organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(4S)-(−)-4-Benzyl-2,2-di­methyl-3-o-toluoyl-1,3-oxazolidine

aFaculty of Pharmacy, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, ul. M. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland, and bFaculty of Chemistry, A. Mickiewicz University, ul. Grunwaldzka 6, 60-780 Poznań, Poland
*Correspondence e-mail: akgzella@ump.edu.pl

(Received 6 October 2010; accepted 11 October 2010; online 20 October 2010)

The absolute configuration of the title compound, C20H23NO2, has been confirmed as 4S. The benzyl residue and H atom at the asymmetric C-atom centre occupy pseudo-axial and bis­ectional positions, respectively. The oxazolidine ring adopts an envelope conformation. In the crystal structure, the mol­ecular packing is stabilized by non-classical C—H⋯O hydrogen bonds.

Related literature

For details of the synthesis, see: Chrzanowska & Dreas (2004[Chrzanowska, M. & Dreas, A. (2004). Tetrahedron Asymmetry, 15, 2561-2567.]); Chrzanowska et al. (2005[Chrzanowska, M., Dreas, A. & Rozwadowska, M. D. (2005). Tetrahedron Asymmetry, 16, 2954-2958.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For ring puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C20H23NO2

  • Mr = 309.39

  • Orthorhombic, P 21 21 2

  • a = 10.9951 (2) Å

  • b = 17.2768 (3) Å

  • c = 9.1899 (2) Å

  • V = 1745.71 (6) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.59 mm−1

  • T = 130 K

  • 0.30 × 0.20 × 0.09 mm

Data collection
  • Oxford Diffraction SuperNova Single source at offset Atlas diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.882, Tmax = 1.000

  • 9043 measured reflections

  • 3332 independent reflections

  • 3315 reflections with I > 2σ(I)

  • Rint = 0.013

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.073

  • S = 1.05

  • 3332 reflections

  • 211 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.13 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1301 Friedel pairs

  • Flack parameter: 0.11 (16)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O9i 0.98 2.54 3.4487 (13) 154
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

(4S)-2,2-Dimethyl-3-o-toluoyl-4-benzyloxazolidine has been succesfully used as a building block and chiral auxiliary in the asymmetric synthesis of (S)-(-)-O-methylbharatamine, a protoberberine derivative. The key step of the synthesis, in which a new stereogenic centre was created, involved the addition of latherally lithiated chiral o-toluamide to imine. This addition proceeded stereoselectively for cyclic imine as well as acyclic imine (Chrzanowska & Dreas, 2004); Chrzanowska et al., 2005). The title chiral o-toluamide was obtained from commercially available o-toluoyl chloride and (S)-phenylalaninol, followed by protection of functional NH and OH groups in the form of oxazolidine derivative. In order to obtain confirmation of the absolute configuration of the title compound, a single X-ray diffraction study has been undertaken.

The results obtained for the title compound confirm the absolute 4S configuration (Fig. 1). The benzyl residue and H atom at the stereogenic C4 centre occupy a pseudo-axial and bisectional positions, respectively, as seen in the angles of the C4—C17 and C4—H4 bond vectors to the Cremer & Pople oxazolidine ring plane normal of 16.52 (7)° and 53.11 (4)° (Cremer & Pople, 1975).

The mutual arrangement of the benzyl and oxazolidine systems is described by the torsion angles C18—C17—C4—N3 177.06 (8)° and C18—C17—C4—C5 66.22 (11)° indicating an antiperiplanar and synclinal conformation of the C18 atom in the phenyl group with respect to the N3 and C5 atom of the oxazolidine ring, respectively. Furthermore, the dihedral angle made by the mean planes of the above mentioned six- and five-membered systems amounts to 49.66 (4)°.

In the solid state, the oxazolidine ring has an envelope conformation [puckering parameters (Cremer & Pople, 1975) Q = 0.379 (1) Å and φ = 330.13 (16)°], with atom C5 deviating from the planar system defined by the other four atoms by 0.5776 (15) Å.

The C=O group of the amide group is synperiplanar with respect to the C2—N3 bond [the torsion angle O9—C8—N3—C2: 3.59 (15)°]. We assume that this atom arrangement is stabilized by the three-centre intramolecular C6—H6B···O9···H7B—C7 hydrogen bond (Fig. 1, Table 1). The nearly planar tertiary amide group (C2/N3/C4/C8/O9, r.m.s. = 0.010) and the benzene ring (C10—C15) are not conjugated, the dihedral angle between their mean planes being 88.60 (3)°. Simultaneously, the C8—C10 bond distance of 1.5060 (14) Å is comparable with the normal length of the unconjugated (N—)C(=O)—Car bond of 1.500 (5) Å (Allen et al., 1987). The C8–N3 bond distance of 1.3460 (13) Å is the same as the normal C—N tertiary amide distance [1.346 (5) Å; Allen et al., 1987].

The internal bond lengths and angles in 2,2-dimethyloxazolidine ring are close to those observed in other dimethyloxazolidine derivatives denoted by the following refcodes EBETUA, PIBSAV, VUMMOF, VUMNEW, WAVPUE (CSD Cambridge, version 5.31, Allen, 2002; R 0.050).

The molecular packing in the crystal lattice is stabilized by possible C4—H4···O9i non-classical intermolecular hydrogen bonds which links molecules into chains parallel to the b axis. (Fig. 2, Table 1).

Related literature top

For details of the synthesis, see: Chrzanowska & Dreas (2004); Chrzanowska et al. (2005). For bond-length data, see: Allen et al. (1987). For a description of the Cambridge Structural Database, see: Allen (2002). For ring puckering parameters, see: Cremer & Pople (1975).

Experimental top

(4S)-2,2-Dimethyl-3-o-toluoyl-4-benzyloxazolidine has been synthesized from o-toluoyl chloride and (S)-phenylalaninol, according to literature procedure of Chrzanowska and Dreas (2004). Crystals were obtained after crystallization from diethyl ether, mp. 361—363 K, [α]D = -36.35 [c 1.0, CHCl3].

Refinement top

All H atoms were positioned geometrically and were refined in a riding-model approximation with Uiso constrained to be 1.2 (1.5 for methyl groups) times Ueq of the parent atom. The methyl H atoms were refined as rigid groups, which were allowed to rotate. The range of C—H distances was 0.93–0.98 Å. The absolute configuration of the title compound was established by refinement of the Flack (1983) parameter. The rather large s.u. of the Flack parameter is due to the small contribution of atoms with measurable anomalous dispersion effects; refinement of the inverse structure leads to a value close to 1 [x = 0.89 (16)], which provides additional proof of the correct assignment of the absolute configuration.

Structure description top

(4S)-2,2-Dimethyl-3-o-toluoyl-4-benzyloxazolidine has been succesfully used as a building block and chiral auxiliary in the asymmetric synthesis of (S)-(-)-O-methylbharatamine, a protoberberine derivative. The key step of the synthesis, in which a new stereogenic centre was created, involved the addition of latherally lithiated chiral o-toluamide to imine. This addition proceeded stereoselectively for cyclic imine as well as acyclic imine (Chrzanowska & Dreas, 2004); Chrzanowska et al., 2005). The title chiral o-toluamide was obtained from commercially available o-toluoyl chloride and (S)-phenylalaninol, followed by protection of functional NH and OH groups in the form of oxazolidine derivative. In order to obtain confirmation of the absolute configuration of the title compound, a single X-ray diffraction study has been undertaken.

The results obtained for the title compound confirm the absolute 4S configuration (Fig. 1). The benzyl residue and H atom at the stereogenic C4 centre occupy a pseudo-axial and bisectional positions, respectively, as seen in the angles of the C4—C17 and C4—H4 bond vectors to the Cremer & Pople oxazolidine ring plane normal of 16.52 (7)° and 53.11 (4)° (Cremer & Pople, 1975).

The mutual arrangement of the benzyl and oxazolidine systems is described by the torsion angles C18—C17—C4—N3 177.06 (8)° and C18—C17—C4—C5 66.22 (11)° indicating an antiperiplanar and synclinal conformation of the C18 atom in the phenyl group with respect to the N3 and C5 atom of the oxazolidine ring, respectively. Furthermore, the dihedral angle made by the mean planes of the above mentioned six- and five-membered systems amounts to 49.66 (4)°.

In the solid state, the oxazolidine ring has an envelope conformation [puckering parameters (Cremer & Pople, 1975) Q = 0.379 (1) Å and φ = 330.13 (16)°], with atom C5 deviating from the planar system defined by the other four atoms by 0.5776 (15) Å.

The C=O group of the amide group is synperiplanar with respect to the C2—N3 bond [the torsion angle O9—C8—N3—C2: 3.59 (15)°]. We assume that this atom arrangement is stabilized by the three-centre intramolecular C6—H6B···O9···H7B—C7 hydrogen bond (Fig. 1, Table 1). The nearly planar tertiary amide group (C2/N3/C4/C8/O9, r.m.s. = 0.010) and the benzene ring (C10—C15) are not conjugated, the dihedral angle between their mean planes being 88.60 (3)°. Simultaneously, the C8—C10 bond distance of 1.5060 (14) Å is comparable with the normal length of the unconjugated (N—)C(=O)—Car bond of 1.500 (5) Å (Allen et al., 1987). The C8–N3 bond distance of 1.3460 (13) Å is the same as the normal C—N tertiary amide distance [1.346 (5) Å; Allen et al., 1987].

The internal bond lengths and angles in 2,2-dimethyloxazolidine ring are close to those observed in other dimethyloxazolidine derivatives denoted by the following refcodes EBETUA, PIBSAV, VUMMOF, VUMNEW, WAVPUE (CSD Cambridge, version 5.31, Allen, 2002; R 0.050).

The molecular packing in the crystal lattice is stabilized by possible C4—H4···O9i non-classical intermolecular hydrogen bonds which links molecules into chains parallel to the b axis. (Fig. 2, Table 1).

For details of the synthesis, see: Chrzanowska & Dreas (2004); Chrzanowska et al. (2005). For bond-length data, see: Allen et al. (1987). For a description of the Cambridge Structural Database, see: Allen (2002). For ring puckering parameters, see: Cremer & Pople (1975).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atomic labelling scheme. Non-H atoms are drawn as 30% probability displacement ellipsoids; H atoms are shown as small spheres of arbitrary radius.
[Figure 2] Fig. 2. The hydrogen bonding in the crystal structure of (I). Dotted lines indicate hydrogen bonds. Symmetry code: (i) -1/2 + x, 1.5 - y, 1 - z. The H atoms not involved in hydrogen bonds have been omitted for clarity.
(4S)-(-)-4-Benzyl-2,2-dimethyl-3-o-toluoyl-1,3-oxazolidine top
Crystal data top
C20H23NO2Dx = 1.177 Mg m3
Mr = 309.39Melting point = 361–363 K
Orthorhombic, P21212Cu Kα radiation, λ = 1.54184 Å
Hall symbol: P 2 2abCell parameters from 8954 reflections
a = 10.9951 (2) Åθ = 2.6–75.3°
b = 17.2768 (3) ŵ = 0.59 mm1
c = 9.1899 (2) ÅT = 130 K
V = 1745.71 (6) Å3Prism, colourless
Z = 40.30 × 0.20 × 0.09 mm
F(000) = 664
Data collection top
Oxford Diffraction SuperNova Single source at offset Atlas
diffractometer
3332 independent reflections
Radiation source: SuperNova (Cu) X-ray Source3315 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.013
Detector resolution: 5.2679 pixels mm-1θmax = 75.5°, θmin = 4.8°
ω scansh = 913
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 2121
Tmin = 0.882, Tmax = 1.000l = 1111
9043 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.073 w = 1/[σ2(Fo2) + (0.0438P)2 + 0.2282P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
3332 reflectionsΔρmax = 0.14 e Å3
211 parametersΔρmin = 0.13 e Å3
0 restraintsAbsolute structure: Flack (1983), 1301 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.11 (16)
Crystal data top
C20H23NO2V = 1745.71 (6) Å3
Mr = 309.39Z = 4
Orthorhombic, P21212Cu Kα radiation
a = 10.9951 (2) ŵ = 0.59 mm1
b = 17.2768 (3) ÅT = 130 K
c = 9.1899 (2) Å0.30 × 0.20 × 0.09 mm
Data collection top
Oxford Diffraction SuperNova Single source at offset Atlas
diffractometer
3332 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
3315 reflections with I > 2σ(I)
Tmin = 0.882, Tmax = 1.000Rint = 0.013
9043 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.073Δρmax = 0.14 e Å3
S = 1.05Δρmin = 0.13 e Å3
3332 reflectionsAbsolute structure: Flack (1983), 1301 Friedel pairs
211 parametersAbsolute structure parameter: 0.11 (16)
0 restraints
Special details top

Experimental. Absorption correction: CrysAlis Pro (Oxford Diffraction, 2009); Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.44508 (7)0.78744 (5)0.89260 (8)0.03235 (18)
C20.54700 (10)0.81054 (6)0.80707 (11)0.0279 (2)
N30.54307 (8)0.75492 (5)0.68336 (9)0.02318 (18)
C40.43450 (9)0.70515 (6)0.69370 (11)0.0233 (2)
H40.39500.69970.59860.028*
C50.35771 (10)0.75411 (6)0.79567 (12)0.0289 (2)
H5A0.31420.79390.74260.035*
H5B0.29960.72240.84820.035*
C60.65962 (11)0.80040 (7)0.90053 (13)0.0381 (3)
H6A0.65160.83070.98760.057*
H6B0.72990.81730.84730.057*
H6C0.66870.74680.92590.057*
C70.53116 (12)0.89341 (7)0.75407 (14)0.0384 (3)
H7A0.45630.89770.70100.058*
H7B0.59790.90700.69170.058*
H7C0.52930.92780.83610.058*
C80.62546 (9)0.75504 (6)0.57504 (11)0.0249 (2)
O90.71397 (7)0.79867 (5)0.57306 (9)0.03526 (19)
C100.60464 (9)0.69888 (6)0.45222 (11)0.0259 (2)
C110.53690 (10)0.72128 (6)0.33042 (11)0.0280 (2)
C120.52701 (11)0.66930 (7)0.21500 (12)0.0351 (3)
H120.48310.68330.13270.042*
C130.58144 (11)0.59718 (8)0.22089 (15)0.0399 (3)
H130.57330.56320.14300.048*
C140.64789 (12)0.57531 (7)0.34174 (14)0.0385 (3)
H140.68420.52670.34550.046*
C150.65998 (10)0.62643 (6)0.45739 (13)0.0318 (2)
H150.70520.61220.53860.038*
C160.47766 (11)0.79954 (7)0.32189 (13)0.0365 (3)
H16A0.43680.80480.23010.055*
H16B0.53860.83910.33070.055*
H16C0.41970.80480.39940.055*
C170.46564 (9)0.62539 (6)0.75855 (12)0.0273 (2)
H17A0.52330.59960.69510.033*
H17B0.50460.63280.85220.033*
C180.35598 (10)0.57400 (6)0.77822 (12)0.0260 (2)
C190.27740 (11)0.55825 (7)0.66370 (13)0.0346 (3)
H190.29170.58000.57270.042*
C200.17747 (12)0.51009 (7)0.68425 (16)0.0432 (3)
H200.12520.50030.60690.052*
C210.15498 (11)0.47678 (6)0.81733 (17)0.0428 (3)
H210.08850.44420.82980.051*
C220.23189 (11)0.49212 (7)0.93230 (16)0.0413 (3)
H220.21740.46981.02270.050*
C230.33108 (10)0.54099 (6)0.91312 (13)0.0331 (2)
H230.38160.55180.99170.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0323 (4)0.0396 (4)0.0251 (4)0.0008 (3)0.0023 (3)0.0044 (3)
C20.0275 (5)0.0295 (5)0.0267 (5)0.0001 (4)0.0019 (4)0.0035 (4)
N30.0208 (4)0.0241 (4)0.0246 (4)0.0013 (3)0.0005 (3)0.0001 (3)
C40.0186 (5)0.0263 (5)0.0249 (4)0.0017 (4)0.0005 (4)0.0020 (4)
C50.0232 (5)0.0333 (5)0.0301 (5)0.0017 (4)0.0027 (4)0.0000 (4)
C60.0360 (6)0.0437 (6)0.0346 (6)0.0030 (5)0.0113 (5)0.0059 (5)
C70.0435 (7)0.0281 (5)0.0437 (6)0.0016 (5)0.0014 (6)0.0028 (5)
C80.0214 (5)0.0265 (4)0.0267 (5)0.0005 (4)0.0007 (4)0.0044 (4)
O90.0286 (4)0.0387 (4)0.0385 (4)0.0101 (3)0.0048 (3)0.0005 (4)
C100.0216 (5)0.0292 (5)0.0267 (5)0.0013 (4)0.0054 (4)0.0018 (4)
C110.0235 (5)0.0316 (5)0.0287 (5)0.0025 (4)0.0028 (4)0.0025 (4)
C120.0305 (6)0.0446 (6)0.0302 (5)0.0032 (5)0.0006 (5)0.0029 (5)
C130.0387 (7)0.0406 (6)0.0405 (7)0.0029 (5)0.0039 (5)0.0132 (5)
C140.0374 (6)0.0311 (5)0.0471 (7)0.0041 (5)0.0071 (6)0.0036 (5)
C150.0295 (5)0.0319 (5)0.0340 (6)0.0040 (5)0.0036 (4)0.0030 (4)
C160.0356 (6)0.0368 (6)0.0372 (6)0.0035 (5)0.0058 (5)0.0040 (5)
C170.0218 (5)0.0286 (5)0.0313 (5)0.0000 (4)0.0004 (4)0.0047 (4)
C180.0220 (5)0.0220 (4)0.0341 (5)0.0027 (4)0.0012 (4)0.0007 (4)
C190.0346 (6)0.0323 (5)0.0370 (6)0.0013 (4)0.0036 (5)0.0028 (5)
C200.0326 (6)0.0342 (6)0.0627 (8)0.0016 (5)0.0125 (6)0.0102 (6)
C210.0258 (5)0.0251 (5)0.0774 (9)0.0036 (4)0.0050 (6)0.0030 (5)
C220.0361 (6)0.0337 (6)0.0542 (7)0.0049 (5)0.0087 (6)0.0100 (6)
C230.0298 (6)0.0315 (5)0.0379 (6)0.0022 (5)0.0004 (5)0.0071 (5)
Geometric parameters (Å, º) top
O1—C21.4258 (13)C12—C131.3834 (18)
O1—C51.4311 (13)C12—H120.9300
C2—N31.4892 (13)C13—C141.3820 (18)
C2—C61.5172 (15)C13—H130.9300
C2—C71.5224 (15)C14—C151.3882 (17)
N3—C81.3460 (13)C14—H140.9300
N3—C41.4742 (12)C15—H150.9300
C4—C51.5187 (14)C16—H16A0.9600
C4—C171.5398 (14)C16—H16B0.9600
C4—H40.9800C16—H16C0.9600
C5—H5A0.9700C17—C181.5082 (14)
C5—H5B0.9700C17—H17A0.9700
C6—H6A0.9600C17—H17B0.9700
C6—H6B0.9600C18—C191.3886 (16)
C6—H6C0.9600C18—C231.3918 (15)
C7—H7A0.9600C19—C201.3911 (17)
C7—H7B0.9600C19—H190.9300
C7—H7C0.9600C20—C211.374 (2)
C8—O91.2310 (12)C20—H200.9300
C8—C101.5060 (14)C21—C221.379 (2)
C10—C151.3926 (15)C21—H210.9300
C10—C111.3990 (15)C22—C231.3905 (16)
C11—C121.3940 (16)C22—H220.9300
C11—C161.5029 (16)C23—H230.9300
C2—O1—C5107.28 (7)C13—C12—C11121.11 (11)
O1—C2—N3102.56 (8)C13—C12—H12119.4
O1—C2—C6107.28 (9)C11—C12—H12119.4
N3—C2—C6112.42 (9)C14—C13—C12120.42 (11)
O1—C2—C7110.47 (10)C14—C13—H13119.8
N3—C2—C7111.06 (9)C12—C13—H13119.8
C6—C2—C7112.53 (10)C13—C14—C15119.47 (11)
C8—N3—C4126.41 (8)C13—C14—H14120.3
C8—N3—C2122.96 (8)C15—C14—H14120.3
C4—N3—C2110.53 (8)C14—C15—C10120.25 (11)
N3—C4—C599.50 (8)C14—C15—H15119.9
N3—C4—C17111.52 (8)C10—C15—H15119.9
C5—C4—C17112.53 (9)C11—C16—H16A109.5
N3—C4—H4110.9C11—C16—H16B109.5
C5—C4—H4110.9H16A—C16—H16B109.5
C17—C4—H4110.9C11—C16—H16C109.5
O1—C5—C4103.59 (8)H16A—C16—H16C109.5
O1—C5—H5A111.0H16B—C16—H16C109.5
C4—C5—H5A111.0C18—C17—C4113.29 (8)
O1—C5—H5B111.0C18—C17—H17A108.9
C4—C5—H5B111.0C4—C17—H17A108.9
H5A—C5—H5B109.0C18—C17—H17B108.9
C2—C6—H6A109.5C4—C17—H17B108.9
C2—C6—H6B109.5H17A—C17—H17B107.7
H6A—C6—H6B109.5C19—C18—C23118.19 (10)
C2—C6—H6C109.5C19—C18—C17121.46 (10)
H6A—C6—H6C109.5C23—C18—C17120.35 (10)
H6B—C6—H6C109.5C18—C19—C20120.38 (12)
C2—C7—H7A109.5C18—C19—H19119.8
C2—C7—H7B109.5C20—C19—H19119.8
H7A—C7—H7B109.5C21—C20—C19120.90 (12)
C2—C7—H7C109.5C21—C20—H20119.6
H7A—C7—H7C109.5C19—C20—H20119.6
H7B—C7—H7C109.5C20—C21—C22119.41 (11)
O9—C8—N3122.95 (10)C20—C21—H21120.3
O9—C8—C10120.24 (9)C22—C21—H21120.3
N3—C8—C10116.81 (8)C21—C22—C23120.03 (12)
C15—C10—C11120.57 (10)C21—C22—H22120.0
C15—C10—C8119.15 (9)C23—C22—H22120.0
C11—C10—C8120.15 (9)C22—C23—C18121.07 (11)
C12—C11—C10118.17 (10)C22—C23—H23119.5
C12—C11—C16120.40 (10)C18—C23—H23119.5
C10—C11—C16121.42 (10)
C5—O1—C2—N328.52 (10)C15—C10—C11—C120.25 (15)
C5—O1—C2—C6147.11 (9)C8—C10—C11—C12175.64 (9)
C5—O1—C2—C789.91 (10)C15—C10—C11—C16179.28 (10)
O1—C2—N3—C8179.07 (9)C8—C10—C11—C163.39 (15)
C6—C2—N3—C864.17 (13)C10—C11—C12—C130.67 (16)
C7—C2—N3—C862.91 (13)C16—C11—C12—C13179.71 (11)
O1—C2—N3—C44.37 (10)C11—C12—C13—C140.47 (18)
C6—C2—N3—C4119.27 (10)C12—C13—C14—C150.17 (19)
C7—C2—N3—C4113.65 (10)C13—C14—C15—C100.58 (18)
C8—N3—C4—C5157.19 (9)C11—C10—C15—C140.37 (16)
C2—N3—C4—C519.22 (10)C8—C10—C15—C14176.31 (10)
C8—N3—C4—C1783.88 (12)N3—C4—C17—C18177.06 (8)
C2—N3—C4—C1799.71 (9)C5—C4—C17—C1866.22 (11)
C2—O1—C5—C441.88 (10)C4—C17—C18—C1953.80 (13)
N3—C4—C5—O135.86 (9)C4—C17—C18—C23126.17 (10)
C17—C4—C5—O182.31 (10)C23—C18—C19—C200.61 (16)
C4—N3—C8—O9179.58 (9)C17—C18—C19—C20179.41 (10)
C2—N3—C8—O93.59 (15)C18—C19—C20—C210.49 (18)
C4—N3—C8—C100.08 (14)C19—C20—C21—C220.75 (18)
C2—N3—C8—C10175.92 (9)C20—C21—C22—C230.10 (18)
O9—C8—C10—C1586.97 (13)C21—C22—C23—C181.22 (18)
N3—C8—C10—C1593.51 (11)C19—C18—C23—C221.46 (16)
O9—C8—C10—C1188.98 (12)C17—C18—C23—C22178.56 (10)
N3—C8—C10—C1190.54 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O9i0.982.543.4487 (13)154
C6—H6B···O90.962.553.0683 (15)114
C7—H7B···O90.962.513.0800 (15)118
Symmetry code: (i) x1/2, y+3/2, z+1.

Experimental details

Crystal data
Chemical formulaC20H23NO2
Mr309.39
Crystal system, space groupOrthorhombic, P21212
Temperature (K)130
a, b, c (Å)10.9951 (2), 17.2768 (3), 9.1899 (2)
V3)1745.71 (6)
Z4
Radiation typeCu Kα
µ (mm1)0.59
Crystal size (mm)0.30 × 0.20 × 0.09
Data collection
DiffractometerOxford Diffraction SuperNova Single source at offset Atlas
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.882, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
9043, 3332, 3315
Rint0.013
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.073, 1.05
No. of reflections3332
No. of parameters211
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.13
Absolute structureFlack (1983), 1301 Friedel pairs
Absolute structure parameter0.11 (16)

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O9i0.982.543.4487 (13)154
Symmetry code: (i) x1/2, y+3/2, z+1.
 

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationChrzanowska, M. & Dreas, A. (2004). Tetrahedron Asymmetry, 15, 2561–2567.  Web of Science CrossRef CAS Google Scholar
First citationChrzanowska, M., Dreas, A. & Rozwadowska, M. D. (2005). Tetrahedron Asymmetry, 16, 2954–2958.  Web of Science CrossRef CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds