organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Z)-3-Hydrazinyl­­idene-1-phenyl­indolin-2-one

aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 26 October 2010; accepted 27 October 2010; online 31 October 2010)

The indoline fused-ring system of the title Schiff base, C14H11N3O, is planar (r.m.s. deviation = 0.005 Å); the phenyl substituent is aligned at 66.5 (1)° with respect to the ring system. The amino –NH2 unit forms an intra­molecular hydrogen bond with the carbonyl O atom. Mol­ecules are connected by an inter­molecular N—H⋯N hydrogen bond, generating a zigzag chain that runs along the short c axis of the unit cell.

Related literature

For the synthesis of the title compound, see: de Diesbach & Heppner (1949[Diesbach, H. de & Heppner, E. (1949). Helv. Chim. Acta, 32, 687-691.]).

[Scheme 1]

Experimental

Crystal data
  • C14H11N3O

  • Mr = 237.26

  • Orthorhombic, F d d 2

  • a = 19.328 (3) Å

  • b = 41.612 (5) Å

  • c = 5.6288 (7) Å

  • V = 4527 (1) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.35 × 0.04 × 0.02 mm

Data collection
  • Bruker SMART APEX diffractometer

  • 10569 measured reflections

  • 1430 independent reflections

  • 1188 reflections with I > 2σ(I)

  • Rint = 0.079

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.092

  • S = 1.03

  • 1430 reflections

  • 171 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.22 e Å−3

  • Absolute structure: 1138 Friedel pairs were merged

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H1⋯O1 0.88 (1) 2.06 (2) 2.772 (3) 137 (3)
N3—H2⋯N2i 0.89 (1) 2.22 (1) 3.102 (3) 177 (3)
Symmetry code: (i) [-x+{\script{1\over 2}}, -y, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Isatin derivatives such as phenylisatin have been studied in the context of its biological properties. We have synthesized the condensation product of phenylisatin with hydrazine for evaluation as a chemotherapeutic agent. The title hydrazone (Scheme I) is only mentioned once in the chemical literature (de Diesbach & Heppner, 1949). The indolinyl fused-ring is twisted with respect to the phenyl substituent by 66.5 (1)° (Fig. 1). The amino –NH2 unit forms an intramolecular hydrogen bond with the carbonyl O atom; the unit uses its other H atom for intermolecular hydrogen bonding to the two-coordinate N atom (Fig. 2). The intramolecular N—H···N interaction generates a zigzag chain that runs along the short c axis of the unit cell.

Related literature top

For the synthesis of the title compound, see: de Diesbach & Heppner (1949).

Experimental top

1-Phenylindoline-2,3-dione (0.220 g, 1 mmol) and hydrazine hydrate (0.055 g, 1.1 mmol) were dissolved in methanol (25 ml) and the solution heated for 1 h. The solvent was evaporated and the product recrystallized from ethanol to give yellow prismatic crystals; yield 70%.

Refinement top

Carbon-bound H atoms were placed in calculated positions (C—H 0.95 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2 times Ueq(C).

The amino H atoms were located in a difference Fourier map, and were refined isotropically with a distance restraint of N—H 0.88 (1) Å.

As the structure has no anomalous scatterer, 1138 Friedel pairs were merged.

Structure description top

Isatin derivatives such as phenylisatin have been studied in the context of its biological properties. We have synthesized the condensation product of phenylisatin with hydrazine for evaluation as a chemotherapeutic agent. The title hydrazone (Scheme I) is only mentioned once in the chemical literature (de Diesbach & Heppner, 1949). The indolinyl fused-ring is twisted with respect to the phenyl substituent by 66.5 (1)° (Fig. 1). The amino –NH2 unit forms an intramolecular hydrogen bond with the carbonyl O atom; the unit uses its other H atom for intermolecular hydrogen bonding to the two-coordinate N atom (Fig. 2). The intramolecular N—H···N interaction generates a zigzag chain that runs along the short c axis of the unit cell.

For the synthesis of the title compound, see: de Diesbach & Heppner (1949).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Anisotropic displacement ellipsoid plot (Barbour, 2001) of C14H11N3O at the 70% probability level; H atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. Hydrogen-bonded chain structure.
(Z)-3-Hydrazinylidene-1-phenylindolin-2-one top
Crystal data top
C14H11N3OF(000) = 1984
Mr = 237.26Dx = 1.392 Mg m3
Orthorhombic, Fdd2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: F 2 -2dCell parameters from 1516 reflections
a = 19.328 (3) Åθ = 2.3–27.8°
b = 41.612 (5) ŵ = 0.09 mm1
c = 5.6288 (7) ÅT = 100 K
V = 4527 (1) Å3Prism, yellow
Z = 160.35 × 0.04 × 0.02 mm
Data collection top
Bruker SMART APEX
diffractometer
1188 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.079
Graphite monochromatorθmax = 27.5°, θmin = 2.3°
ω scansh = 2424
10569 measured reflectionsk = 5454
1430 independent reflectionsl = 77
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.092 w = 1/[σ2(Fo2) + (0.054P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
1430 reflectionsΔρmax = 0.27 e Å3
171 parametersΔρmin = 0.22 e Å3
3 restraintsAbsolute structure: 1138 Friedel pairs were merged
Primary atom site location: structure-invariant direct methods
Crystal data top
C14H11N3OV = 4527 (1) Å3
Mr = 237.26Z = 16
Orthorhombic, Fdd2Mo Kα radiation
a = 19.328 (3) ŵ = 0.09 mm1
b = 41.612 (5) ÅT = 100 K
c = 5.6288 (7) Å0.35 × 0.04 × 0.02 mm
Data collection top
Bruker SMART APEX
diffractometer
1188 reflections with I > 2σ(I)
10569 measured reflectionsRint = 0.079
1430 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0403 restraints
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.27 e Å3
1430 reflectionsΔρmin = 0.22 e Å3
171 parametersAbsolute structure: 1138 Friedel pairs were merged
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.27334 (9)0.09714 (4)0.4984 (3)0.0193 (4)
N10.34809 (10)0.10293 (4)0.1772 (4)0.0161 (5)
N20.28770 (10)0.02682 (5)0.3752 (4)0.0177 (5)
N30.24626 (11)0.03226 (5)0.5601 (4)0.0201 (5)
C10.37995 (12)0.08200 (6)0.0120 (5)0.0158 (6)
C20.42392 (12)0.08987 (6)0.1705 (5)0.0179 (6)
H2A0.43680.11150.20020.022*
C30.44890 (12)0.06483 (6)0.3103 (5)0.0206 (6)
H30.47880.06950.43960.025*
C40.43087 (13)0.03306 (6)0.2640 (5)0.0213 (6)
H40.44850.01640.36210.026*
C50.38720 (12)0.02553 (6)0.0752 (5)0.0192 (6)
H50.37530.00380.04280.023*
C60.36135 (12)0.05005 (6)0.0645 (5)0.0160 (5)
C70.31593 (12)0.05137 (6)0.2694 (4)0.0158 (6)
C80.30841 (12)0.08581 (6)0.3372 (5)0.0162 (5)
C90.35079 (12)0.13736 (5)0.1607 (5)0.0158 (5)
C100.32204 (13)0.15233 (6)0.0360 (5)0.0181 (5)
H100.30040.14000.15700.022*
C110.32528 (13)0.18547 (6)0.0538 (5)0.0207 (6)
H110.30550.19600.18720.025*
C120.35737 (13)0.20340 (6)0.1227 (5)0.0210 (6)
H120.35970.22610.10970.025*
C130.38601 (14)0.18805 (6)0.3177 (5)0.0217 (6)
H130.40780.20040.43860.026*
C140.38314 (13)0.15489 (6)0.3378 (5)0.0198 (6)
H140.40310.14440.47100.024*
H10.2435 (15)0.0522 (4)0.612 (6)0.031 (8)*
H20.2355 (14)0.0151 (5)0.646 (5)0.036 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0229 (9)0.0166 (8)0.0185 (11)0.0001 (7)0.0040 (9)0.0017 (8)
N10.0184 (10)0.0129 (9)0.0170 (12)0.0001 (8)0.0014 (9)0.0021 (9)
N20.0164 (10)0.0159 (10)0.0207 (13)0.0012 (8)0.0024 (10)0.0009 (9)
N30.0242 (11)0.0158 (11)0.0203 (13)0.0006 (9)0.0045 (11)0.0002 (10)
C10.0153 (11)0.0148 (11)0.0173 (15)0.0024 (9)0.0039 (11)0.0006 (10)
C20.0176 (12)0.0160 (11)0.0202 (14)0.0004 (9)0.0008 (12)0.0017 (11)
C30.0150 (11)0.0274 (13)0.0194 (14)0.0013 (10)0.0011 (12)0.0005 (12)
C40.0183 (12)0.0227 (12)0.0229 (16)0.0056 (10)0.0027 (12)0.0055 (11)
C50.0206 (12)0.0138 (11)0.0232 (15)0.0005 (9)0.0026 (13)0.0018 (11)
C60.0137 (11)0.0163 (11)0.0179 (14)0.0000 (9)0.0036 (11)0.0000 (11)
C70.0145 (12)0.0154 (12)0.0175 (15)0.0002 (9)0.0020 (11)0.0014 (10)
C80.0147 (11)0.0155 (11)0.0183 (14)0.0006 (9)0.0028 (11)0.0025 (11)
C90.0157 (12)0.0125 (11)0.0192 (14)0.0003 (9)0.0033 (10)0.0003 (11)
C100.0211 (12)0.0175 (12)0.0159 (14)0.0013 (10)0.0003 (11)0.0013 (11)
C110.0246 (13)0.0204 (12)0.0172 (14)0.0034 (10)0.0039 (12)0.0011 (11)
C120.0246 (13)0.0115 (10)0.0268 (16)0.0012 (10)0.0058 (13)0.0023 (11)
C130.0213 (13)0.0216 (12)0.0222 (15)0.0037 (10)0.0025 (12)0.0066 (12)
C140.0202 (12)0.0212 (12)0.0181 (14)0.0001 (10)0.0020 (12)0.0016 (11)
Geometric parameters (Å, º) top
O1—C81.227 (3)C5—C61.381 (4)
N1—C81.381 (3)C5—H50.9500
N1—C11.415 (3)C6—C71.451 (3)
N1—C91.436 (3)C7—C81.491 (3)
N2—C71.302 (3)C9—C141.385 (4)
N2—N31.332 (3)C9—C101.387 (4)
N3—H10.883 (10)C10—C111.384 (3)
N3—H20.888 (10)C10—H100.9500
C1—C21.373 (4)C11—C121.388 (4)
C1—C61.408 (3)C11—H110.9500
C2—C31.392 (4)C12—C131.386 (4)
C2—H2A0.9500C12—H120.9500
C3—C41.392 (4)C13—C141.385 (3)
C3—H30.9500C13—H130.9500
C4—C51.393 (4)C14—H140.9500
C4—H40.9500
C8—N1—C1110.66 (19)N2—C7—C6126.0 (2)
C8—N1—C9125.2 (2)N2—C7—C8126.6 (2)
C1—N1—C9123.8 (2)C6—C7—C8107.4 (2)
C7—N2—N3118.4 (2)O1—C8—N1126.3 (2)
N2—N3—H1117 (2)O1—C8—C7127.8 (2)
N2—N3—H2115 (2)N1—C8—C7105.9 (2)
H1—N3—H2124 (3)C14—C9—C10121.3 (2)
C2—C1—C6122.7 (2)C14—C9—N1119.7 (2)
C2—C1—N1127.9 (2)C10—C9—N1119.0 (2)
C6—C1—N1109.4 (2)C11—C10—C9119.2 (2)
C1—C2—C3117.3 (2)C11—C10—H10120.4
C1—C2—H2A121.3C9—C10—H10120.4
C3—C2—H2A121.3C10—C11—C12120.3 (3)
C4—C3—C2121.2 (3)C10—C11—H11119.9
C4—C3—H3119.4C12—C11—H11119.9
C2—C3—H3119.4C11—C12—C13119.8 (2)
C5—C4—C3120.5 (2)C11—C12—H12120.1
C5—C4—H4119.7C13—C12—H12120.1
C3—C4—H4119.7C14—C13—C12120.5 (3)
C6—C5—C4119.2 (2)C14—C13—H13119.7
C6—C5—H5120.4C12—C13—H13119.7
C4—C5—H5120.4C9—C14—C13119.0 (3)
C5—C6—C1119.0 (2)C9—C14—H14120.5
C5—C6—C7134.4 (2)C13—C14—H14120.5
C1—C6—C7106.6 (2)
C8—N1—C1—C2178.8 (2)C1—N1—C8—O1178.4 (2)
C9—N1—C1—C27.9 (4)C9—N1—C8—O15.2 (4)
C8—N1—C1—C60.4 (3)C1—N1—C8—C70.3 (3)
C9—N1—C1—C6173.7 (2)C9—N1—C8—C7173.5 (2)
C6—C1—C2—C31.7 (4)N2—C7—C8—O12.1 (4)
N1—C1—C2—C3179.9 (2)C6—C7—C8—O1178.5 (2)
C1—C2—C3—C41.1 (4)N2—C7—C8—N1179.2 (2)
C2—C3—C4—C50.1 (4)C6—C7—C8—N10.1 (2)
C3—C4—C5—C60.7 (4)C8—N1—C9—C1470.8 (3)
C4—C5—C6—C10.0 (4)C1—N1—C9—C14116.8 (3)
C4—C5—C6—C7179.9 (2)C8—N1—C9—C10110.5 (3)
C2—C1—C6—C51.2 (4)C1—N1—C9—C1061.8 (3)
N1—C1—C6—C5179.7 (2)C14—C9—C10—C110.6 (4)
C2—C1—C6—C7178.8 (2)N1—C9—C10—C11179.2 (2)
N1—C1—C6—C70.3 (3)C9—C10—C11—C120.4 (4)
N3—N2—C7—C6179.1 (2)C10—C11—C12—C130.3 (4)
N3—N2—C7—C81.8 (4)C11—C12—C13—C140.3 (4)
C5—C6—C7—N20.6 (4)C10—C9—C14—C130.6 (4)
C1—C6—C7—N2179.4 (2)N1—C9—C14—C13179.2 (2)
C5—C6—C7—C8179.9 (3)C12—C13—C14—C90.4 (4)
C1—C6—C7—C80.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1···O10.88 (1)2.06 (2)2.772 (3)137 (3)
N3—H2···N2i0.89 (1)2.22 (1)3.102 (3)177 (3)
Symmetry code: (i) x+1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H11N3O
Mr237.26
Crystal system, space groupOrthorhombic, Fdd2
Temperature (K)100
a, b, c (Å)19.328 (3), 41.612 (5), 5.6288 (7)
V3)4527 (1)
Z16
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.35 × 0.04 × 0.02
Data collection
DiffractometerBruker SMART APEX
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
10569, 1430, 1188
Rint0.079
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.092, 1.03
No. of reflections1430
No. of parameters171
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.22
Absolute structure1138 Friedel pairs were merged

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1···O10.88 (1)2.06 (2)2.772 (3)137 (3)
N3—H2···N2i0.89 (1)2.22 (1)3.102 (3)177 (3)
Symmetry code: (i) x+1/2, y, z+1/2.
 

Acknowledgements

The authors thank King Saud University and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDiesbach, H. de & Heppner, E. (1949). Helv. Chim. Acta, 32, 687–691.  PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds