organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-Ethyl 2-(3-cinnamoyl­thio­ureido)acetate

aSchool of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM 43600 Bangi Selangor, Malaysia
*Correspondence e-mail: mbkassim@ukm.my

(Received 5 September 2010; accepted 22 September 2010; online 9 October 2010)

In the title compound, C14H16N2O3S, the phenyl ring and the ethyl 2-(3-formyl­thio­ureido)acetate fragment adopt an E configuration with respect to the C=C bond. An intra­molecular N—H⋯O hydrogen bond generating an S(6) ring motif is observed. In the crystal, mol­ecules are linked by N—H⋯S, C—H⋯S and C—H⋯O hydrogen bonds, forming sheets lying parallel to the ab plane.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For related structures, see: Yamin & Hassan (2004[Yamin, B. M. & Hassan, I. N. (2004). Acta Cryst. E60, o2513-o2514.]); Hassan et al. (2008a[Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2008a). Acta Cryst. E64, o1727.],b[Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2008b). Acta Cryst. E64, o2083.],c[Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2008c). Acta Cryst. E64, o2167.], 2009[Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2009). Acta Cryst. E65, o3078.]); Hung et al. (2010[Hung, W. W., Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2010). Acta Cryst. E66, o314.]). For the synthesis, see: Hassan et al. (2008a[Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2008a). Acta Cryst. E64, o1727.]).

[Scheme 1]

Experimental

Crystal data
  • C14H16N2O3S

  • Mr = 292.35

  • Orthorhombic, P 21 21 21

  • a = 5.1867 (9) Å

  • b = 9.7417 (16) Å

  • c = 29.154 (5) Å

  • V = 1473.1 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 298 K

  • 0.49 × 0.38 × 0.24 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000[Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.]) Tmin = 0.897, Tmax = 0.947

  • 10938 measured reflections

  • 3637 independent reflections

  • 2747 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.164

  • S = 1.03

  • 3637 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.21 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1497 Friedel pairs

  • Flack parameter: −0.04 (13)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯S1i 0.86 2.79 3.631 (2) 166
N2—H2A⋯O1 0.86 1.92 2.611 (4) 137
C4—H4A⋯O3ii 0.93 2.54 3.457 (4) 170
C8—H8A⋯S1i 0.93 2.86 3.716 (3) 153
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (ii) x+2, y+1, z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title compound, I, is an ethyl ester derivative of glycine thiourea analogoue to our previously reported molecules, ethyl-2-(3- benzoylthioureido)acetate (II) (Hassan et al., 2008a). As in most carbonylthiourea derivatives of the type R1C(O)NHC(S)NHR2, such as in methyl-2-(3-benzoylthioureido)acetate (Hassan et al., 2009), propyl-2-(3-benzoylthioureido)acetate (Hassan et al., 2008b), butyl-2-(3-benzoylthioureido)acetate (Hassan et al., 2008c) and 1-(2-morpholinoethyl)-3-(3-phenylacryloyl)thiourea (Yamin & Hassan, 2004), the molecule maintains its E—Z configuration with respect to the positions of the cinnamoyl and ethyl acetate groups, respectively, relative to the S atom across the C10—N2 bond (Fig 1). Bond lengths and angles in the molecule are in normal ranges (Allen et al., 1987) and comparable to those observed in (II). However, the CS bond length [1.675 (3) Å] is slightly longer than that of (II) [1.666 Å]. The cinnamoylthiourea fragment, [S1/O1/N1/N2/C1-C11, A], is essentially planar with a maximum deviation of 0.079 (3) %A, for the atom C1. In the ethyl acetate moeity, [O2/O3/N2/C11-C13, B], the maximum deviation from the mean plane is 0.007 (3) %A for the atom C13. The phenyl ring [C1–C6, C] is inclined to the ethyl acetate mean plane with a dihedral angle of 13.9 (2)° which is larger than that observed in compound (II) [3.6 (1)°]. The additional CH2 group introduced a more steric geometry to the ethyl acetate moiety. The dihedral angle between the fragments A/B is 10.8 (1)°. There is one intramolecular hydrogen bond, N2—H2A···O1 (Table 1) which resulted in a formation of pseudo-six-membered ring (N2/H2A/O1/C9/N1/C10) (Fig 1). The molecular packing is stablized by N1—H1A···S1, C4—H4A···O3 and C8—H8A···S1 intermolecular hydrogen bonds, which form a sheet parallel to the ab plane.

Related literature top

For bond-length data, see: Allen et al. (1987). For related structures, see: Yamin & Hassan (2004); Hassan et al. (2008a,b,c, 2009); Hung et al. (2010). For the preparation, see: Hassan et al. (2008a).

Experimental top

The title compound was synthesized according to a previously reported procedure (Hassan et al., 2008a). Single crystals were obtained by slow evaporation of a CH2Cl2 solution at room temperature (yield 71%).

Refinement top

H atoms were positioned geometrically [N–H = 0.86 Å and C–H = 0.93–0.97 Å] and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C,N) and 1.5Ueq(Cmethyl).

Structure description top

The title compound, I, is an ethyl ester derivative of glycine thiourea analogoue to our previously reported molecules, ethyl-2-(3- benzoylthioureido)acetate (II) (Hassan et al., 2008a). As in most carbonylthiourea derivatives of the type R1C(O)NHC(S)NHR2, such as in methyl-2-(3-benzoylthioureido)acetate (Hassan et al., 2009), propyl-2-(3-benzoylthioureido)acetate (Hassan et al., 2008b), butyl-2-(3-benzoylthioureido)acetate (Hassan et al., 2008c) and 1-(2-morpholinoethyl)-3-(3-phenylacryloyl)thiourea (Yamin & Hassan, 2004), the molecule maintains its E—Z configuration with respect to the positions of the cinnamoyl and ethyl acetate groups, respectively, relative to the S atom across the C10—N2 bond (Fig 1). Bond lengths and angles in the molecule are in normal ranges (Allen et al., 1987) and comparable to those observed in (II). However, the CS bond length [1.675 (3) Å] is slightly longer than that of (II) [1.666 Å]. The cinnamoylthiourea fragment, [S1/O1/N1/N2/C1-C11, A], is essentially planar with a maximum deviation of 0.079 (3) %A, for the atom C1. In the ethyl acetate moeity, [O2/O3/N2/C11-C13, B], the maximum deviation from the mean plane is 0.007 (3) %A for the atom C13. The phenyl ring [C1–C6, C] is inclined to the ethyl acetate mean plane with a dihedral angle of 13.9 (2)° which is larger than that observed in compound (II) [3.6 (1)°]. The additional CH2 group introduced a more steric geometry to the ethyl acetate moiety. The dihedral angle between the fragments A/B is 10.8 (1)°. There is one intramolecular hydrogen bond, N2—H2A···O1 (Table 1) which resulted in a formation of pseudo-six-membered ring (N2/H2A/O1/C9/N1/C10) (Fig 1). The molecular packing is stablized by N1—H1A···S1, C4—H4A···O3 and C8—H8A···S1 intermolecular hydrogen bonds, which form a sheet parallel to the ab plane.

For bond-length data, see: Allen et al. (1987). For related structures, see: Yamin & Hassan (2004); Hassan et al. (2008a,b,c, 2009); Hung et al. (2010). For the preparation, see: Hassan et al. (2008a).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids shown at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram of the title compound, viewed down the a axis. Hydrogen bonds are shown as dashed lines.
(E)-Ethyl 2-(3-cinnamoylthioureido)acetate top
Crystal data top
C14H16N2O3SF(000) = 616
Mr = 292.35Dx = 1.318 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2524 reflections
a = 5.1867 (9) Åθ = 2.2–25.5°
b = 9.7417 (16) ŵ = 0.23 mm1
c = 29.154 (5) ÅT = 298 K
V = 1473.1 (4) Å3Block, colourless
Z = 40.49 × 0.38 × 0.24 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3637 independent reflections
Radiation source: fine-focus sealed tube2747 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ω scanθmax = 28.3°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
h = 66
Tmin = 0.897, Tmax = 0.947k = 1213
10938 measured reflectionsl = 3238
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.063H-atom parameters constrained
wR(F2) = 0.164 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.036
3637 reflectionsΔρmax = 0.35 e Å3
182 parametersΔρmin = 0.21 e Å3
0 restraintsAbsolute structure: Flack (1983), 1497 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.04 (13)
Crystal data top
C14H16N2O3SV = 1473.1 (4) Å3
Mr = 292.35Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.1867 (9) ŵ = 0.23 mm1
b = 9.7417 (16) ÅT = 298 K
c = 29.154 (5) Å0.49 × 0.38 × 0.24 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3637 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
2747 reflections with I > 2σ(I)
Tmin = 0.897, Tmax = 0.947Rint = 0.033
10938 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.063H-atom parameters constrained
wR(F2) = 0.164Δρmax = 0.35 e Å3
S = 1.03Δρmin = 0.21 e Å3
3637 reflectionsAbsolute structure: Flack (1983), 1497 Friedel pairs
182 parametersAbsolute structure parameter: 0.04 (13)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.18635 (18)0.08578 (8)0.03548 (2)0.0573 (2)
O10.3380 (5)0.2635 (3)0.14456 (7)0.0694 (7)
O20.0044 (6)0.0041 (3)0.20692 (9)0.0952 (10)
O30.3348 (5)0.1415 (2)0.19707 (7)0.0712 (7)
N10.1857 (5)0.2377 (2)0.07184 (7)0.0446 (5)
H1A0.20470.26550.04400.053*
N20.0312 (5)0.0950 (2)0.12136 (8)0.0494 (6)
H2A0.06900.12850.14200.059*
C10.9341 (6)0.5968 (3)0.05420 (11)0.0540 (7)
H1B0.83790.55580.03100.065*
C21.1166 (7)0.6944 (3)0.04298 (12)0.0630 (9)
H2B1.14260.71820.01240.076*
C31.2592 (6)0.7563 (3)0.07652 (12)0.0635 (9)
H3A1.37880.82360.06890.076*
C41.2251 (7)0.7186 (3)0.12129 (13)0.0661 (9)
H4A1.32490.75930.14410.079*
C51.0440 (7)0.6208 (3)0.13305 (11)0.0581 (8)
H5A1.02340.59620.16370.070*
C60.8916 (5)0.5586 (3)0.09962 (10)0.0450 (6)
C70.7010 (6)0.4568 (3)0.11298 (10)0.0487 (6)
H7A0.69490.43350.14390.058*
C80.5352 (6)0.3939 (3)0.08554 (10)0.0451 (6)
H8A0.53720.41250.05430.054*
C90.3480 (6)0.2950 (3)0.10411 (9)0.0465 (6)
C100.0050 (6)0.1404 (3)0.07938 (10)0.0439 (6)
C110.2162 (6)0.0072 (3)0.13555 (10)0.0514 (7)
H11A0.20330.08690.11580.062*
H11B0.38920.02970.13280.062*
C120.1669 (7)0.0482 (3)0.18390 (11)0.0604 (8)
C130.3116 (12)0.1938 (5)0.24386 (13)0.1039 (16)
H13A0.13980.22990.24900.125*
H13B0.34330.12100.26580.125*
C140.5011 (16)0.3012 (7)0.24893 (19)0.165 (3)
H14A0.46450.35340.27610.247*
H14B0.49530.36060.22270.247*
H14C0.66970.26120.25140.247*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0656 (5)0.0633 (4)0.0430 (4)0.0139 (4)0.0054 (4)0.0001 (3)
O10.0813 (16)0.0836 (14)0.0431 (11)0.0360 (15)0.0067 (11)0.0109 (10)
O20.105 (2)0.113 (2)0.0677 (17)0.049 (2)0.0235 (16)0.0243 (17)
O30.0789 (16)0.0854 (15)0.0494 (12)0.0338 (14)0.0044 (12)0.0145 (11)
N10.0475 (12)0.0476 (11)0.0386 (11)0.0068 (12)0.0019 (11)0.0020 (9)
N20.0518 (14)0.0541 (13)0.0422 (12)0.0123 (12)0.0024 (10)0.0020 (11)
C10.0510 (17)0.0602 (16)0.0509 (16)0.0087 (15)0.0081 (13)0.0023 (14)
C20.063 (2)0.0684 (18)0.0579 (19)0.0092 (17)0.0024 (15)0.0120 (15)
C30.053 (2)0.0544 (16)0.084 (2)0.0068 (15)0.0053 (16)0.0015 (16)
C40.059 (2)0.0655 (19)0.073 (2)0.0121 (16)0.0086 (17)0.0198 (17)
C50.0598 (19)0.0647 (19)0.0497 (17)0.0059 (17)0.0031 (14)0.0092 (14)
C60.0396 (14)0.0439 (14)0.0513 (15)0.0033 (11)0.0010 (12)0.0043 (11)
C70.0519 (16)0.0515 (14)0.0427 (14)0.0005 (14)0.0013 (13)0.0001 (11)
C80.0464 (15)0.0455 (14)0.0433 (14)0.0002 (13)0.0003 (12)0.0017 (11)
C90.0473 (16)0.0472 (14)0.0449 (14)0.0019 (13)0.0044 (12)0.0012 (11)
C100.0431 (16)0.0393 (12)0.0492 (15)0.0014 (12)0.0004 (12)0.0028 (11)
C110.0502 (16)0.0538 (15)0.0503 (15)0.0080 (14)0.0016 (13)0.0065 (12)
C120.0631 (19)0.0642 (18)0.0538 (17)0.0143 (18)0.0004 (17)0.0043 (13)
C130.124 (4)0.125 (3)0.062 (2)0.041 (4)0.012 (3)0.038 (2)
C140.184 (6)0.229 (8)0.083 (3)0.108 (6)0.038 (4)0.083 (4)
Geometric parameters (Å, º) top
S1—C101.675 (3)C4—C51.381 (5)
O1—C91.219 (3)C4—H4A0.93
O2—C121.193 (4)C5—C61.393 (4)
O3—C121.316 (4)C5—H5A0.93
O3—C131.462 (4)C6—C71.453 (4)
N1—C91.380 (4)C7—C81.325 (4)
N1—C101.387 (4)C7—H7A0.93
N1—H1A0.86C8—C91.472 (4)
N2—C101.308 (4)C8—H8A0.93
N2—C111.443 (4)C11—C121.487 (4)
N2—H2A0.86C11—H11A0.97
C1—C21.381 (4)C11—H11B0.97
C1—C61.393 (4)C13—C141.443 (7)
C1—H1B0.93C13—H13A0.97
C2—C31.366 (5)C13—H13B0.97
C2—H2B0.93C14—H14A0.96
C3—C41.367 (5)C14—H14B0.96
C3—H3A0.93C14—H14C0.96
C12—O3—C13117.3 (3)C7—C8—H8A119.7
C9—N1—C10127.1 (2)C9—C8—H8A119.7
C9—N1—H1A116.5O1—C9—N1122.2 (3)
C10—N1—H1A116.5O1—C9—C8123.2 (3)
C10—N2—C11124.8 (2)N1—C9—C8114.6 (2)
C10—N2—H2A117.6N2—C10—N1117.0 (2)
C11—N2—H2A117.6N2—C10—S1123.3 (2)
C2—C1—C6121.2 (3)N1—C10—S1119.7 (2)
C2—C1—H1B119.4N2—C11—C12110.0 (3)
C6—C1—H1B119.4N2—C11—H11A109.6
C3—C2—C1120.3 (3)C12—C11—H11A109.6
C3—C2—H2B119.8N2—C11—H11B109.7
C1—C2—H2B119.8C12—C11—H11B109.7
C2—C3—C4119.7 (3)H11A—C11—H11B108.2
C2—C3—H3A120.2O2—C12—O3125.3 (3)
C4—C3—H3A120.2O2—C12—C11124.3 (3)
C3—C4—C5120.6 (3)O3—C12—C11110.4 (3)
C3—C4—H4A119.7C14—C13—O3107.0 (4)
C5—C4—H4A119.7C14—C13—H13A110.3
C4—C5—C6120.8 (3)O3—C13—H13A110.3
C4—C5—H5A119.6C14—C13—H13B110.3
C6—C5—H5A119.6O3—C13—H13B110.3
C5—C6—C1117.3 (3)H13A—C13—H13B108.6
C5—C6—C7119.7 (3)C13—C14—H14A109.5
C1—C6—C7123.0 (3)C13—C14—H14B109.5
C8—C7—C6126.5 (3)H14A—C14—H14B109.5
C8—C7—H7A116.7C13—C14—H14C109.5
C6—C7—H7A116.7H14A—C14—H14C109.5
C7—C8—C9120.6 (3)H14B—C14—H14C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···S1i0.862.793.631 (2)166
N2—H2A···O10.861.922.611 (4)137
C4—H4A···O3ii0.932.543.457 (4)170
C8—H8A···S1i0.932.863.716 (3)153
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+2, y+1, z.

Experimental details

Crystal data
Chemical formulaC14H16N2O3S
Mr292.35
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)5.1867 (9), 9.7417 (16), 29.154 (5)
V3)1473.1 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.49 × 0.38 × 0.24
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2000)
Tmin, Tmax0.897, 0.947
No. of measured, independent and
observed [I > 2σ(I)] reflections
10938, 3637, 2747
Rint0.033
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.164, 1.03
No. of reflections3637
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.21
Absolute structureFlack (1983), 1497 Friedel pairs
Absolute structure parameter0.04 (13)

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···S1i0.862.793.631 (2)166
N2—H2A···O10.861.922.611 (4)137
C4—H4A···O3ii0.932.543.457 (4)170
C8—H8A···S1i0.932.863.716 (3)153
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+2, y+1, z.
 

Acknowledgements

The authors thank Universiti Kebangsaan Malaysia for providing facilities and grants (UKM-GUP-BTT-07–30-190 and UKM-OUP-TK-16–73/2010) and the Kementerian Pengajian Tinggi, Malaysia, for the research fund No. UKM-ST-06-FRGS0111–2009. The authors also thank Dr J.-C. Daran, CNRS, Tolouse, for his advice.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHassan, I. N., Yamin, B. M. & Kassim, M. B. (2008a). Acta Cryst. E64, o1727.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHassan, I. N., Yamin, B. M. & Kassim, M. B. (2008b). Acta Cryst. E64, o2083.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHassan, I. N., Yamin, B. M. & Kassim, M. B. (2008c). Acta Cryst. E64, o2167.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHassan, I. N., Yamin, B. M. & Kassim, M. B. (2009). Acta Cryst. E65, o3078.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHung, W. W., Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2010). Acta Cryst. E66, o314.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYamin, B. M. & Hassan, I. N. (2004). Acta Cryst. E60, o2513–o2514.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds