organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino-1-methyl-1H-imidazol-4(5H)-one di­methyl sulfoxide monosolvate

aInstitut für Organische Chemie und Chemische Biologie, Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/Main, Germany, and bInstitut für Anorganische Chemie, Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/Main, Germany
*Correspondence e-mail: bolte@chemie.uni-frankfurt.de

(Received 21 September 2010; accepted 29 September 2010; online 2 October 2010)

In the title compound, C4H7N3O·C2H6OS, creatinine [2-amino-1-methyl-1H-imidazol-4(5H)one] exists in the amine form. The ring is planar (r.m.s. deviation for all non-H atoms = 0.017 Å). In the crystal, two creatinine mol­ecules form centrosymmetric hydrogen-bonded dimers linked by pairs of N—H⋯N hydrogen bonds. In addition, creatinine is linked to a dimethyl sulfoxide mol­ecule by an N—H⋯O inter­action. The packing shows layers parallel to (120).

Related literature

For information about creatinine, see: Narayanan & Appleton (1980[Narayanan, S. & Appleton, H. D. (1980). Clin. Chem. 26, 1119-1126.]). For related structures, see: Bell et al. (1995[Bell, T. W., Hou, Z., Luo, Y., Drew, M. G. B., Chapoteau, E., Czech, B. P. & Kumar, A. (1995). Science, 269, 671-674.]). For co-crystallization experiments, see: Ton & Bolte (2009[Ton, C. Q. & Bolte, M. (2009). Acta Cryst. E65, o2936.]). For hydrogen-bond patterns, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C4H7N3O·C2H6OS

  • Mr = 191.25

  • Triclinic, [P \overline 1]

  • a = 5.8997 (10) Å

  • b = 7.3018 (13) Å

  • c = 11.276 (2) Å

  • α = 75.861 (18)°

  • β = 83.763 (16)°

  • γ = 79.694 (13)°

  • V = 462.36 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 173 K

  • 0.50 × 0.40 × 0.40 mm

Data collection
  • Siemens SMART 1K CCD diffractometer

  • 8161 measured reflections

  • 2997 independent reflections

  • 2597 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.082

  • S = 0.98

  • 2997 reflections

  • 120 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N51—H51A⋯O1D 0.823 (18) 2.028 (18) 2.8403 (13) 169.3 (17)
N51—H51B⋯N1i 0.887 (16) 2.040 (16) 2.9225 (14) 172.9 (14)
Symmetry code: (i) -x+2, -y+1, -z+1.

Data collection: SMART (Siemens, 1995[Siemens (1995). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1995[Siemens (1995). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and XP (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Creatinine is an important end product of nitrogen metabolism and appears in the urine of healthy individuals (Narayanan & Appleton, 1980). Due to the tautomerism, creatinine can exist in two forms, the amine and the imine form. Spectroscopic studies show that the amine form is preferred in the solid state (Bell et al., 1995). To better understand the binding of creatinine to its receptor, we cocrystallized creatinine together with model compounds containing complementary functional groups. During the cocrystallization screening, a creatinine dimethylsulfoxide solvate was obtained. In this structure, the planar creatinine exist also in the amine form (r.m.s. deviation = 0.017 Å for all non-H atoms). The CN bond is longer than the C—NH2 bond [bond lenghts = 1.359 (1) Å and 1.327 (1) Å]. This reversed relation between bond length and nitrogen valence shows that the π- electron density is delocalized over the amine-imine group. Creatinine is linked to the solvate molecule by a N—H···O interaction (Fig. 1). This hydrogen-bonded entity is further connected by two N—H···N hydrogen bonds with a R22(8) pattern forming a centrosymmetric dimer (Bernstein et al., 1995; Fig. 2). The packing shows layers parallel to the (1 2 0) plane.

Related literature top

For information about creatinine, see: Narayanan & Appleton (1980). For related structures, see: Bell et al. (1995). For co-crystallization experiments, see: Ton & Bolte (2009). For hydrogen-bond patterns, see: Bernstein et al. (1995).

Experimental top

Single crystals of title compound were obtained by cocrystallization of the commercially available 5-fluorocytosine (2.0 mg) and creatinine (2.1 mg) from dimethylsufoxide (100 µL) at 323 K.

Refinement top

All H atoms were initially located by a difference Fourier synthesis. Subsequently, H atoms bonded to C atoms were refined using a riding model, with methyl C—H = 0.98 Å and secondary C—H = 0.99 Å, and with Uiso(H) = 1.5 Ueq(C) for methyl H or 1.2 Ueq(C) for secondary H. H atoms bonded to N atoms were freely refined.

Structure description top

Creatinine is an important end product of nitrogen metabolism and appears in the urine of healthy individuals (Narayanan & Appleton, 1980). Due to the tautomerism, creatinine can exist in two forms, the amine and the imine form. Spectroscopic studies show that the amine form is preferred in the solid state (Bell et al., 1995). To better understand the binding of creatinine to its receptor, we cocrystallized creatinine together with model compounds containing complementary functional groups. During the cocrystallization screening, a creatinine dimethylsulfoxide solvate was obtained. In this structure, the planar creatinine exist also in the amine form (r.m.s. deviation = 0.017 Å for all non-H atoms). The CN bond is longer than the C—NH2 bond [bond lenghts = 1.359 (1) Å and 1.327 (1) Å]. This reversed relation between bond length and nitrogen valence shows that the π- electron density is delocalized over the amine-imine group. Creatinine is linked to the solvate molecule by a N—H···O interaction (Fig. 1). This hydrogen-bonded entity is further connected by two N—H···N hydrogen bonds with a R22(8) pattern forming a centrosymmetric dimer (Bernstein et al., 1995; Fig. 2). The packing shows layers parallel to the (1 2 0) plane.

For information about creatinine, see: Narayanan & Appleton (1980). For related structures, see: Bell et al. (1995). For co-crystallization experiments, see: Ton & Bolte (2009). For hydrogen-bond patterns, see: Bernstein et al. (1995).

Computing details top

Data collection: SMART (Siemens, 1995); cell refinement: SAINT (Siemens, 1995); data reduction: SAINT (Siemens, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008) and XP (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A perspective view of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. The dashed line indicates the N—H···O interaction.
[Figure 2] Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
2-Amino-1-methyl-1H-imidazol-4(5H)-one dimethyl sulfoxide monosolvate top
Crystal data top
C4H7N3O·C2H6OSZ = 2
Mr = 191.25F(000) = 204
Triclinic, P1Dx = 1.374 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.8997 (10) ÅCell parameters from 131 reflections
b = 7.3018 (13) Åθ = 1.9–32.6°
c = 11.276 (2) ŵ = 0.32 mm1
α = 75.861 (18)°T = 173 K
β = 83.763 (16)°Block, colorless
γ = 79.694 (13)°0.50 × 0.40 × 0.40 mm
V = 462.36 (14) Å3
Data collection top
Siemens SMART 1K CCD
diffractometer
2597 reflections with I > 2σ(I)
Radiation source: normal-focus sealed tubeRint = 0.022
Graphite monochromatorθmax = 32.6°, θmin = 1.9°
ω scansh = 88
8161 measured reflectionsk = 1010
2997 independent reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H atoms treated by a mixture of independent and constrained refinement
S = 0.98 w = 1/[σ2(Fo2) + (0.0417P)2 + 0.166P]
where P = (Fo2 + 2Fc2)/3
2997 reflections(Δ/σ)max = 0.001
120 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C4H7N3O·C2H6OSγ = 79.694 (13)°
Mr = 191.25V = 462.36 (14) Å3
Triclinic, P1Z = 2
a = 5.8997 (10) ÅMo Kα radiation
b = 7.3018 (13) ŵ = 0.32 mm1
c = 11.276 (2) ÅT = 173 K
α = 75.861 (18)°0.50 × 0.40 × 0.40 mm
β = 83.763 (16)°
Data collection top
Siemens SMART 1K CCD
diffractometer
2597 reflections with I > 2σ(I)
8161 measured reflectionsRint = 0.022
2997 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.082H atoms treated by a mixture of independent and constrained refinement
S = 0.98Δρmax = 0.29 e Å3
2997 reflectionsΔρmin = 0.32 e Å3
120 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.82954 (15)0.63634 (13)0.38132 (8)0.01974 (17)
C20.72822 (18)0.72352 (15)0.27441 (9)0.01971 (19)
C30.48598 (18)0.82480 (16)0.30299 (9)0.0218 (2)
H3A0.46870.96380.26600.026*
H3B0.36610.76990.27430.026*
N40.47636 (15)0.78571 (13)0.43582 (8)0.02055 (18)
C50.67429 (17)0.67487 (14)0.47372 (9)0.01701 (18)
O210.81565 (15)0.72319 (13)0.17026 (7)0.02772 (18)
C410.27148 (18)0.84273 (17)0.50969 (11)0.0239 (2)
H41A0.14840.77400.50060.036*
H41B0.22060.98070.48240.036*
H41C0.30680.81200.59590.036*
N510.72130 (16)0.60912 (14)0.59037 (8)0.02144 (18)
H51A0.630 (3)0.632 (2)0.6476 (16)0.038 (4)*
H51B0.856 (3)0.534 (2)0.6059 (14)0.029 (4)*
O1D0.45535 (15)0.70620 (14)0.79813 (8)0.0308 (2)
S2D0.29265 (4)0.65071 (4)0.90915 (2)0.02067 (8)
C3D0.3041 (2)0.81135 (17)1.00396 (10)0.0247 (2)
H3D10.45630.78461.03720.037*
H3D20.18470.79441.07150.037*
H3D30.27750.94330.95520.037*
C4D0.0081 (2)0.7428 (2)0.86076 (12)0.0327 (3)
H4D10.00120.87870.82030.049*
H4D20.10330.72780.93220.049*
H4D30.02750.67250.80320.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0168 (4)0.0224 (4)0.0181 (4)0.0009 (3)0.0003 (3)0.0043 (3)
C20.0190 (5)0.0190 (5)0.0200 (4)0.0022 (4)0.0009 (3)0.0031 (4)
C30.0190 (5)0.0246 (5)0.0195 (4)0.0001 (4)0.0031 (4)0.0025 (4)
N40.0145 (4)0.0256 (4)0.0195 (4)0.0024 (3)0.0013 (3)0.0052 (3)
C50.0148 (4)0.0162 (4)0.0202 (4)0.0018 (3)0.0013 (3)0.0049 (3)
O210.0282 (4)0.0329 (4)0.0189 (4)0.0009 (3)0.0024 (3)0.0044 (3)
C410.0148 (4)0.0272 (5)0.0284 (5)0.0016 (4)0.0016 (4)0.0088 (4)
N510.0173 (4)0.0274 (5)0.0173 (4)0.0033 (3)0.0008 (3)0.0059 (3)
O1D0.0254 (4)0.0441 (5)0.0239 (4)0.0052 (4)0.0076 (3)0.0141 (4)
S2D0.01945 (13)0.02222 (13)0.02000 (12)0.00115 (9)0.00068 (9)0.00608 (9)
C3D0.0250 (5)0.0292 (5)0.0210 (5)0.0033 (4)0.0003 (4)0.0096 (4)
C4D0.0202 (5)0.0450 (7)0.0337 (6)0.0024 (5)0.0056 (4)0.0110 (5)
Geometric parameters (Å, º) top
N1—C51.3591 (13)C41—H41C0.9800
N1—C21.3644 (13)N51—H51A0.823 (18)
C2—O211.2306 (13)N51—H51B0.887 (16)
C2—C31.5269 (15)O1D—S2D1.5109 (9)
C3—N41.4514 (14)S2D—C3D1.7833 (12)
C3—H3A0.9900S2D—C4D1.7844 (13)
C3—H3B0.9900C3D—H3D10.9800
N4—C51.3426 (13)C3D—H3D20.9800
N4—C411.4487 (13)C3D—H3D30.9800
C5—N511.3269 (13)C4D—H4D10.9800
C41—H41A0.9800C4D—H4D20.9800
C41—H41B0.9800C4D—H4D30.9800
C5—N1—C2106.69 (8)H41A—C41—H41C109.5
O21—C2—N1126.20 (10)H41B—C41—H41C109.5
O21—C2—C3124.36 (10)C5—N51—H51A123.0 (12)
N1—C2—C3109.44 (9)C5—N51—H51B117.3 (10)
N4—C3—C2101.23 (8)H51A—N51—H51B119.7 (16)
N4—C3—H3A111.5O1D—S2D—C3D106.00 (6)
C2—C3—H3A111.5O1D—S2D—C4D106.16 (6)
N4—C3—H3B111.5C3D—S2D—C4D97.79 (6)
C2—C3—H3B111.5S2D—C3D—H3D1109.5
H3A—C3—H3B109.3S2D—C3D—H3D2109.5
C5—N4—C41128.18 (9)H3D1—C3D—H3D2109.5
C5—N4—C3108.39 (8)S2D—C3D—H3D3109.5
C41—N4—C3123.06 (9)H3D1—C3D—H3D3109.5
N51—C5—N4124.29 (10)H3D2—C3D—H3D3109.5
N51—C5—N1121.51 (9)S2D—C4D—H4D1109.5
N4—C5—N1114.19 (9)S2D—C4D—H4D2109.5
N4—C41—H41A109.5H4D1—C4D—H4D2109.5
N4—C41—H41B109.5S2D—C4D—H4D3109.5
H41A—C41—H41B109.5H4D1—C4D—H4D3109.5
N4—C41—H41C109.5H4D2—C4D—H4D3109.5
C5—N1—C2—O21179.20 (11)C41—N4—C5—N515.49 (18)
C5—N1—C2—C30.46 (12)C3—N4—C5—N51178.65 (10)
O21—C2—C3—N4177.89 (11)C41—N4—C5—N1175.64 (10)
N1—C2—C3—N41.78 (11)C3—N4—C5—N12.48 (13)
C2—C3—N4—C52.45 (11)C2—N1—C5—N51179.85 (10)
C2—C3—N4—C41176.03 (10)C2—N1—C5—N41.25 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N51—H51A···O1D0.823 (18)2.028 (18)2.8403 (13)169.3 (17)
N51—H51B···N1i0.887 (16)2.040 (16)2.9225 (14)172.9 (14)
Symmetry code: (i) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC4H7N3O·C2H6OS
Mr191.25
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)5.8997 (10), 7.3018 (13), 11.276 (2)
α, β, γ (°)75.861 (18), 83.763 (16), 79.694 (13)
V3)462.36 (14)
Z2
Radiation typeMo Kα
µ (mm1)0.32
Crystal size (mm)0.50 × 0.40 × 0.40
Data collection
DiffractometerSiemens SMART 1K CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8161, 2997, 2597
Rint0.022
(sin θ/λ)max1)0.757
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.082, 0.98
No. of reflections2997
No. of parameters120
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.29, 0.32

Computer programs: SMART (Siemens, 1995), SAINT (Siemens, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2008) and XP (Sheldrick, 2008), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N51—H51A···O1D0.823 (18)2.028 (18)2.8403 (13)169.3 (17)
N51—H51B···N1i0.887 (16)2.040 (16)2.9225 (14)172.9 (14)
Symmetry code: (i) x+2, y+1, z+1.
 

Acknowledgements

We thank Professor Dr E. Egert (Goethe-Universität Frankfurt, Germany) for helpful discussions.

References

First citationBell, T. W., Hou, Z., Luo, Y., Drew, M. G. B., Chapoteau, E., Czech, B. P. & Kumar, A. (1995). Science, 269, 671–674.  CSD CrossRef CAS PubMed Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNarayanan, S. & Appleton, H. D. (1980). Clin. Chem. 26, 1119–1126.  CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1995). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationTon, C. Q. & Bolte, M. (2009). Acta Cryst. E65, o2936.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds