organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 4-[(3,5-di-tert-butyl-2-hy­dr­oxy­benz­yl)amino]­benzoate

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 6 October 2010; accepted 11 October 2010; online 23 October 2010)

The title amine, C24H33NO3, has two substituted aromatic rings at either end of the –CH2NH– linkage [Car­yl–CH2–NH–Car­yl torsion angle = 77.4 (3)°]. The amino and hy­droxy groups are hydrogen-bond donors to the carbonyl O atom of an adjacent mol­ecule. These hydrogen bonds give rise to a chain that runs along the b axis. One of the tert-butyl groups is disordered over two positions with a site-occupation factor of 0.834 (6) for the major occupied site.

Related literature

For the structure of the Schiff-base reactant, see: Shakir et al. (2010[Shakir, R. M., Ariffin, A. & Ng, S. W. (2010). Acta Cryst. E66, o2915.]).

[Scheme 1]

Experimental

Crystal data
  • C24H33NO3

  • Mr = 383.51

  • Monoclinic, P 21 /c

  • a = 17.788 (3) Å

  • b = 8.9872 (14) Å

  • c = 14.235 (2) Å

  • β = 101.414 (2)°

  • V = 2230.7 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 100 K

  • 0.30 × 0.10 × 0.03 mm

Data collection
  • Bruker SMART APEX diffractometer

  • 17094 measured reflections

  • 3928 independent reflections

  • 2428 reflections with I > 2σ(I)

  • Rint = 0.092

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.154

  • S = 1.03

  • 3928 reflections

  • 283 parameters

  • 45 restraints

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1o⋯O2i 0.84 2.13 2.909 (3) 154
N1—H1n⋯O2i 0.88 2.07 2.827 (3) 143
Symmetry code: (i) x, y+1, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The Schiff base, ethyl 4-(di-3,5-tert-butyl-2-hydroxybenzylideneamino)benzoate, is an intensely orange-colored compound whose color can be attributed to the azomethine double-bond; in the crystal structure, the two aromatic rings are aligned at 24.9 (1) ° (Shakir et al., 2010). The reduction of this compound affords the title colorless compound (Scheme I, Fig. 1), which is a secondary amine. The amino and hydroxy groups are hydrogen-bond donors to the carbonyl oxygen atom of an adjacent molecule; the hydrogen bonds give rise to a chain that runs along the b-axis. One of the tert-butyl groups is disordered over two positions with respect to the methyl units in an 83.6 (6):16.4 (6) ratio.

Related literature top

For the structure of the Schiff-base reactant, see: Shakir et al. (2010).

Experimental top

Ethyl 4-aminobenzoate (0.35 g) dissolved in ethanol (5 ml) was added to 3,5-di-tert-butyl-2-hydroxybenzaldehyde (0.5 g) dissolved in ethanol (20 ml). Several drops of acetic acid were added. The solution was heated for 3 h. The solvent was evaporated and the product recrystallized from ethanol to yield orange prisms in 80% yield. The compound (0.5 g) was dissolved in methanol-THF (1:1) (20 ml). The solution was cooled to 273 K and three equivalents of sodium tetraborate were added. The mixture was stirred for 4 h until the orange color was discharged. The mixture was filtered and the solvent evaporated. The colorless compound was recrystallized from a hexane-ethanol mixure (yield 90%).

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95–0.99 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2–15U(C).

The amino and hydroxy H-atoms were also placed in calculated positions and their displacement parameters were also similarly tied (N–H 0.88 Å and O–H 0.84 Å).

One of the tert-butyl groups is disordered over two positions with respect to the methyl units in an 83.4 (6):16.6 (6) ratio; the C–Cmethyl distances were restrained to 1.50±0.01 Å; the anisotroic displacement parameters of the six methyl C-atoms were restrained to be nearly isotropic. By the use of a SAME instruction, the bonds involving the C12', C13' and C14' were restrained to the same length as those involving the unprimed ones. In addition, the 1,3-related distances were restrained to be equal in both disordered moieties.

Structure description top

The Schiff base, ethyl 4-(di-3,5-tert-butyl-2-hydroxybenzylideneamino)benzoate, is an intensely orange-colored compound whose color can be attributed to the azomethine double-bond; in the crystal structure, the two aromatic rings are aligned at 24.9 (1) ° (Shakir et al., 2010). The reduction of this compound affords the title colorless compound (Scheme I, Fig. 1), which is a secondary amine. The amino and hydroxy groups are hydrogen-bond donors to the carbonyl oxygen atom of an adjacent molecule; the hydrogen bonds give rise to a chain that runs along the b-axis. One of the tert-butyl groups is disordered over two positions with respect to the methyl units in an 83.6 (6):16.4 (6) ratio.

For the structure of the Schiff-base reactant, see: Shakir et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Anisotropic displacement ellipsoid plot (Barbour, 2001) of C24H33NO3 at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. The disorder in one of the tert-butyl groups is not shown.
[Figure 2] Fig. 2. Hydrogen-bonded chain motif.
Ethyl 4-[(3,5-di-tert-butyl-2-hydroxybenzyl)amino]benzoate top
Crystal data top
C24H33NO3F(000) = 832
Mr = 383.51Dx = 1.142 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1466 reflections
a = 17.788 (3) Åθ = 2.1–21.3°
b = 8.9872 (14) ŵ = 0.07 mm1
c = 14.235 (2) ÅT = 100 K
β = 101.414 (2)°Prism, colorless
V = 2230.7 (6) Å30.30 × 0.10 × 0.03 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
2428 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.092
Graphite monochromatorθmax = 25.0°, θmin = 2.3°
ω scansh = 2021
17094 measured reflectionsk = 1010
3928 independent reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058H-atom parameters constrained
wR(F2) = 0.154 w = 1/[σ2(Fo2) + (0.0662P)2 + 0.7154P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
3928 reflectionsΔρmax = 0.24 e Å3
283 parametersΔρmin = 0.23 e Å3
45 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0079 (12)
Crystal data top
C24H33NO3V = 2230.7 (6) Å3
Mr = 383.51Z = 4
Monoclinic, P21/cMo Kα radiation
a = 17.788 (3) ŵ = 0.07 mm1
b = 8.9872 (14) ÅT = 100 K
c = 14.235 (2) Å0.30 × 0.10 × 0.03 mm
β = 101.414 (2)°
Data collection top
Bruker SMART APEX
diffractometer
2428 reflections with I > 2σ(I)
17094 measured reflectionsRint = 0.092
3928 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05845 restraints
wR(F2) = 0.154H-atom parameters constrained
S = 1.03Δρmax = 0.24 e Å3
3928 reflectionsΔρmin = 0.23 e Å3
283 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.32463 (11)0.7157 (2)0.42898 (14)0.0281 (5)
H1O0.36130.71450.39980.042*
O20.46605 (11)0.2040 (2)0.36814 (13)0.0257 (5)
O30.58429 (11)0.1107 (2)0.41969 (13)0.0237 (5)
N10.41764 (13)0.5020 (2)0.31779 (16)0.0223 (6)
H1N0.44970.56900.34790.027*
C10.26841 (16)0.6193 (3)0.38515 (19)0.0206 (6)
C20.20301 (16)0.6027 (3)0.4259 (2)0.0224 (7)
C30.14725 (16)0.5024 (3)0.3809 (2)0.0246 (7)
H30.10280.48900.40760.029*
C40.15296 (16)0.4208 (3)0.2993 (2)0.0227 (7)
C50.21844 (16)0.4441 (3)0.2617 (2)0.0227 (7)
H50.22360.39200.20520.027*
C60.27635 (15)0.5401 (3)0.30322 (19)0.0197 (6)
C70.19398 (17)0.6857 (3)0.5172 (2)0.0272 (7)
C80.11681 (17)0.6522 (4)0.5457 (2)0.0388 (8)
H8A0.11260.54510.55640.058*
H8B0.07480.68410.49420.058*
H8C0.11380.70610.60470.058*
C90.25655 (17)0.6366 (4)0.6014 (2)0.0332 (8)
H9A0.25370.52860.60970.050*
H9B0.24900.68670.66000.050*
H9C0.30700.66310.58850.050*
C100.1981 (2)0.8544 (3)0.5028 (2)0.0399 (9)
H10A0.24680.87970.48420.060*
H10B0.19490.90540.56270.060*
H10C0.15540.88600.45220.060*
C110.09420 (17)0.3034 (3)0.2554 (2)0.0365 (8)
C120.0664 (3)0.3407 (7)0.1489 (3)0.077 (2)0.834 (6)
H12A0.02750.26830.11990.115*0.834 (6)
H12B0.10990.33680.11610.115*0.834 (6)
H12C0.04420.44080.14280.115*0.834 (6)
C130.1347 (3)0.1529 (4)0.2641 (4)0.0600 (17)0.834 (6)
H13A0.09800.07500.23770.090*0.834 (6)
H13B0.15570.13180.33170.090*0.834 (6)
H13C0.17650.15520.22840.090*0.834 (6)
C140.0263 (2)0.2976 (5)0.3027 (4)0.0452 (13)0.834 (6)
H14A0.00940.22090.27190.068*0.834 (6)
H14B0.00050.39440.29640.068*0.834 (6)
H14C0.04330.27350.37070.068*0.834 (6)
C12'0.1079 (13)0.210 (2)0.1736 (14)0.048 (7)0.166 (6)
H12D0.16210.21630.16940.073*0.166 (6)
H12E0.07610.24720.11390.073*0.166 (6)
H12F0.09440.10680.18390.073*0.166 (6)
C13'0.0927 (15)0.184 (2)0.3315 (15)0.074 (9)0.166 (6)
H13D0.13730.11850.33550.111*0.166 (6)
H13E0.04560.12480.31400.111*0.166 (6)
H13F0.09410.23130.39380.111*0.166 (6)
C14'0.0130 (7)0.361 (2)0.2415 (18)0.048 (7)0.166 (6)
H14D0.00410.35890.30280.072*0.166 (6)
H14E0.02080.29910.19480.072*0.166 (6)
H14F0.01140.46410.21800.072*0.166 (6)
C150.34660 (15)0.5559 (3)0.25896 (19)0.0225 (7)
H15A0.33740.50130.19740.027*
H15B0.35310.66230.24450.027*
C160.43888 (16)0.3562 (3)0.33031 (19)0.0203 (6)
C170.51327 (15)0.3219 (3)0.37876 (19)0.0205 (6)
H170.54820.40040.40040.025*
C180.53670 (16)0.1770 (3)0.39565 (19)0.0204 (6)
H180.58760.15650.42820.024*
C190.48608 (16)0.0590 (3)0.36514 (19)0.0202 (6)
C200.41230 (16)0.0918 (3)0.31703 (19)0.0220 (7)
H200.37740.01300.29600.026*
C210.38877 (16)0.2380 (3)0.29915 (18)0.0208 (6)
H210.33820.25810.26540.025*
C220.50943 (15)0.0962 (3)0.38371 (18)0.0194 (6)
C230.61300 (17)0.2598 (3)0.4479 (2)0.0245 (7)
H23A0.60720.32590.39120.029*
H23B0.58460.30370.49440.029*
C240.69625 (17)0.2403 (3)0.4929 (2)0.0320 (8)
H24A0.71880.33740.51330.048*
H24B0.70090.17440.54860.048*
H24C0.72340.19640.44600.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0285 (12)0.0281 (11)0.0296 (12)0.0076 (9)0.0102 (9)0.0064 (9)
O20.0288 (12)0.0204 (11)0.0285 (11)0.0036 (9)0.0072 (9)0.0018 (9)
O30.0254 (11)0.0184 (10)0.0271 (11)0.0027 (8)0.0049 (9)0.0050 (8)
N10.0229 (13)0.0186 (13)0.0255 (13)0.0000 (10)0.0045 (11)0.0029 (10)
C10.0232 (16)0.0138 (14)0.0229 (15)0.0011 (12)0.0001 (12)0.0007 (12)
C20.0201 (16)0.0216 (15)0.0254 (15)0.0033 (12)0.0044 (12)0.0012 (12)
C30.0204 (16)0.0246 (16)0.0295 (17)0.0006 (12)0.0068 (13)0.0009 (13)
C40.0191 (16)0.0217 (15)0.0252 (16)0.0030 (12)0.0009 (13)0.0025 (12)
C50.0265 (17)0.0197 (15)0.0209 (15)0.0051 (12)0.0025 (13)0.0006 (12)
C60.0225 (16)0.0176 (14)0.0189 (14)0.0036 (12)0.0035 (12)0.0029 (12)
C70.0275 (17)0.0290 (17)0.0277 (16)0.0003 (13)0.0114 (14)0.0037 (13)
C80.0319 (19)0.051 (2)0.0372 (19)0.0004 (16)0.0151 (16)0.0107 (16)
C90.0332 (19)0.0406 (19)0.0275 (17)0.0082 (15)0.0101 (14)0.0066 (15)
C100.047 (2)0.0295 (18)0.047 (2)0.0008 (15)0.0194 (17)0.0112 (16)
C110.0273 (18)0.0364 (19)0.044 (2)0.0023 (15)0.0038 (16)0.0094 (16)
C120.063 (3)0.113 (5)0.047 (3)0.052 (3)0.009 (2)0.010 (3)
C130.045 (3)0.033 (2)0.106 (4)0.014 (2)0.025 (3)0.032 (3)
C140.028 (2)0.042 (3)0.068 (3)0.0133 (19)0.016 (2)0.016 (2)
C12'0.043 (10)0.047 (10)0.053 (10)0.007 (8)0.004 (8)0.026 (8)
C13'0.078 (12)0.063 (11)0.078 (12)0.014 (9)0.007 (9)0.005 (9)
C14'0.046 (10)0.050 (10)0.048 (10)0.009 (8)0.007 (8)0.012 (8)
C150.0259 (17)0.0199 (15)0.0218 (15)0.0045 (12)0.0047 (13)0.0009 (12)
C160.0259 (16)0.0195 (15)0.0174 (14)0.0004 (12)0.0090 (12)0.0002 (12)
C170.0234 (16)0.0173 (14)0.0220 (15)0.0040 (12)0.0075 (13)0.0046 (12)
C180.0201 (15)0.0225 (15)0.0191 (14)0.0006 (12)0.0054 (12)0.0018 (12)
C190.0218 (16)0.0220 (15)0.0181 (14)0.0009 (12)0.0072 (12)0.0004 (12)
C200.0244 (16)0.0193 (15)0.0234 (15)0.0033 (12)0.0075 (13)0.0012 (12)
C210.0209 (15)0.0245 (16)0.0177 (15)0.0000 (12)0.0058 (12)0.0026 (12)
C220.0193 (16)0.0228 (15)0.0176 (14)0.0010 (13)0.0070 (12)0.0016 (12)
C230.0359 (18)0.0181 (15)0.0212 (15)0.0056 (13)0.0095 (13)0.0042 (12)
C240.0344 (19)0.0292 (17)0.0323 (18)0.0076 (14)0.0065 (15)0.0098 (14)
Geometric parameters (Å, º) top
O1—C11.376 (3)C12—H12A0.9800
O1—H1O0.8400C12—H12B0.9800
O2—C221.231 (3)C12—H12C0.9800
O3—C221.335 (3)C13—H13A0.9800
O3—C231.462 (3)C13—H13B0.9800
N1—C161.366 (3)C13—H13C0.9800
N1—C151.454 (3)C14—H14A0.9800
N1—H1N0.8800C14—H14B0.9800
C1—C61.397 (4)C14—H14C0.9800
C1—C21.407 (4)C12'—H12D0.9800
C2—C31.398 (4)C12'—H12E0.9800
C2—C71.534 (4)C12'—H12F0.9800
C3—C41.395 (4)C13'—H13D0.9800
C3—H30.9500C13'—H13E0.9800
C4—C51.391 (4)C13'—H13F0.9800
C4—C111.529 (4)C14'—H14D0.9800
C5—C61.384 (4)C14'—H14E0.9800
C5—H50.9500C14'—H14F0.9800
C6—C151.513 (4)C15—H15A0.9900
C7—C101.534 (4)C15—H15B0.9900
C7—C91.531 (4)C16—C171.400 (4)
C7—C81.536 (4)C16—C211.401 (4)
C8—H8A0.9800C17—C181.374 (4)
C8—H8B0.9800C17—H170.9500
C8—H8C0.9800C18—C191.403 (4)
C9—H9A0.9800C18—H180.9500
C9—H9B0.9800C19—C201.387 (4)
C9—H9C0.9800C19—C221.465 (4)
C10—H10A0.9800C20—C211.387 (4)
C10—H10B0.9800C20—H200.9500
C10—H10C0.9800C21—H210.9500
C11—C12'1.491 (9)C23—C241.503 (4)
C11—C141.495 (5)C23—H23A0.9900
C11—C14'1.511 (9)C23—H23B0.9900
C11—C131.526 (5)C24—H24A0.9800
C11—C13'1.531 (10)C24—H24B0.9800
C11—C121.535 (5)C24—H24C0.9800
C1—O1—H1O109.5H13A—C13—H13B109.5
C22—O3—C23117.5 (2)C11—C13—H13C109.5
C16—N1—C15125.5 (2)H13A—C13—H13C109.5
C16—N1—H1N117.2H13B—C13—H13C109.5
C15—N1—H1N117.2C11—C14—H14A109.5
O1—C1—C6121.0 (3)C11—C14—H14B109.5
O1—C1—C2117.8 (2)H14A—C14—H14B109.5
C6—C1—C2121.2 (2)C11—C14—H14C109.5
C3—C2—C1116.7 (3)H14A—C14—H14C109.5
C3—C2—C7121.1 (3)H14B—C14—H14C109.5
C1—C2—C7122.1 (2)C11—C12'—H12D109.5
C4—C3—C2123.9 (3)C11—C12'—H12E109.5
C4—C3—H3118.0H12D—C12'—H12E109.5
C2—C3—H3118.0C11—C12'—H12F109.5
C5—C4—C3116.5 (2)H12D—C12'—H12F109.5
C5—C4—C11120.2 (3)H12E—C12'—H12F109.5
C3—C4—C11123.2 (3)C11—C13'—H13D109.5
C6—C5—C4122.6 (3)C11—C13'—H13E109.5
C6—C5—H5118.7H13D—C13'—H13E109.5
C4—C5—H5118.7C11—C13'—H13F109.5
C5—C6—C1119.0 (3)H13D—C13'—H13F109.5
C5—C6—C15119.1 (2)H13E—C13'—H13F109.5
C1—C6—C15121.9 (2)C11—C14'—H14D109.5
C10—C7—C9110.0 (3)C11—C14'—H14E109.5
C10—C7—C8107.4 (3)H14D—C14'—H14E109.5
C9—C7—C8106.6 (2)C11—C14'—H14F109.5
C10—C7—C2110.6 (2)H14D—C14'—H14F109.5
C9—C7—C2110.0 (2)H14E—C14'—H14F109.5
C8—C7—C2112.2 (2)N1—C15—C6115.1 (2)
C7—C8—H8A109.5N1—C15—H15A108.5
C7—C8—H8B109.5C6—C15—H15A108.5
H8A—C8—H8B109.5N1—C15—H15B108.5
C7—C8—H8C109.5C6—C15—H15B108.5
H8A—C8—H8C109.5H15A—C15—H15B107.5
H8B—C8—H8C109.5N1—C16—C17119.0 (2)
C7—C9—H9A109.5N1—C16—C21123.0 (2)
C7—C9—H9B109.5C17—C16—C21118.0 (2)
H9A—C9—H9B109.5C18—C17—C16121.3 (2)
C7—C9—H9C109.5C18—C17—H17119.4
H9A—C9—H9C109.5C16—C17—H17119.4
H9B—C9—H9C109.5C17—C18—C19120.6 (3)
C7—C10—H10A109.5C17—C18—H18119.7
C7—C10—H10B109.5C19—C18—H18119.7
H10A—C10—H10B109.5C20—C19—C18118.6 (2)
C7—C10—H10C109.5C20—C19—C22119.9 (2)
H10A—C10—H10C109.5C18—C19—C22121.5 (2)
H10B—C10—H10C109.5C19—C20—C21120.9 (3)
C12'—C11—C14'113.0 (13)C19—C20—H20119.5
C14—C11—C13110.1 (3)C21—C20—H20119.5
C12'—C11—C13'100.8 (15)C20—C21—C16120.7 (3)
C14'—C11—C13'100.6 (13)C20—C21—H21119.7
C12'—C11—C4120.1 (9)C16—C21—H21119.7
C14—C11—C4112.8 (3)O2—C22—O3122.3 (2)
C14'—C11—C4111.9 (9)O2—C22—C19124.9 (2)
C13—C11—C4107.7 (3)O3—C22—C19112.8 (2)
C13'—C11—C4107.6 (10)O3—C23—C24105.7 (2)
C14—C11—C12108.7 (3)O3—C23—H23A110.6
C13—C11—C12109.1 (4)C24—C23—H23A110.6
C4—C11—C12108.3 (3)O3—C23—H23B110.6
C11—C12—H12A109.5C24—C23—H23B110.6
C11—C12—H12B109.5H23A—C23—H23B108.7
H12A—C12—H12B109.5C23—C24—H24A109.5
C11—C12—H12C109.5C23—C24—H24B109.5
H12A—C12—H12C109.5H24A—C24—H24B109.5
H12B—C12—H12C109.5C23—C24—H24C109.5
C11—C13—H13A109.5H24A—C24—H24C109.5
C11—C13—H13B109.5H24B—C24—H24C109.5
O1—C1—C2—C3179.0 (2)C5—C4—C11—C1360.4 (4)
C6—C1—C2—C30.7 (4)C3—C4—C11—C13115.5 (4)
O1—C1—C2—C71.2 (4)C5—C4—C11—C13'116.0 (12)
C6—C1—C2—C7178.5 (2)C3—C4—C11—C13'59.9 (12)
C1—C2—C3—C40.5 (4)C5—C4—C11—C1257.5 (4)
C7—C2—C3—C4178.3 (3)C3—C4—C11—C12126.6 (4)
C2—C3—C4—C50.6 (4)C16—N1—C15—C677.4 (3)
C2—C3—C4—C11175.5 (3)C5—C6—C15—N1113.9 (3)
C3—C4—C5—C61.5 (4)C1—C6—C15—N165.8 (3)
C11—C4—C5—C6174.7 (3)C15—N1—C16—C17171.6 (2)
C4—C5—C6—C11.3 (4)C15—N1—C16—C2110.2 (4)
C4—C5—C6—C15178.4 (2)N1—C16—C17—C18178.1 (3)
O1—C1—C6—C5179.8 (2)C21—C16—C17—C180.1 (4)
C2—C1—C6—C50.2 (4)C16—C17—C18—C190.5 (4)
O1—C1—C6—C150.1 (4)C17—C18—C19—C200.5 (4)
C2—C1—C6—C15179.6 (2)C17—C18—C19—C22179.0 (2)
C3—C2—C7—C10123.6 (3)C18—C19—C20—C210.1 (4)
C1—C2—C7—C1058.7 (3)C22—C19—C20—C21179.6 (3)
C3—C2—C7—C9114.7 (3)C19—C20—C21—C160.7 (4)
C1—C2—C7—C963.1 (3)N1—C16—C21—C20177.4 (3)
C3—C2—C7—C83.8 (4)C17—C16—C21—C200.7 (4)
C1—C2—C7—C8178.5 (3)C23—O3—C22—O24.9 (4)
C5—C4—C11—C12'1.7 (13)C23—O3—C22—C19175.4 (2)
C3—C4—C11—C12'174.2 (12)C20—C19—C22—O27.5 (4)
C5—C4—C11—C14177.9 (3)C18—C19—C22—O2172.0 (3)
C3—C4—C11—C146.2 (4)C20—C19—C22—O3172.2 (2)
C5—C4—C11—C14'134.4 (11)C18—C19—C22—O38.3 (4)
C3—C4—C11—C14'49.7 (11)C22—O3—C23—C24175.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1o···O2i0.842.132.909 (3)154
N1—H1n···O2i0.882.072.827 (3)143
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC24H33NO3
Mr383.51
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)17.788 (3), 8.9872 (14), 14.235 (2)
β (°) 101.414 (2)
V3)2230.7 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.30 × 0.10 × 0.03
Data collection
DiffractometerBruker SMART APEX
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
17094, 3928, 2428
Rint0.092
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.154, 1.03
No. of reflections3928
No. of parameters283
No. of restraints45
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.23

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1o···O2i0.842.132.909 (3)154
N1—H1n···O2i0.882.072.827 (3)143
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

We thank the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationShakir, R. M., Ariffin, A. & Ng, S. W. (2010). Acta Cryst. E66, o2915.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds