metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2-Carb­­oxy­acetato-κ2O1,O1′)(rac-5,5,7,12,12,14-hexa­methyl-1,4,8,11-tetra­aza­cyclo­tetra­decane-κ4N,N′,N′′,N′′′)nickel(II) perchlorate aceto­nitrile solvate

aDepartment of Biology and Chemistry, Hunan University of Science and Engineering, Yongzhou Hunan 425100, People's Republic of China, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 18 October 2010; accepted 20 October 2010; online 30 October 2010)

In the crystal structure of the title salt, [Ni(C3H3O4)(C16H36N4)]ClO4·CH3CN, the macrocycle folds around the NiII atom, which is also chelated by the carboxyl­ate monoanion. The geometry is a distorted NiN4O2 octa­hedron. The formula units are connected by N—H⋯O hydrogen bonds into centrosymmetric dimers. Further N—H⋯O and O—H⋯O hydrogen bonds link the complex mol­ecules and the perchlorate ions.

Related literature

For three related structures, see: Jiang et al. (2005[Jiang, L., Feng, X.-L. & Lu, T.-B. (2005). Cryst. Growth Des. 5, 1469-1475.]); Ou, Zhang & Yuan (2009[Ou, G.-C., Zhang, M. & Yuan, X.-Y. (2009). Acta Cryst. E65, m726.]); Ou, Zhou & Ng (2009[Ou, G.-C., Zhou, Q. & Ng, S. W. (2009). Acta Cryst. E65, m728.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C3H3O4)(C16H36N4)]ClO4·C2H3N

  • Mr = 586.76

  • Triclinic, [P \overline 1]

  • a = 9.5236 (4) Å

  • b = 10.1766 (4) Å

  • c = 15.3372 (6) Å

  • α = 92.899 (1)°

  • β = 107.388 (1)°

  • γ = 106.516 (1)°

  • V = 1344.99 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.87 mm−1

  • T = 173 K

  • 0.45 × 0.40 × 0.20 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.695, Tmax = 0.845

  • 11181 measured reflections

  • 5701 independent reflections

  • 4946 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.090

  • S = 1.03

  • 5701 reflections

  • 330 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.54 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3o⋯O1i 0.83 (1) 1.84 (1) 2.669 (2) 173 (3)
N1—H1⋯O4i 0.88 2.19 3.038 (2) 161
N2—H2⋯O5 0.88 2.21 3.052 (2) 160
N3—H3⋯O6ii 0.88 2.44 3.291 (2) 163
N4—H4⋯O7 0.88 2.24 3.080 (2) 161
Symmetry codes: (i) -x+1, -y, -z; (ii) x+1, y, z.

Data collection: SMART (Bruker, 2003[Bruker (2003). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

We have reported adducts of 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane with nickel carboxylates; in the synthesis, the perchlorate counterion reactant is sometimes incorporated into the crystal structure, so that the macrocycle-chelated entity is formally a mono-cation. When a dicarboxylic acid is used, only one carboxylic acid –CO2H end is deprotonated, as noted in the butenoate (Jiang et al., 2005), phthalate (Ou, Zhang & Yuan, 2009) and malate (Ou, Zhou & Ng, 2009) salts. In Ni(C16H36N4)(C3H3O4)+.ClO4-.CH3CN (Scheme I), the macrocycle folds around the nickel(II) atom, which is also chelated by the carboxylate monoanion. The geometry is an NiN4O2 octahedron (Fig. 1). Adjacent cations and anions are linked by N–H···O hydrogen bonds to form a centrosymmetric dimer (Table 1). The acetonitrile molecule does not engage in any interaction.

Related literature top

For three related structures, see: Jiang et al. (2005); Ou, Zhang & Yuan (2009); Ou, Zhou & Ng (2009).

Experimental top

Malonic acid (0.208 g, 2 mmol) and sodium hydroxide (0.08 g, 2 mmol) were dissolved in water (10 ml). To the solution was added [Ni(rac-L)](ClO4)2 (0.108 g, 2 mmol) dissolved in acetonitrile (10 ml) (rac-L = 5,5,7,12,12,14-hexamethyl-1,4,8,11tetraazacyclotetradecane). The solution was left to stand at room temperature; blue crystals formed after several days.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C–H 0.95–1.00 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2–1.5Ueq(C).

The amino H-atoms were similarly restrained [N–H 0.88 Å] with Uiso(H) set to 1.2–1.5Ueq(N).

The carboxylic acid H-atom was located in a difference Fourier map, and was refined isotropically with a distance restraint of O–H 0.84±0.01 Å.

Structure description top

We have reported adducts of 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane with nickel carboxylates; in the synthesis, the perchlorate counterion reactant is sometimes incorporated into the crystal structure, so that the macrocycle-chelated entity is formally a mono-cation. When a dicarboxylic acid is used, only one carboxylic acid –CO2H end is deprotonated, as noted in the butenoate (Jiang et al., 2005), phthalate (Ou, Zhang & Yuan, 2009) and malate (Ou, Zhou & Ng, 2009) salts. In Ni(C16H36N4)(C3H3O4)+.ClO4-.CH3CN (Scheme I), the macrocycle folds around the nickel(II) atom, which is also chelated by the carboxylate monoanion. The geometry is an NiN4O2 octahedron (Fig. 1). Adjacent cations and anions are linked by N–H···O hydrogen bonds to form a centrosymmetric dimer (Table 1). The acetonitrile molecule does not engage in any interaction.

For three related structures, see: Jiang et al. (2005); Ou, Zhang & Yuan (2009); Ou, Zhou & Ng (2009).

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of [Ni(C16H36N4)(C3H3O4)]+.ClO4-.CH3CN at the 70% probability level; hydrogen atoms are shown as spheres of arbitrary radius.
(2-Carboxyacetato-κ2O1,O1')(rac-5,5,7,12,12,14- hexamethyl-1,4,8,11-tetraazacyclotetradecane- κ4N,N',N'',N''')nickel(II) perchlorate acetonitrile solvate top
Crystal data top
[Ni(C3H3O4)(C16H36N4)]ClO4·C2H3NZ = 2
Mr = 586.76F(000) = 624
Triclinic, P1Dx = 1.449 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.5236 (4) ÅCell parameters from 7463 reflections
b = 10.1766 (4) Åθ = 2.3–27.0°
c = 15.3372 (6) ŵ = 0.87 mm1
α = 92.899 (1)°T = 173 K
β = 107.388 (1)°Block, blue
γ = 106.516 (1)°0.45 × 0.40 × 0.20 mm
V = 1344.99 (9) Å3
Data collection top
Bruker SMART APEX
diffractometer
5701 independent reflections
Radiation source: fine-focus sealed tube4946 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
φ and ω scansθmax = 27.0°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.695, Tmax = 0.845k = 1212
11181 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0459P)2 + 0.9446P]
where P = (Fo2 + 2Fc2)/3
5701 reflections(Δ/σ)max = 0.001
330 parametersΔρmax = 0.55 e Å3
1 restraintΔρmin = 0.54 e Å3
Crystal data top
[Ni(C3H3O4)(C16H36N4)]ClO4·C2H3Nγ = 106.516 (1)°
Mr = 586.76V = 1344.99 (9) Å3
Triclinic, P1Z = 2
a = 9.5236 (4) ÅMo Kα radiation
b = 10.1766 (4) ŵ = 0.87 mm1
c = 15.3372 (6) ÅT = 173 K
α = 92.899 (1)°0.45 × 0.40 × 0.20 mm
β = 107.388 (1)°
Data collection top
Bruker SMART APEX
diffractometer
5701 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4946 reflections with I > 2σ(I)
Tmin = 0.695, Tmax = 0.845Rint = 0.019
11181 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0311 restraint
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.55 e Å3
5701 reflectionsΔρmin = 0.54 e Å3
330 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.44427 (3)0.26403 (2)0.226567 (15)0.01746 (8)
Cl10.11013 (6)0.48419 (5)0.33697 (4)0.02939 (12)
O10.53455 (15)0.20193 (14)0.11561 (9)0.0226 (3)
O20.63737 (15)0.19233 (14)0.26257 (9)0.0232 (3)
O30.60045 (17)0.08012 (15)0.05987 (10)0.0296 (3)
H3O0.565 (3)0.119 (3)0.0053 (9)0.048 (8)*
O40.75796 (18)0.07704 (17)0.00664 (10)0.0366 (4)
O50.0676 (2)0.4372 (3)0.24039 (14)0.0642 (6)
O60.0232 (2)0.4920 (2)0.35800 (12)0.0452 (4)
O70.1767 (2)0.3921 (2)0.39064 (17)0.0605 (6)
O90.2239 (2)0.6171 (2)0.35917 (14)0.0593 (5)
N10.26807 (18)0.07075 (16)0.17735 (11)0.0211 (3)
H10.28500.03490.12950.025*
N20.27765 (18)0.34713 (17)0.15032 (11)0.0225 (3)
H20.23730.37730.18880.027*
N30.60664 (18)0.46469 (16)0.27909 (11)0.0211 (3)
H30.69840.45270.29540.025*
N40.41760 (19)0.26668 (16)0.35641 (11)0.0212 (3)
H40.33440.29030.35330.025*
N50.9236 (3)0.0264 (3)0.37545 (18)0.0560 (6)
C10.1245 (2)0.1067 (2)0.13879 (15)0.0292 (4)
H1A0.08760.13120.18940.035*
H1B0.04270.02600.09670.035*
C20.1553 (2)0.2276 (2)0.08669 (14)0.0282 (4)
H2A0.18900.20230.03490.034*
H2B0.05930.25230.06090.034*
C30.3327 (2)0.4644 (2)0.10165 (13)0.0255 (4)
H3A0.38130.43230.05880.031*
C40.1996 (3)0.5125 (3)0.04463 (16)0.0371 (5)
H4A0.12100.43420.00020.056*
H4B0.23960.58610.01130.056*
H4C0.15320.54800.08580.056*
C50.4547 (2)0.5866 (2)0.17060 (14)0.0276 (4)
H5A0.46770.66840.13800.033*
H5B0.41180.60600.21940.033*
C60.6159 (2)0.5764 (2)0.21848 (13)0.0249 (4)
C70.6890 (2)0.5397 (2)0.14827 (14)0.0291 (4)
H7A0.62480.44920.11170.044*
H7B0.79310.53620.18090.044*
H7C0.69590.61040.10720.044*
C80.7192 (3)0.7183 (2)0.27434 (16)0.0346 (5)
H8A0.82350.71390.30570.052*
H8B0.67520.74350.32040.052*
H8C0.72510.78800.23270.052*
C90.5823 (2)0.5038 (2)0.36648 (13)0.0269 (4)
H9A0.49170.53810.35310.032*
H9B0.67450.57910.40630.032*
C100.5551 (2)0.3792 (2)0.41571 (13)0.0268 (4)
H10A0.64720.34700.43080.032*
H10B0.53890.40490.47420.032*
C110.4025 (2)0.1328 (2)0.39390 (13)0.0256 (4)
H110.49510.10430.39490.031*
C120.3970 (3)0.1463 (2)0.49289 (15)0.0367 (5)
H12A0.48980.21910.53250.055*
H12B0.39330.05800.51640.055*
H12C0.30440.17030.49300.055*
C130.2577 (2)0.0191 (2)0.33284 (14)0.0287 (4)
H13A0.23880.05890.36840.034*
H13B0.16920.05570.32270.034*
C140.2539 (2)0.0404 (2)0.23828 (14)0.0260 (4)
C150.3865 (3)0.0994 (2)0.24651 (15)0.0309 (5)
H15A0.48560.02540.27390.046*
H15B0.37930.13850.18500.046*
H15C0.38010.17220.28590.046*
C160.1011 (3)0.1599 (2)0.19501 (17)0.0394 (5)
H16A0.09670.19940.13430.059*
H16B0.01340.12460.18800.059*
H16C0.09610.23180.23520.059*
C170.6356 (2)0.17427 (19)0.18083 (13)0.0213 (4)
C180.7602 (2)0.1236 (2)0.16206 (14)0.0287 (4)
H18A0.85140.20450.16790.034*
H18B0.79300.06600.20940.034*
C190.7075 (2)0.0401 (2)0.06769 (14)0.0249 (4)
C200.9213 (3)0.1114 (3)0.42492 (17)0.0367 (5)
C210.9193 (3)0.2199 (3)0.48808 (19)0.0461 (6)
H21A0.99080.22220.54970.069*
H21B0.81430.20200.49090.069*
H21C0.95170.30920.46660.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.01746 (13)0.02064 (13)0.01497 (12)0.00797 (9)0.00478 (9)0.00037 (8)
Cl10.0266 (2)0.0302 (3)0.0345 (3)0.0106 (2)0.0132 (2)0.0033 (2)
O10.0187 (6)0.0258 (7)0.0217 (7)0.0075 (5)0.0045 (5)0.0003 (5)
O20.0232 (7)0.0264 (7)0.0210 (7)0.0109 (6)0.0063 (5)0.0014 (5)
O30.0314 (8)0.0322 (8)0.0216 (7)0.0082 (6)0.0062 (6)0.0020 (6)
O40.0302 (8)0.0473 (10)0.0276 (8)0.0037 (7)0.0127 (7)0.0075 (7)
O50.0548 (12)0.0906 (16)0.0429 (11)0.0162 (11)0.0208 (9)0.0196 (11)
O60.0388 (9)0.0625 (12)0.0471 (10)0.0282 (9)0.0211 (8)0.0056 (9)
O70.0582 (12)0.0579 (12)0.0934 (17)0.0388 (11)0.0410 (12)0.0382 (12)
O90.0513 (12)0.0460 (11)0.0582 (13)0.0053 (9)0.0046 (10)0.0128 (9)
N10.0205 (8)0.0244 (8)0.0190 (8)0.0070 (6)0.0080 (6)0.0001 (6)
N20.0221 (8)0.0279 (8)0.0188 (8)0.0119 (7)0.0050 (6)0.0020 (6)
N30.0211 (8)0.0238 (8)0.0187 (8)0.0086 (6)0.0058 (6)0.0014 (6)
N40.0241 (8)0.0230 (8)0.0185 (8)0.0105 (6)0.0072 (6)0.0023 (6)
N50.0522 (14)0.0499 (14)0.0606 (16)0.0148 (11)0.0148 (12)0.0084 (12)
C10.0182 (9)0.0338 (11)0.0307 (11)0.0060 (8)0.0035 (8)0.0011 (8)
C20.0202 (9)0.0354 (11)0.0242 (10)0.0103 (8)0.0006 (8)0.0013 (8)
C30.0288 (10)0.0318 (11)0.0214 (9)0.0168 (9)0.0089 (8)0.0067 (8)
C40.0373 (12)0.0470 (14)0.0342 (12)0.0252 (11)0.0091 (10)0.0163 (10)
C50.0356 (11)0.0248 (10)0.0271 (10)0.0153 (9)0.0109 (9)0.0069 (8)
C60.0284 (10)0.0222 (9)0.0225 (10)0.0062 (8)0.0077 (8)0.0034 (7)
C70.0290 (11)0.0325 (11)0.0272 (10)0.0082 (9)0.0126 (9)0.0056 (8)
C80.0382 (12)0.0247 (11)0.0345 (12)0.0025 (9)0.0100 (10)0.0014 (9)
C90.0343 (11)0.0245 (10)0.0195 (9)0.0086 (8)0.0067 (8)0.0026 (7)
C100.0331 (11)0.0273 (10)0.0168 (9)0.0088 (8)0.0050 (8)0.0014 (7)
C110.0316 (11)0.0273 (10)0.0200 (9)0.0117 (8)0.0089 (8)0.0048 (8)
C120.0539 (15)0.0362 (12)0.0211 (10)0.0121 (11)0.0156 (10)0.0071 (9)
C130.0329 (11)0.0284 (10)0.0270 (10)0.0061 (9)0.0163 (9)0.0054 (8)
C140.0302 (11)0.0230 (10)0.0253 (10)0.0064 (8)0.0117 (8)0.0030 (8)
C150.0423 (12)0.0248 (10)0.0320 (11)0.0157 (9)0.0163 (10)0.0050 (8)
C160.0404 (13)0.0302 (12)0.0393 (13)0.0012 (10)0.0132 (10)0.0019 (9)
C170.0181 (9)0.0201 (9)0.0240 (9)0.0043 (7)0.0071 (7)0.0030 (7)
C180.0190 (9)0.0415 (12)0.0236 (10)0.0121 (9)0.0037 (8)0.0086 (8)
C190.0179 (9)0.0330 (11)0.0243 (10)0.0129 (8)0.0044 (8)0.0040 (8)
C200.0310 (12)0.0379 (13)0.0383 (13)0.0099 (10)0.0080 (10)0.0062 (10)
C210.0508 (15)0.0462 (15)0.0453 (15)0.0162 (12)0.0213 (12)0.0014 (11)
Geometric parameters (Å, º) top
Ni1—N42.0813 (16)C5—H5A0.9900
Ni1—N22.0868 (16)C5—H5B0.9900
Ni1—O22.1014 (13)C6—C71.529 (3)
Ni1—N12.1144 (16)C6—C81.533 (3)
Ni1—N32.1223 (16)C7—H7A0.9800
Ni1—O12.2603 (13)C7—H7B0.9800
Ni1—C172.5082 (18)C7—H7C0.9800
Cl1—O61.4222 (16)C8—H8A0.9800
Cl1—O91.4213 (19)C8—H8B0.9800
Cl1—O51.4306 (19)C8—H8C0.9800
Cl1—O71.4359 (19)C9—C101.507 (3)
O1—C171.270 (2)C9—H9A0.9900
O2—C171.252 (2)C9—H9B0.9900
O3—C191.324 (3)C10—H10A0.9900
O3—H3o0.83 (1)C10—H10B0.9900
O4—C191.204 (3)C11—C131.526 (3)
N1—C11.475 (2)C11—C121.535 (3)
N1—C141.505 (2)C11—H111.0000
N1—H10.8800C12—H12A0.9800
N2—C21.478 (3)C12—H12B0.9800
N2—C31.491 (3)C12—H12C0.9800
N2—H20.8800C13—C141.529 (3)
N3—C91.481 (2)C13—H13A0.9900
N3—C61.504 (2)C13—H13B0.9900
N3—H30.8800C14—C151.521 (3)
N4—C101.478 (2)C14—C161.540 (3)
N4—C111.491 (2)C15—H15A0.9800
N4—H40.8800C15—H15B0.9800
N5—C201.131 (3)C15—H15C0.9800
C1—C21.508 (3)C16—H16A0.9800
C1—H1A0.9900C16—H16B0.9800
C1—H1B0.9900C16—H16C0.9800
C2—H2A0.9900C17—C181.515 (3)
C2—H2B0.9900C18—C191.506 (3)
C3—C41.531 (3)C18—H18A0.9900
C3—C51.525 (3)C18—H18B0.9900
C3—H3A1.0000C20—C211.439 (3)
C4—H4A0.9800C21—H21A0.9800
C4—H4B0.9800C21—H21B0.9800
C4—H4C0.9800C21—H21C0.9800
C5—C61.527 (3)
N4—Ni1—N2104.09 (6)C5—C6—C7111.33 (16)
N4—Ni1—O295.69 (6)N3—C6—C8111.54 (16)
N2—Ni1—O2159.77 (6)C5—C6—C8108.18 (17)
N4—Ni1—N191.55 (6)C7—C6—C8108.01 (17)
N2—Ni1—N185.19 (6)C6—C7—H7A109.5
O2—Ni1—N198.65 (6)C6—C7—H7B109.5
N4—Ni1—N385.63 (6)H7A—C7—H7B109.5
N2—Ni1—N391.43 (6)C6—C7—H7C109.5
O2—Ni1—N385.80 (6)H7A—C7—H7C109.5
N1—Ni1—N3174.96 (6)H7B—C7—H7C109.5
N4—Ni1—O1154.65 (6)C6—C8—H8A109.5
N2—Ni1—O1100.65 (6)C6—C8—H8B109.5
O2—Ni1—O160.22 (5)H8A—C8—H8B109.5
N1—Ni1—O185.06 (5)C6—C8—H8C109.5
N3—Ni1—O199.27 (5)H8A—C8—H8C109.5
N4—Ni1—C17125.20 (6)H8B—C8—H8C109.5
N2—Ni1—C17130.70 (6)N3—C9—C10109.34 (16)
O2—Ni1—C1729.89 (6)N3—C9—H9A109.8
N1—Ni1—C1792.09 (6)C10—C9—H9A109.8
N3—Ni1—C1792.95 (6)N3—C9—H9B109.8
O1—Ni1—C1730.33 (6)C10—C9—H9B109.8
O6—Cl1—O9110.07 (13)H9A—C9—H9B108.3
O6—Cl1—O5109.36 (12)N4—C10—C9109.92 (16)
O9—Cl1—O5108.85 (13)N4—C10—H10A109.7
O6—Cl1—O7110.15 (12)C9—C10—H10A109.7
O9—Cl1—O7107.90 (13)N4—C10—H10B109.7
O5—Cl1—O7110.50 (14)C9—C10—H10B109.7
C17—O1—Ni185.69 (11)H10A—C10—H10B108.2
C17—O2—Ni193.34 (11)N4—C11—C13111.13 (16)
C19—O3—H3O110 (2)N4—C11—C12111.90 (16)
C1—N1—C14113.93 (15)C13—C11—C12109.05 (17)
C1—N1—Ni1104.51 (12)N4—C11—H11108.2
C14—N1—Ni1120.56 (12)C13—C11—H11108.2
C1—N1—H1105.6C12—C11—H11108.2
C14—N1—H1105.6C11—C12—H12A109.5
Ni1—N1—H1105.6C11—C12—H12B109.5
C2—N2—C3112.71 (15)H12A—C12—H12B109.5
C2—N2—Ni1104.89 (12)C11—C12—H12C109.5
C3—N2—Ni1116.63 (12)H12A—C12—H12C109.5
C2—N2—H2107.4H12B—C12—H12C109.5
C3—N2—H2107.4C14—C13—C11119.18 (17)
Ni1—N2—H2107.4C14—C13—H13A107.5
C9—N3—C6114.03 (15)C11—C13—H13A107.5
C9—N3—Ni1104.30 (11)C14—C13—H13B107.5
C6—N3—Ni1120.41 (12)C11—C13—H13B107.5
C9—N3—H3105.7H13A—C13—H13B107.0
C6—N3—H3105.7N1—C14—C15107.74 (16)
Ni1—N3—H3105.7N1—C14—C13110.42 (16)
C10—N4—C11112.07 (15)C15—C14—C13111.55 (17)
C10—N4—Ni1104.22 (12)N1—C14—C16111.13 (17)
C11—N4—Ni1115.03 (11)C15—C14—C16107.64 (18)
C10—N4—H4108.4C13—C14—C16108.34 (17)
C11—N4—H4108.4C14—C15—H15A109.5
Ni1—N4—H4108.4C14—C15—H15B109.5
N1—C1—C2109.58 (16)H15A—C15—H15B109.5
N1—C1—H1A109.8C14—C15—H15C109.5
C2—C1—H1A109.8H15A—C15—H15C109.5
N1—C1—H1B109.8H15B—C15—H15C109.5
C2—C1—H1B109.8C14—C16—H16A109.5
H1A—C1—H1B108.2C14—C16—H16B109.5
N2—C2—C1109.16 (16)H16A—C16—H16B109.5
N2—C2—H2A109.8C14—C16—H16C109.5
C1—C2—H2A109.8H16A—C16—H16C109.5
N2—C2—H2B109.8H16B—C16—H16C109.5
C1—C2—H2B109.8O2—C17—O1120.74 (17)
H2A—C2—H2B108.3O2—C17—C18118.42 (17)
N2—C3—C4112.02 (17)O1—C17—C18120.80 (17)
N2—C3—C5110.60 (16)O2—C17—Ni156.76 (9)
C4—C3—C5109.25 (17)O1—C17—Ni163.98 (10)
N2—C3—H3A108.3C18—C17—Ni1174.93 (14)
C4—C3—H3A108.3C19—C18—C17113.04 (16)
C5—C3—H3A108.3C19—C18—H18A109.0
C3—C4—H4A109.5C17—C18—H18A109.0
C3—C4—H4B109.5C19—C18—H18B109.0
H4A—C4—H4B109.5C17—C18—H18B109.0
C3—C4—H4C109.5H18A—C18—H18B107.8
H4A—C4—H4C109.5O4—C19—O3123.73 (18)
H4B—C4—H4C109.5O4—C19—C18124.16 (19)
C6—C5—C3119.38 (16)O3—C19—C18112.10 (18)
C6—C5—H5A107.5N5—C20—C21179.6 (3)
C3—C5—H5A107.5C20—C21—H21A109.5
C6—C5—H5B107.5C20—C21—H21B109.5
C3—C5—H5B107.5H21A—C21—H21B109.5
H5A—C5—H5B107.0C20—C21—H21C109.5
N3—C6—C5110.32 (16)H21A—C21—H21C109.5
N3—C6—C7107.46 (16)H21B—C21—H21C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3o···O1i0.83 (1)1.84 (1)2.669 (2)173 (3)
N1—H1···O4i0.882.193.038 (2)161
N2—H2···O50.882.213.052 (2)160
N3—H3···O6ii0.882.443.291 (2)163
N4—H4···O70.882.243.080 (2)161
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Ni(C3H3O4)(C16H36N4)]ClO4·C2H3N
Mr586.76
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)9.5236 (4), 10.1766 (4), 15.3372 (6)
α, β, γ (°)92.899 (1), 107.388 (1), 106.516 (1)
V3)1344.99 (9)
Z2
Radiation typeMo Kα
µ (mm1)0.87
Crystal size (mm)0.45 × 0.40 × 0.20
Data collection
DiffractometerBruker SMART APEX
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.695, 0.845
No. of measured, independent and
observed [I > 2σ(I)] reflections
11181, 5701, 4946
Rint0.019
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.090, 1.03
No. of reflections5701
No. of parameters330
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.55, 0.54

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3o···O1i0.83 (1)1.84 (1)2.669 (2)173 (3)
N1—H1···O4i0.882.193.038 (2)161
N2—H2···O50.882.213.052 (2)160
N3—H3···O6ii0.882.443.291 (2)163
N4—H4···O70.882.243.080 (2)161
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z.
 

Acknowledgements

We thank the Key Subject Construction Project of Hunan Province (2006–180), the Scientific Research Fund of Hunan Provincial Education Department (10B039), the Scientific Research Fund of Hunan Provincial Education Department (10 C0730) and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2003). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJiang, L., Feng, X.-L. & Lu, T.-B. (2005). Cryst. Growth Des. 5, 1469–1475.  Web of Science CSD CrossRef CAS Google Scholar
First citationOu, G.-C., Zhang, M. & Yuan, X.-Y. (2009). Acta Cryst. E65, m726.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOu, G.-C., Zhou, Q. & Ng, S. W. (2009). Acta Cryst. E65, m728.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds