloroform molecule is well ordered. However, a region of significant residual electron density could not be successfully interpreted in terms of the only possible solvent (CDCl3). The program SQUEEZE (as implemented in the PLATON system; Spek, 2009) was therefore used to remove mathematically the effects of this solvent. Values for the formula mass etc. are based on an assumed solvent content per asymmetric unit of one ordered and one squeezed CDCl3.

There are several peaks of 0.7–1.1 e Å-3 either ca 1 Å from the Ir atom, which may reasonably be attributed to residual absorption errors, or in the solvent region, corresponding to slight extra disorder or irregular displacement features.

Structure description top

Electrophosphorescent materials based on iridium(III) have been one of the most important developments in the field of organic light-emitting diodes (OLEDs) because both singlet and triplet excitons can be harvested for light emission, giving OLEDs with theoretically 100% internal quantum efficiencies. Furthermore, iridium(III) complexes possess relatively short excited state lifetimes, high quantum efficiencies and remarkable colour tuning by modification of the ligand structures. The simple method of tuning the emission colour is to vary the combination of cyclometallating and ancillary ligands (e.g. acetylacetonate, picolinate or triazolate derivatives) coordinated to the iridium core. These heteroleptic complexes are particularly interesting as emitters for OLED applications. Quinoline-based iridium(III) complexes have proved to be especially efficient materials for red OLEDs. In this regard, we have synthesized and characterized the title compound, a new iridium(III) complex with 2-phenylquinoline as chromophoric ligands and 3-phenyl-5-(2-pyridyl)-1,2,4-triazole as ancillary ligand, and report here its crystal structure.

The structure of the title complex is shown in Fig. 1. It crystallizes with two molecules of deuterochloroform, one of which is severely disordered (see refinement details). The general features of the complex are similar to those of our other recent related structures (Jones et al., 2010a,b). The coordination at iridium is octahedral, whereby the major deviations in angles arise from the restricted bite of the chelating ligands: N1—Ir—C12 79.82 (10), N17—Ir—C28 79.82 (12), N33—Ir—N39 74.85 (8)°. The bond lengths at iridium show the expected trans influence, with Ir—N33 and Ir—N39, 2.129 (2) and 2.196 (2) Å respectively, trans to C being appreciably longer than the mutually trans Ir—N1 2.084 (2) and Ir—N17 2.093 (2) Å. The interplanar angles between the chelate rings amount to 78.8 (1)° from the IrN2C2 ring to both IrNC3 rings, and 83.9 (1)° between the latter. Within the ligands, the interplanar angles between phenyl and quinoline are 11.8 (1) and 12.3 (1)°, whereas in the triazole ligand the pyridyl and phenyl rings subtend angles of 1.8 (1) and 11.0 (1)° respectively to the triazole ring.

For the preparation of iridium complexes, see: Lamansky et al. (2001); Coppo et al. (2004). For the photoluminescent properties and color tuning of cyclometalated iridium complexes, see: Grushin et al. (2001); You & Park (2005); Stagni et al. (2008). For general background to organic light-emitting diodes (OLEDs), see: Hertel et al. (2005); Holder et al. (2005). For two recent related publications from our groups, see: Jones et al. (2010a,b).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Structure of the title compound in the crystal. Ellipsoids represent 50% probability levels. Solvent molecules and hydrogen atoms are omitted for clarity.
mer-[3-Phenyl-5-(2-pyridyl-κN)-1,2,4-triazol-1-ido- κN1]bis(2-quinolylphenyl-κ2C1,N)iridium(III) deuterochloroform disolvate top
Crystal data top
[Ir(C13H9N4)(C15H10N)2]·2CDCl3Z = 2
Mr = 1062.67F(000) = 1044
Triclinic, P1Dx = 1.798 Mg m3
a = 9.1399 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.4430 (5) ÅCell parameters from 26610 reflections
c = 17.6762 (6) Åθ = 2.2–30.8°
α = 81.493 (4)°µ = 3.86 mm1
β = 81.509 (4)°T = 100 K
γ = 85.193 (4)°Tablet, orange
V = 1962.41 (12) Å30.25 × 0.20 × 0.05 mm
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
9739 independent reflections
Radiation source: Enhance (Mo) X-ray Source8125 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
Detector resolution: 16.1419 pixels mm-1θmax = 28.3°, θmin = 2.2°
ω–scanh = 1212
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 1616
Tmin = 0.739, Tmax = 1.000l = 2323
78670 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.048H-atom parameters constrained
S = 0.93 w = 1/[σ2(Fo2) + (0.019P)2]
where P = (Fo2 + 2Fc2)/3
9739 reflections(Δ/σ)max = 0.003
487 parametersΔρmax = 1.03 e Å3
134 restraintsΔρmin = 1.08 e Å3
Crystal data top
[Ir(C13H9N4)(C15H10N)2]·2CDCl3γ = 85.193 (4)°
Mr = 1062.67V = 1962.41 (12) Å3
Triclinic, P1Z = 2
a = 9.1399 (3) ÅMo Kα radiation
b = 12.4430 (5) ŵ = 3.86 mm1
c = 17.6762 (6) ÅT = 100 K
α = 81.493 (4)°0.25 × 0.20 × 0.05 mm
β = 81.509 (4)°
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
9739 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
8125 reflections with I > 2σ(I)
Tmin = 0.739, Tmax = 1.000Rint = 0.062
78670 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.025134 restraints
wR(F2) = 0.048H-atom parameters constrained
S = 0.93Δρmax = 1.03 e Å3
9739 reflectionsΔρmin = 1.08 e Å3
487 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

8.0107 (0.0039) x - 5.0559 (0.0100) y + 1.0694 (0.0169) z = 0.3793 (0.0119)

* 0.0612 (0.0010) Ir * -0.0747 (0.0014) N1 * 0.0495 (0.0016) C2 * 0.0270 (0.0017) C11 * -0.0630 (0.0014) C12

Rms deviation of fitted atoms = 0.0574

3.5166 (0.0086) x + 11.8000 (0.0045) y + 4.6463 (0.0182) z = 11.4217 (0.0048)

Angle to previous plane (with approximate e.s.d.) = 83.93 (0.07)

* -0.0639 (0.0011) Ir * 0.0668 (0.0016) C28 * -0.0280 (0.0019) C27 * -0.0526 (0.0019) C18 * 0.0777 (0.0015) N17

Rms deviation of fitted atoms = 0.0602

2.1808 (0.0086) x + 0.5392 (0.0092) y + 17.4903 (0.0021) z = 5.6802 (0.0088)

Angle to previous plane (with approximate e.s.d.) = 78.84 (0.08)

* -0.0035 (0.0009) Ir * 0.0040 (0.0013) N33 * -0.0019 (0.0016) C37 * -0.0031 (0.0016) C38 * 0.0045 (0.0014) N39

Rms deviation of fitted atoms = 0.0035

8.0107 (0.0039) x - 5.0559 (0.0100) y + 1.0694 (0.0169) z = 0.3793 (0.0119)

Angle to previous plane (with approximate e.s.d.) = 78.79 (0.08)

* 0.0612 (0.0010) Ir * -0.0747 (0.0014) N1 * 0.0495 (0.0016) C2 * 0.0270 (0.0017) C11 * -0.0630 (0.0014) C12

Rms deviation of fitted atoms = 0.0574

8.1366 (0.0044) x - 4.6169 (0.0120) y + 2.7467 (0.0185) z = 1.1577 (0.0155)

Angle to previous plane (with approximate e.s.d.) = 5.58 (0.11)

* -0.0062 (0.0018) C11 * 0.0042 (0.0018) C12 * 0.0004 (0.0019) C13 * -0.0031 (0.0020) C14 * 0.0011 (0.0020) C15 * 0.0036 (0.0019) C16

Rms deviation of fitted atoms = 0.0036

- 7.1556 (0.0029) x + 6.8670 (0.0050) y - 1.5139 (0.0120) z = 1.5526 (0.0051)

Angle to previous plane (with approximate e.s.d.) = 11.79 (0.10)

* -0.0880 (0.0018) N1 * 0.0273 (0.0020) C2 * 0.0689 (0.0021) C3 * 0.0094 (0.0021) C4 * -0.0354 (0.0024) C5 * -0.0377 (0.0021) C6 * -0.0110 (0.0022) C7 * 0.0624 (0.0021) C8 * 0.0474 (0.0020) C9 * -0.0432 (0.0022) C10

Rms deviation of fitted atoms = 0.0491

3.8481 (0.0098) x + 11.4658 (0.0058) y + 6.3281 (0.0208) z = 11.7536 (0.0044)

Angle to previous plane (with approximate e.s.d.) = 77.79 (0.06)

* -0.0067 (0.0020) C28 * 0.0001 (0.0020) C29 * 0.0072 (0.0023) C30 * -0.0080 (0.0025) C31 * 0.0013 (0.0023) C32 * 0.0060 (0.0021) C27

Rms deviation of fitted atoms = 0.0058

2.0501 (0.0054) x + 12.1910 (0.0019) y + 5.3371 (0.0154) z = 11.4565 (0.0058)

Angle to previous plane (with approximate e.s.d.) = 12.28 (0.08)

* -0.0704 (0.0021) N17 * 0.0393 (0.0024) C18 * 0.0498 (0.0028) C19 * -0.0036 (0.0029) C20 * -0.0280 (0.0030) C21 * -0.0253 (0.0030) C22 * 0.0012 (0.0029) C23 * 0.0474 (0.0026) C24 * 0.0300 (0.0024) C25 * -0.0404 (0.0026) C26

Rms deviation of fitted atoms = 0.0390

2.0139 (0.0103) x + 0.5046 (0.0150) y + 17.5147 (0.0030) z = 5.5443 (0.0128)

Angle to previous plane (with approximate e.s.d.) = 78.01 (0.09)

* 0.0047 (0.0018) C38 * 0.0079 (0.0017) N39 * -0.0141 (0.0019) C40 * 0.0073 (0.0022) C41 * 0.0051 (0.0023) C42 * -0.0109 (0.0020) C43

Rms deviation of fitted atoms = 0.0090

2.2942 (0.0112) x + 0.5668 (0.0154) y + 17.4708 (0.0033) z = 5.7456 (0.0097)

Angle to previous plane (with approximate e.s.d.) = 1.81 (0.06)

* -0.0023 (0.0014) N33 * 0.0007 (0.0014) N34 * 0.0010 (0.0015) C35 * -0.0024 (0.0015) N36 * 0.0029 (0.0015) C37

Rms deviation of fitted atoms = 0.0020

3.5283 (0.0116) x - 0.8562 (0.0173) y + 16.6404 (0.0084) z = 5.4129 (0.0060)

Angle to previous plane (with approximate e.s.d.) = 11.00 (0.10)

* -0.0031 (0.0021) C44 * 0.0013 (0.0022) C45 * -0.0006 (0.0025) C46 * 0.0019 (0.0027) C47 * -0.0038 (0.0027) C48 * 0.0044 (0.0024) C49

Rms deviation of fitted atoms = 0.0029

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ir0.479659 (11)0.724128 (9)0.242431 (7)0.01435 (3)
N10.5063 (2)0.76795 (18)0.12298 (13)0.0164 (5)
C20.5821 (3)0.8582 (2)0.09770 (16)0.0183 (6)
C30.6254 (3)0.8918 (2)0.01826 (17)0.0241 (7)
H30.67970.95500.00220.029*
C40.5898 (3)0.8342 (2)0.03560 (17)0.0250 (7)
H40.62270.85510.08890.030*
C50.5035 (3)0.7430 (2)0.01136 (16)0.0224 (6)
C60.4578 (3)0.6834 (3)0.06484 (17)0.0274 (7)
H60.48970.70180.11850.033*
C70.3680 (3)0.5992 (3)0.03966 (18)0.0283 (7)
H70.34030.55780.07570.034*
C80.3166 (3)0.5737 (2)0.03924 (17)0.0253 (7)
H80.25040.51730.05590.030*
C90.3608 (3)0.6295 (2)0.09300 (16)0.0198 (6)
H90.32510.61140.14630.024*
C100.4586 (3)0.7129 (2)0.06896 (16)0.0184 (6)
C110.6096 (3)0.9190 (2)0.15802 (16)0.0189 (6)
C120.5580 (3)0.8711 (2)0.23424 (17)0.0190 (6)
C130.5710 (3)0.9308 (2)0.29458 (17)0.0226 (6)
H130.53710.90190.34640.027*
C140.6325 (3)1.0308 (2)0.27935 (19)0.0284 (7)
H140.63971.06950.32100.034*
C150.6835 (3)1.0757 (2)0.20527 (19)0.0293 (7)
H150.72571.14440.19610.035*
C160.6729 (3)1.0201 (2)0.14405 (18)0.0261 (7)
H160.70851.05040.09280.031*
N170.4354 (3)0.70179 (19)0.36314 (13)0.0239 (6)
C180.2901 (3)0.7236 (3)0.38966 (19)0.0348 (8)
C190.2355 (5)0.6990 (3)0.4688 (2)0.0534 (11)
H190.13300.71260.48570.064*
C200.3248 (5)0.6572 (3)0.5199 (2)0.0562 (11)
H200.28550.63900.57270.067*
C210.4788 (5)0.6398 (3)0.49591 (18)0.0439 (9)
C220.5786 (5)0.6009 (3)0.5471 (2)0.0589 (11)
H220.54230.58230.60020.071*
C230.7259 (5)0.5885 (3)0.5236 (2)0.0557 (11)
H230.79160.56070.55980.067*
C240.7820 (4)0.6177 (3)0.4441 (2)0.0431 (9)
H240.88570.61110.42750.052*
C250.6862 (3)0.6555 (2)0.39132 (17)0.0298 (7)
H250.72370.67530.33850.036*
C260.5336 (4)0.6647 (2)0.41575 (17)0.0290 (7)
C270.1995 (3)0.7753 (3)0.3323 (2)0.0338 (8)
C280.2731 (3)0.7910 (2)0.25696 (19)0.0266 (7)
C290.1941 (3)0.8497 (2)0.1998 (2)0.0354 (8)
H290.24120.86250.14800.043*
C300.0488 (4)0.8890 (3)0.2181 (3)0.0552 (12)
H300.00210.92910.17880.066*
C310.0228 (4)0.8707 (3)0.2923 (3)0.0645 (14)
H310.12320.89650.30390.077*
C320.0508 (4)0.8153 (3)0.3494 (3)0.0541 (11)
H320.00190.80360.40100.065*
N330.4299 (2)0.55788 (18)0.25419 (12)0.0145 (5)
N340.3042 (2)0.50125 (18)0.27271 (13)0.0185 (5)
C350.3547 (3)0.3969 (2)0.26948 (14)0.0169 (6)
N360.5032 (2)0.38198 (18)0.25027 (12)0.0169 (5)
C370.5433 (3)0.4844 (2)0.24198 (14)0.0148 (5)
C380.6914 (3)0.5248 (2)0.22220 (15)0.0167 (6)
N390.6947 (2)0.63400 (18)0.21885 (12)0.0153 (5)
C400.8272 (3)0.6779 (2)0.20110 (16)0.0205 (6)
H400.83000.75470.19680.025*
C410.9589 (3)0.6165 (3)0.18894 (19)0.0317 (8)
H411.05070.65000.17830.038*
C420.9549 (3)0.5056 (3)0.19247 (19)0.0334 (8)
H421.04430.46160.18400.040*
C430.8196 (3)0.4583 (2)0.20849 (17)0.0254 (7)
H430.81470.38200.21000.030*
C440.2545 (3)0.3068 (2)0.28691 (16)0.0215 (6)
C450.3072 (3)0.2027 (2)0.27066 (17)0.0258 (7)
H450.40760.19040.24900.031*
C460.2140 (4)0.1174 (3)0.2859 (2)0.0387 (8)
H460.25040.04700.27440.046*
C470.0680 (4)0.1350 (3)0.3179 (2)0.0477 (10)
H470.00400.07670.32880.057*
C480.0154 (4)0.2382 (3)0.3340 (2)0.0472 (10)
H480.08520.25030.35540.057*
C490.1075 (3)0.3236 (3)0.31940 (18)0.0330 (8)
H490.07060.39360.33150.040*
C980.9808 (4)1.2544 (3)0.0450 (2)0.0480 (10)
H980.87701.28660.05520.058*
Cl11.03734 (9)1.19846 (8)0.13387 (6)0.0509 (2)
Cl20.98185 (9)1.15510 (8)0.01637 (6)0.0519 (3)
Cl31.09404 (12)1.35913 (7)0.00000 (6)0.0619 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ir0.01027 (5)0.01557 (6)0.01753 (5)0.00124 (4)0.00080 (4)0.00580 (4)
N10.0137 (11)0.0170 (12)0.0190 (12)0.0011 (9)0.0057 (9)0.0016 (10)
C20.0145 (14)0.0177 (15)0.0219 (15)0.0030 (11)0.0063 (11)0.0011 (12)
C30.0183 (15)0.0236 (17)0.0286 (17)0.0005 (12)0.0045 (12)0.0029 (13)
C40.0206 (15)0.0322 (18)0.0177 (15)0.0092 (13)0.0024 (12)0.0046 (13)
C50.0157 (14)0.0289 (17)0.0224 (15)0.0077 (12)0.0059 (12)0.0047 (13)
C60.0237 (16)0.0372 (19)0.0218 (16)0.0120 (14)0.0072 (12)0.0090 (14)
C70.0260 (16)0.0340 (19)0.0292 (17)0.0109 (14)0.0132 (13)0.0161 (15)
C80.0193 (15)0.0284 (17)0.0321 (17)0.0038 (13)0.0108 (13)0.0130 (14)
C90.0155 (14)0.0219 (16)0.0228 (15)0.0031 (11)0.0061 (11)0.0044 (12)
C100.0130 (13)0.0232 (16)0.0199 (15)0.0075 (11)0.0074 (11)0.0057 (12)
C110.0114 (13)0.0179 (15)0.0274 (16)0.0023 (11)0.0055 (11)0.0018 (12)
C120.0089 (13)0.0183 (15)0.0309 (17)0.0003 (11)0.0028 (11)0.0075 (13)
C130.0194 (15)0.0226 (16)0.0266 (16)0.0023 (12)0.0029 (12)0.0053 (13)
C140.0262 (16)0.0241 (17)0.0389 (19)0.0049 (13)0.0101 (14)0.0099 (15)
C150.0266 (16)0.0153 (16)0.048 (2)0.0090 (13)0.0103 (15)0.0008 (14)
C160.0210 (15)0.0228 (16)0.0330 (18)0.0039 (13)0.0059 (13)0.0048 (13)
N170.0315 (14)0.0215 (14)0.0196 (13)0.0124 (11)0.0068 (10)0.0094 (11)
C180.0363 (18)0.0285 (19)0.0391 (19)0.0156 (14)0.0231 (15)0.0230 (15)
C190.065 (3)0.047 (2)0.046 (2)0.025 (2)0.0348 (19)0.027 (2)
C200.090 (3)0.044 (2)0.031 (2)0.031 (2)0.036 (2)0.0190 (18)
C210.090 (3)0.029 (2)0.0147 (16)0.0232 (19)0.0005 (17)0.0069 (15)
C220.118 (3)0.043 (2)0.0192 (19)0.027 (3)0.008 (2)0.0038 (17)
C230.118 (3)0.031 (2)0.029 (2)0.013 (2)0.045 (2)0.0019 (17)
C240.065 (2)0.036 (2)0.036 (2)0.0128 (18)0.0306 (18)0.0001 (16)
C250.049 (2)0.0257 (17)0.0184 (16)0.0096 (15)0.0127 (14)0.0035 (13)
C260.051 (2)0.0201 (17)0.0175 (15)0.0127 (15)0.0003 (14)0.0084 (13)
C270.0210 (16)0.0265 (18)0.057 (2)0.0097 (13)0.0094 (15)0.0267 (16)
C280.0155 (14)0.0172 (16)0.051 (2)0.0057 (12)0.0017 (13)0.0216 (15)
C290.0188 (15)0.0224 (17)0.073 (3)0.0013 (13)0.0158 (16)0.0240 (17)
C300.0200 (18)0.036 (2)0.124 (4)0.0090 (16)0.026 (2)0.047 (2)
C310.0127 (18)0.047 (3)0.145 (4)0.0018 (16)0.002 (2)0.062 (3)
C320.0250 (18)0.042 (2)0.099 (3)0.0172 (16)0.0256 (19)0.050 (2)
N330.0144 (11)0.0160 (12)0.0132 (12)0.0018 (9)0.0017 (9)0.0056 (9)
N340.0170 (12)0.0172 (12)0.0210 (13)0.0051 (10)0.0037 (10)0.0062 (10)
C350.0227 (14)0.0170 (14)0.0109 (13)0.0033 (11)0.0006 (11)0.0035 (11)
N360.0207 (12)0.0162 (12)0.0146 (12)0.0002 (9)0.0048 (9)0.0029 (10)
C370.0161 (13)0.0180 (14)0.0109 (13)0.0006 (11)0.0036 (10)0.0029 (11)
C380.0171 (13)0.0203 (15)0.0147 (14)0.0013 (11)0.0057 (11)0.0057 (11)
N390.0111 (11)0.0204 (13)0.0156 (12)0.0015 (9)0.0023 (9)0.0055 (10)
C400.0149 (14)0.0237 (16)0.0245 (16)0.0026 (12)0.0010 (12)0.0093 (13)
C410.0124 (14)0.0341 (19)0.051 (2)0.0007 (13)0.0025 (14)0.0148 (17)
C420.0149 (15)0.035 (2)0.053 (2)0.0089 (13)0.0069 (14)0.0177 (17)
C430.0198 (15)0.0235 (17)0.0356 (18)0.0044 (12)0.0091 (13)0.0111 (14)
C440.0268 (15)0.0195 (15)0.0182 (15)0.0054 (12)0.0002 (12)0.0035 (12)
C450.0299 (16)0.0197 (16)0.0274 (17)0.0029 (13)0.0007 (13)0.0049 (13)
C460.048 (2)0.0209 (18)0.046 (2)0.0094 (15)0.0068 (17)0.0090 (16)
C470.052 (2)0.029 (2)0.060 (3)0.0240 (17)0.0233 (19)0.0152 (18)
C480.045 (2)0.037 (2)0.057 (2)0.0215 (17)0.0272 (18)0.0181 (19)
C490.0357 (18)0.0235 (17)0.038 (2)0.0119 (14)0.0150 (15)0.0113 (15)
C980.0281 (19)0.041 (2)0.079 (3)0.0085 (16)0.0137 (19)0.021 (2)
Cl10.0316 (5)0.0592 (6)0.0578 (6)0.0033 (4)0.0045 (4)0.0049 (5)
Cl20.0398 (5)0.0402 (6)0.0808 (8)0.0097 (4)0.0109 (5)0.0188 (5)
Cl30.0956 (8)0.0249 (5)0.0750 (8)0.0077 (5)0.0487 (6)0.0000 (5)
Geometric parameters (Å, º) top
Ir—C281.995 (3)N36—C371.336 (3)
Ir—C121.997 (3)C37—C381.460 (3)
Ir—N12.084 (2)C38—N391.354 (3)
Ir—N172.093 (2)C38—C431.389 (4)
Ir—N332.129 (2)N39—C401.346 (3)
Ir—N392.196 (2)C40—C411.378 (4)
N1—C21.353 (3)C41—C421.375 (4)
N1—C101.392 (3)C42—C431.388 (4)
C2—C31.412 (4)C44—C491.393 (4)
C2—C111.457 (4)C44—C451.398 (4)
C3—C41.363 (4)C45—C461.387 (4)
C4—C51.414 (4)C46—C471.384 (4)
C5—C61.413 (4)C47—C481.387 (4)
C5—C101.421 (4)C48—C491.381 (4)
C6—C71.367 (4)C98—Cl11.753 (4)
C7—C81.403 (4)C98—Cl31.755 (4)
C8—C91.380 (4)C98—Cl21.760 (3)
C9—C101.403 (4)C3—H30.9500
C11—C161.402 (4)C4—H40.9500
C11—C121.419 (4)C6—H60.9500
C12—C131.411 (4)C7—H70.9500
C13—C141.382 (4)C8—H80.9500
C14—C151.375 (4)C9—H90.9500
C15—C161.387 (4)C13—H130.9500
N17—C181.361 (4)C14—H140.9500
N17—C261.391 (4)C15—H150.9500
C18—C191.411 (5)C16—H160.9500
C18—C271.447 (5)C19—H190.9500
C19—C201.328 (5)C20—H200.9500
C20—C211.417 (5)C22—H220.9500
C21—C221.387 (5)C23—H230.9500
C21—C261.429 (4)C24—H240.9500
C22—C231.352 (5)C25—H250.9500
C23—C241.428 (5)C29—H290.9500
C24—C251.379 (4)C30—H300.9500
C25—C261.398 (4)C31—H310.9500
C27—C281.394 (4)C32—H320.9500
C27—C321.413 (4)C40—H400.9500
C28—C291.408 (4)C41—H410.9500
C29—C301.386 (4)C42—H420.9500
C30—C311.372 (6)C43—H430.9500
C31—C321.365 (6)C45—H450.9500
N33—C371.339 (3)C46—H460.9500
N33—N341.371 (3)C47—H470.9500
N34—C351.347 (3)C48—H480.9500
C35—N361.354 (3)C49—H490.9500
C35—C441.476 (4)C98—H981.0000
C28—Ir—C1289.81 (10)N39—C38—C43122.0 (2)
C28—Ir—N193.57 (11)N39—C38—C37114.3 (2)
C12—Ir—N179.82 (10)C43—C38—C37123.7 (3)
C28—Ir—N1779.82 (12)C40—N39—C38118.0 (2)
C12—Ir—N1795.05 (10)C40—N39—Ir125.77 (18)
N1—Ir—N17171.70 (9)C38—N39—Ir116.20 (16)
C28—Ir—N3398.69 (10)N39—C40—C41123.0 (3)
C12—Ir—N33171.11 (9)C42—C41—C40118.7 (3)
N1—Ir—N33102.08 (8)C41—C42—C43119.6 (3)
N17—Ir—N3383.99 (8)C42—C43—C38118.6 (3)
C28—Ir—N39172.20 (9)C49—C44—C45119.2 (3)
C12—Ir—N3996.86 (9)C49—C44—C35121.0 (3)
N1—Ir—N3983.69 (8)C45—C44—C35119.9 (3)
N17—Ir—N39103.50 (9)C46—C45—C44120.6 (3)
N33—Ir—N3974.85 (8)C47—C46—C45119.8 (3)
C2—N1—C10118.8 (2)C46—C47—C48119.7 (3)
C2—N1—Ir114.28 (18)C49—C48—C47120.9 (3)
C10—N1—Ir126.87 (19)C48—C49—C44119.9 (3)
N1—C2—C3121.6 (3)Cl1—C98—Cl3110.20 (18)
N1—C2—C11115.0 (2)Cl1—C98—Cl2111.88 (19)
C3—C2—C11123.3 (3)Cl3—C98—Cl2110.3 (2)
C4—C3—C2120.4 (3)C4—C3—H3119.8
C3—C4—C5119.4 (3)C2—C3—H3119.8
C6—C5—C4121.7 (3)C3—C4—H4120.3
C6—C5—C10119.5 (3)C5—C4—H4120.3
C4—C5—C10118.8 (3)C7—C6—H6119.9
C7—C6—C5120.2 (3)C5—C6—H6119.9
C6—C7—C8120.2 (3)C6—C7—H7119.9
C9—C8—C7120.9 (3)C8—C7—H7119.9
C8—C9—C10120.0 (3)C9—C8—H8119.6
N1—C10—C9120.3 (2)C7—C8—H8119.6
N1—C10—C5120.6 (3)C8—C9—H9120.0
C9—C10—C5119.0 (3)C10—C9—H9120.0
C16—C11—C12121.1 (3)C14—C13—H13119.5
C16—C11—C2124.3 (3)C12—C13—H13119.5
C12—C11—C2114.5 (2)C15—C14—H14119.2
C13—C12—C11116.9 (3)C13—C14—H14119.2
C13—C12—Ir128.0 (2)C14—C15—H15120.2
C11—C12—Ir115.1 (2)C16—C15—H15120.2
C14—C13—C12120.9 (3)C15—C16—H16120.1
C15—C14—C13121.5 (3)C11—C16—H16120.1
C14—C15—C16119.7 (3)C20—C19—H19119.4
C15—C16—C11119.9 (3)C18—C19—H19119.4
C18—N17—C26119.3 (3)C19—C20—H20120.0
C18—N17—Ir112.8 (2)C21—C20—H20120.0
C26—N17—Ir127.88 (19)C23—C22—H22119.0
N17—C18—C19120.8 (3)C21—C22—H22119.0
N17—C18—C27115.7 (3)C22—C23—H23120.2
C19—C18—C27123.5 (3)C24—C23—H23120.2
C20—C19—C18121.2 (4)C25—C24—H24119.9
C19—C20—C21120.0 (3)C23—C24—H24119.9
C22—C21—C20122.7 (4)C24—C25—H25120.1
C22—C21—C26118.7 (4)C26—C25—H25120.1
C20—C21—C26118.6 (3)C30—C29—H29119.5
C23—C22—C21122.0 (4)C28—C29—H29119.5
C22—C23—C24119.5 (3)C31—C30—H30119.6
C25—C24—C23120.2 (4)C29—C30—H30119.6
C24—C25—C26119.9 (3)C32—C31—H31120.1
N17—C26—C25120.6 (3)C30—C31—H31120.1
N17—C26—C21119.8 (3)C31—C32—H32119.9
C25—C26—C21119.6 (3)C27—C32—H32119.9
C28—C27—C32120.7 (3)N39—C40—H40118.5
C28—C27—C18114.9 (3)C41—C40—H40118.5
C32—C27—C18124.2 (3)C42—C41—H41120.7
C27—C28—C29117.3 (3)C40—C41—H41120.7
C27—C28—Ir115.4 (2)C41—C42—H42120.2
C29—C28—Ir127.3 (2)C43—C42—H42120.2
C30—C29—C28120.9 (4)C42—C43—H43120.7
C31—C30—C29120.9 (4)C38—C43—H43120.7
C32—C31—C30119.8 (3)C46—C45—H45119.7
C31—C32—C27120.3 (4)C44—C45—H45119.7
C37—N33—N34106.6 (2)C47—C46—H46120.1
C37—N33—Ir117.48 (17)C45—C46—H46120.1
N34—N33—Ir135.89 (16)C46—C47—H47120.1
C35—N34—N33103.7 (2)C48—C47—H47120.1
N34—C35—N36114.8 (2)C49—C48—H48119.6
N34—C35—C44121.9 (2)C47—C48—H48119.6
N36—C35—C44123.3 (2)C48—C49—H49120.1
C37—N36—C35100.9 (2)C44—C49—H49120.1
N36—C37—N33113.9 (2)Cl1—C98—H98108.1
N36—C37—C38128.8 (2)Cl3—C98—H98108.1
N33—C37—C38117.2 (2)Cl2—C98—H98108.1

Experimental details

Crystal data
Chemical formula[Ir(C13H9N4)(C15H10N)2]·2CDCl3
Mr1062.67
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)9.1399 (3), 12.4430 (5), 17.6762 (6)
α, β, γ (°)81.493 (4), 81.509 (4), 85.193 (4)
V3)1962.41 (12)
Z2
Radiation typeMo Kα
µ (mm1)3.86
Crystal size (mm)0.25 × 0.20 × 0.05
Data collection
DiffractometerOxford Diffraction Xcalibur Eos
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.739, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
78670, 9739, 8125
Rint0.062
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.048, 0.93
No. of reflections9739
No. of parameters487
No. of restraints134
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.03, 1.08

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), XP (Siemens, 1994), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

 

Acknowledgements

The authors thank the Bundesministerium für Bildung und Forschung (BMBF 01 BD 0687) for financial support.

References

First citationCoppo, P., Plummer, E. A. & De Cola, L. (2004). Chem. Commun. pp. 1774–1775.  Web of Science CrossRef Google Scholar
First citationGrushin, V. V., Herron, N., LeCloux, D. D., Marshall, W. J., Petrov, V. A. & Wang, Y. (2001). Chem. Commun. pp. 1494–1495.  Web of Science CSD CrossRef Google Scholar
First citationHertel, D., Müller, C. D. & Meerholz, K. (2005). Chem. Ztg, 39, 336–347.  CAS Google Scholar
First citationHolder, E., Langeveld, B. M. W. & Schubert, U. S. (2005). Adv. Mater. 17, 1109–1121.  Web of Science CrossRef CAS Google Scholar
First citationJones, P. G., Debeaux, M., Weinkauf, A., Hopf, H., Kowalsky, W. & Johannes, H.-H. (2010a). Acta Cryst. E66, m66–m67.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJones, P. G., Freund, A., Weinkauf, A., Kowalsky, W. & Johannes, H.-H. (2010b). Acta Cryst. E66, m1088–m1089.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLamansky, S., Djurovich, P., Murphy, D., Abdel-Razzaq, F., Kwong, R., Tsyba, I., Bortz, M., Mui, B., Bau, R. & Thompson, M. E. (2001). Inorg. Chem. 40, 1704–1711.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Limited, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1994). XP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStagni, S., Colella, S., Palazzi, A., Valenti, G., Zacchini, S., Paolucci, F., Marcaccio, M., Albuquerque, R. Q. & De Cola, L. (2008). Inorg. Chem. 47, 10509–10521.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationYou, Y. & Park, S. Y. (2005). J. Am. Chem. Soc. 127, 12438–12439.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds