organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[(2-Bromo­phen­yl)imino­meth­yl]-6-methyl­phenol

aDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, Kurupelit, TR-55139 Samsun, Turkey, and bDepartment of Chemistry, Faculty of Arts and Sciences, Yüzüncü Yıl Univercity, 65250 Van, Turkey
*Correspondence e-mail: asli.karadag@omu.edu.tr

(Received 18 October 2010; accepted 22 October 2010; online 30 October 2010)

In the title compound, C14H12BrNO, is a Schiff base which adopts the phenol–imine tautomeric form in the solid state. The dihedral angle between the two aromatic rings is 34.26 (9)° and an intra­molecular O—H⋯N hydrogen bond generates an S(6) ring.

Related literature

For Schiff bases and their applications, see: Calligaris et al. (1972[Calligaris, M., Nardin, G. & Randaccio, L. (1972). Coord. Chem. Rev. 7, 385-403.]); Singh et al. (1975[Singh, P., Goel, R. L. & Singh, B. P. (1975). J. Indian Chem. Soc. 52, 958-959.]). For a related structure, see: Temel et al. (2007[Temel, E., Albayrak, Ç., Odabaşoğlu, M. & Büyükgüngör, O. (2007). Acta Cryst. E63, o2642.]).

[Scheme 1]

Experimental

Crystal data
  • C14H12BrNO

  • Mr = 290.16

  • Orthorhombic, P 21 21 21

  • a = 7.9407 (4) Å

  • b = 11.6754 (8) Å

  • c = 13.1960 (6) Å

  • V = 1223.41 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.34 mm−1

  • T = 296 K

  • 0.47 × 0.39 × 0.24 mm

Data collection
  • Stoe IPDS 2 diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.358, Tmax = 0.525

  • 21115 measured reflections

  • 2929 independent reflections

  • 2427 reflections with I > 2σ(I)

  • Rint = 0.067

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.080

  • S = 1.07

  • 2929 reflections

  • 160 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.64 e Å−3

  • Δρmin = −0.27 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1229 Friedel pairs

  • Flack parameter: −0.003 (10)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.89 (4) 1.81 (3) 2.611 (3) 149 (3)

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Schiff bases have been used extensively as ligands in the field of coordination chemistry (Calligaris et al., 1972). Schiff bases derived from aromatic amines and aromatic aldehydes have a wide variety of applications in many fields, e.g., biological, inorganic and analytical chemistry (Singh et al., 1975).

Schiff base compounds show photochromism and thermochromism in the solid state by proton transfer from the hydroxyl O atom to the imine N atom.

The overall behaviour of these compounds has been ascribed to a proton-transfer reaction between a phenol-imine and a keto-amine tautomer. In solution, the existence of this tautomerism, which depends on the formation of intramolecular hydrogen bonds, is possible.

X-ray investigation of the title compound, (I), has indicated that the phenol-imine tautomer is favoured over the keto-amine tautomer. Bond lengths (Fig. 1) C2—O1 [1.364 (3) Å], C7—N1 [1.285 (3) Å], C1—C7 [1.451 (4) Å] and C1—C2 [1.403 (4) Å]. The C2—O1 bond length of 1.364 (3) Å indicates a single-bond character, whereas the C7—N1 bond length of 1.285 (3) Å indicates a high degree of double-bond character. Similar results were observed for (E)-3-[(2- fluorophenylimino)methyl]benzene-1,2-diol [C—O = 1.354 (19) Å, C—N = 1.285 (2) Å; Temel et al., 2007].

N···H—O hydrogen bond generate an S(6) ring motif (Fig. 1).

Related literature top

For Schiff bases and their applications, see: Calligaris et al. (1972); Singh et al. (1975). For a related structure, see: Temel et al. (2007).

Experimental top

The compound 2-[(2-Bromophenylimino) methyl]-6- methylphenol was prepared by reflux a mixture of a solution containing 3-Methylsalicylaldehyde (0.05 g 0.36 mmol) in 20 ml e thanol and a solution containing 2-Bromoaniline(0.062 g 0.36 mmol) in 20 ml e thanol. The reaction mixture was stirred for 1 hunder reflux. The crystals of 2-[(2-Bromophenylimino) methyl]-6- methylphenol suitable for X-ray analysis were obtained from ethylalcohol by slow evaporation (yield % 63; m.p.418–420 K).

Refinement top

H atoms were positioned geometrically with distances 0.93 Å for aromatic C—H, 0.97 Å for methylene C—H, 0.86 Å for O—H hydroxyl group and refined a riding model with Uiso(H) = 1.2Ueq(C,O).

Structure description top

Schiff bases have been used extensively as ligands in the field of coordination chemistry (Calligaris et al., 1972). Schiff bases derived from aromatic amines and aromatic aldehydes have a wide variety of applications in many fields, e.g., biological, inorganic and analytical chemistry (Singh et al., 1975).

Schiff base compounds show photochromism and thermochromism in the solid state by proton transfer from the hydroxyl O atom to the imine N atom.

The overall behaviour of these compounds has been ascribed to a proton-transfer reaction between a phenol-imine and a keto-amine tautomer. In solution, the existence of this tautomerism, which depends on the formation of intramolecular hydrogen bonds, is possible.

X-ray investigation of the title compound, (I), has indicated that the phenol-imine tautomer is favoured over the keto-amine tautomer. Bond lengths (Fig. 1) C2—O1 [1.364 (3) Å], C7—N1 [1.285 (3) Å], C1—C7 [1.451 (4) Å] and C1—C2 [1.403 (4) Å]. The C2—O1 bond length of 1.364 (3) Å indicates a single-bond character, whereas the C7—N1 bond length of 1.285 (3) Å indicates a high degree of double-bond character. Similar results were observed for (E)-3-[(2- fluorophenylimino)methyl]benzene-1,2-diol [C—O = 1.354 (19) Å, C—N = 1.285 (2) Å; Temel et al., 2007].

N···H—O hydrogen bond generate an S(6) ring motif (Fig. 1).

For Schiff bases and their applications, see: Calligaris et al. (1972); Singh et al. (1975). For a related structure, see: Temel et al. (2007).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability.
2-[(2-Bromophenyl)iminomethyl]-6-methylphenol top
Crystal data top
C14H12BrNOF(000) = 584
Mr = 290.16Dx = 1.575 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 23647 reflections
a = 7.9407 (4) Åθ = 2.3–28.0°
b = 11.6754 (8) ŵ = 3.34 mm1
c = 13.1960 (6) ÅT = 296 K
V = 1223.41 (12) Å3Prism, yellow
Z = 40.47 × 0.39 × 0.24 mm
Data collection top
Stoe IPDS 2
diffractometer
2929 independent reflections
Radiation source: fine-focus sealed tube2427 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.067
Detector resolution: 6.67 pixels mm-1θmax = 28.0°, θmin = 2.3°
rotation method scansh = 1010
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 1515
Tmin = 0.358, Tmax = 0.525l = 1717
21115 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.035 w = 1/[σ2(Fo2) + (0.0416P)2 + 0.0403P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.080(Δ/σ)max = 0.001
S = 1.07Δρmax = 0.64 e Å3
2929 reflectionsΔρmin = 0.27 e Å3
160 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0200 (16)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1229 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.003 (10)
Crystal data top
C14H12BrNOV = 1223.41 (12) Å3
Mr = 290.16Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.9407 (4) ŵ = 3.34 mm1
b = 11.6754 (8) ÅT = 296 K
c = 13.1960 (6) Å0.47 × 0.39 × 0.24 mm
Data collection top
Stoe IPDS 2
diffractometer
2929 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
2427 reflections with I > 2σ(I)
Tmin = 0.358, Tmax = 0.525Rint = 0.067
21115 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.035H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.080Δρmax = 0.64 e Å3
S = 1.07Δρmin = 0.27 e Å3
2929 reflectionsAbsolute structure: Flack (1983), 1229 Friedel pairs
160 parametersAbsolute structure parameter: 0.003 (10)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
H10.744 (4)0.652 (3)0.652 (3)0.062 (9)*
Br10.79638 (5)0.84452 (3)0.81971 (3)0.07572 (15)
C40.7065 (4)0.5259 (2)0.3545 (2)0.0582 (7)
H40.64000.49450.30360.070*
N10.9650 (3)0.68078 (17)0.67303 (16)0.0487 (5)
C71.0181 (3)0.6620 (2)0.58252 (19)0.0477 (5)
H71.13020.67680.56690.057*
C50.8731 (4)0.5467 (3)0.3351 (2)0.0609 (7)
H50.91810.52920.27190.073*
C10.9072 (3)0.6182 (2)0.50413 (18)0.0452 (5)
O10.6641 (2)0.62056 (19)0.61369 (15)0.0596 (5)
C20.7361 (3)0.5966 (2)0.52228 (18)0.0457 (6)
C101.3450 (4)0.7113 (3)0.8347 (3)0.0666 (8)
H101.45530.68480.83800.080*
C131.0198 (4)0.7883 (2)0.8254 (2)0.0527 (6)
C91.2424 (4)0.6774 (2)0.7555 (2)0.0569 (7)
H91.28430.62840.70600.068*
C60.9732 (4)0.5931 (3)0.40857 (19)0.0568 (7)
H61.08600.60800.39490.068*
C30.6334 (4)0.5500 (2)0.4475 (2)0.0503 (6)
C81.0769 (3)0.7162 (2)0.7491 (2)0.0482 (6)
C111.2857 (5)0.7834 (3)0.9084 (3)0.0683 (8)
H111.35570.80590.96130.082*
C140.4513 (4)0.5289 (3)0.4673 (3)0.0710 (8)
H14A0.43960.47700.52330.106*
H14B0.40030.49600.40810.106*
H14C0.39670.60000.48320.106*
C121.1230 (5)0.8226 (3)0.9041 (2)0.0626 (8)
H121.08230.87180.95380.075*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0655 (2)0.0941 (2)0.06760 (19)0.01958 (17)0.00516 (17)0.00921 (17)
C40.0647 (17)0.0583 (15)0.0515 (13)0.0010 (15)0.0149 (14)0.0035 (11)
N10.0488 (11)0.0516 (11)0.0456 (10)0.0009 (8)0.0020 (10)0.0013 (10)
C70.0435 (12)0.0506 (12)0.0490 (13)0.0016 (12)0.0018 (11)0.0009 (12)
C50.0707 (18)0.0695 (17)0.0425 (14)0.0056 (15)0.0005 (13)0.0047 (13)
C10.0471 (13)0.0462 (13)0.0422 (11)0.0007 (10)0.0007 (11)0.0048 (9)
O10.0456 (10)0.0832 (14)0.0500 (10)0.0008 (9)0.0042 (9)0.0049 (9)
C20.0469 (14)0.0450 (12)0.0450 (12)0.0035 (10)0.0006 (10)0.0046 (10)
C100.0527 (16)0.0665 (17)0.081 (2)0.0055 (13)0.0152 (15)0.0016 (16)
C130.0576 (15)0.0524 (13)0.0482 (13)0.0044 (12)0.0004 (14)0.0009 (13)
C90.0486 (15)0.0564 (16)0.0657 (16)0.0019 (11)0.0052 (12)0.0064 (12)
C60.0542 (15)0.0695 (17)0.0467 (14)0.0024 (13)0.0078 (13)0.0004 (13)
C30.0466 (13)0.0507 (13)0.0536 (14)0.0009 (11)0.0083 (12)0.0049 (11)
C80.0492 (14)0.0464 (13)0.0489 (13)0.0062 (11)0.0030 (12)0.0016 (11)
C110.073 (2)0.0618 (17)0.0697 (18)0.0122 (16)0.0224 (18)0.0005 (14)
C140.0507 (17)0.083 (2)0.079 (2)0.0072 (15)0.0082 (16)0.0021 (18)
C120.077 (2)0.0556 (17)0.0554 (15)0.0096 (15)0.0013 (15)0.0058 (13)
Geometric parameters (Å, º) top
Br1—C131.893 (3)C10—C111.370 (5)
C4—C51.370 (5)C10—C91.383 (4)
C4—C31.386 (4)C10—H100.9300
C4—H40.9300C13—C121.382 (4)
N1—C71.285 (3)C13—C81.388 (4)
N1—C81.402 (3)C9—C81.392 (4)
C7—C11.451 (4)C9—H90.9300
C7—H70.9300C6—H60.9300
C5—C61.366 (4)C3—C141.490 (4)
C5—H50.9300C11—C121.372 (5)
C1—C61.397 (4)C11—H110.9300
C1—C21.403 (4)C14—H14A0.9600
O1—C21.364 (3)C14—H14B0.9600
O1—H10.89 (4)C14—H14C0.9600
C2—C31.390 (4)C12—H120.9300
C5—C4—C3122.3 (3)C10—C9—H9119.7
C5—C4—H4118.9C8—C9—H9119.7
C3—C4—H4118.9C5—C6—C1120.4 (3)
C7—N1—C8120.5 (2)C5—C6—H6119.8
N1—C7—C1121.6 (2)C1—C6—H6119.8
N1—C7—H7119.2C4—C3—C2117.5 (3)
C1—C7—H7119.2C4—C3—C14121.8 (3)
C6—C5—C4120.0 (3)C2—C3—C14120.7 (3)
C6—C5—H5120.0C13—C8—C9117.4 (3)
C4—C5—H5120.0C13—C8—N1119.4 (3)
C6—C1—C2118.7 (2)C9—C8—N1123.1 (2)
C6—C1—C7119.3 (3)C10—C11—C12119.9 (3)
C2—C1—C7122.0 (2)C10—C11—H11120.0
C2—O1—H1107 (2)C12—C11—H11120.0
O1—C2—C3117.5 (2)C3—C14—H14A109.5
O1—C2—C1121.3 (2)C3—C14—H14B109.5
C3—C2—C1121.2 (2)H14A—C14—H14B109.5
C11—C10—C9120.7 (3)C3—C14—H14C109.5
C11—C10—H10119.7H14A—C14—H14C109.5
C9—C10—H10119.7H14B—C14—H14C109.5
C12—C13—C8121.8 (3)C11—C12—C13119.5 (3)
C12—C13—Br1119.0 (2)C11—C12—H12120.2
C8—C13—Br1119.2 (2)C13—C12—H12120.2
C10—C9—C8120.6 (3)
C8—N1—C7—C1176.0 (2)C1—C2—C3—C40.0 (4)
C3—C4—C5—C60.2 (5)O1—C2—C3—C140.7 (4)
N1—C7—C1—C6176.4 (3)C1—C2—C3—C14179.2 (3)
N1—C7—C1—C21.4 (4)C12—C13—C8—C91.1 (4)
C6—C1—C2—O1179.3 (2)Br1—C13—C8—C9179.5 (2)
C7—C1—C2—O12.9 (4)C12—C13—C8—N1177.7 (2)
C6—C1—C2—C30.6 (4)Br1—C13—C8—N14.0 (3)
C7—C1—C2—C3177.2 (2)C10—C9—C8—C130.7 (4)
C11—C10—C9—C80.1 (5)C10—C9—C8—N1177.1 (3)
C4—C5—C6—C10.8 (5)C7—N1—C8—C13147.8 (2)
C2—C1—C6—C51.0 (4)C7—N1—C8—C935.8 (4)
C7—C1—C6—C5176.9 (3)C9—C10—C11—C120.1 (5)
C5—C4—C3—C20.2 (4)C10—C11—C12—C130.3 (5)
C5—C4—C3—C14179.0 (3)C8—C13—C12—C110.9 (4)
O1—C2—C3—C4179.9 (2)Br1—C13—C12—C11179.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.89 (4)1.81 (3)2.611 (3)149 (3)

Experimental details

Crystal data
Chemical formulaC14H12BrNO
Mr290.16
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)7.9407 (4), 11.6754 (8), 13.1960 (6)
V3)1223.41 (12)
Z4
Radiation typeMo Kα
µ (mm1)3.34
Crystal size (mm)0.47 × 0.39 × 0.24
Data collection
DiffractometerStoe IPDS 2
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.358, 0.525
No. of measured, independent and
observed [I > 2σ(I)] reflections
21115, 2929, 2427
Rint0.067
(sin θ/λ)max1)0.659
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.080, 1.07
No. of reflections2929
No. of parameters160
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.64, 0.27
Absolute structureFlack (1983), 1229 Friedel pairs
Absolute structure parameter0.003 (10)

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.89 (4)1.81 (3)2.611 (3)149 (3)
 

Acknowledgements

The authors wish to acknowledge the Faculty of Arts and Sciences of Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant No. F279 of the University Research Grant of Ondokuz Mayıs University).

References

First citationCalligaris, M., Nardin, G. & Randaccio, L. (1972). Coord. Chem. Rev. 7, 385–403.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, P., Goel, R. L. & Singh, B. P. (1975). J. Indian Chem. Soc. 52, 958–959.  CAS Google Scholar
First citationStoe & Cie (2002). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTemel, E., Albayrak, Ç., Odabaşoğlu, M. & Büyükgüngör, O. (2007). Acta Cryst. E63, o2642.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds