organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Cinnamoyl­thio­urea

aSchool of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM 43600 Bangi Selangor, Malaysia
*Correspondence e-mail: mbkassim@ukm.my

(Received 1 October 2010; accepted 7 October 2010; online 13 October 2010)

In the title compound [systematic name: 1-(3-phenyl­prop-2-eno­yl)thio­urea], C10H10N2OS, the acetyl­thio­urea fragment and the phenyl ring adopt an E configuration. The roughly planar but-2-enoyl­thio­urea fragment [maximum deviation = 0.053 (3) Å] forms a dihedral of 10.54 (11)° with the phenyl ring. An intra­molecular N—H⋯O hydrogen bond generates an S(6) ring. In the crystal, mol­ecules are linked into sheets parallel to (100) by N—H⋯S hydrogen bonds.

Related literature

For the preparation, see: Hassan et al. (2010a[Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2010a). Acta Cryst. E66, o2242.]). For related structures, see: Hung et al. (2010[Hung, W. W., Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2010). Acta Cryst. E66, o314.]); Hassan et al. (2008a[Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2008a). Acta Cryst. E64, o1727.],b[Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2008b). Acta Cryst. E64, o2083.],c[Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2008c). Acta Cryst. E64, o2167.], 2009[Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2009). Acta Cryst. E65, o3078.], 2010a[Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2010a). Acta Cryst. E66, o2242.],b[Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2010b). Acta Cryst. E66, o2784.]); Yamin & Hassan (2004[Yamin, B. M. & Hassan, I. N. (2004). Acta Cryst. E60, o2513-o2514.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C10H10N2OS

  • Mr = 206.26

  • Monoclinic, P 21 /c

  • a = 14.3313 (18) Å

  • b = 4.9801 (6) Å

  • c = 15.4199 (19) Å

  • β = 111.612 (3)°

  • V = 1023.2 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 273 K

  • 0.34 × 0.12 × 0.09 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000[Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.]) Tmin = 0.960, Tmax = 0.975

  • 7192 measured reflections

  • 2551 independent reflections

  • 1688 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.156

  • S = 1.08

  • 2551 reflections

  • 127 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O1 0.89 1.95 2.649 (3) 134
N1—H1A⋯S1i 0.85 2.79 3.602 (2) 159
N2—H2B⋯S1ii 0.88 2.54 3.409 (2) 169
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x, -y, -z+1.

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title compound, (I), is an amide thiourea derivative of cinnamoyl analogous to our previously reported molecules, methyl-2-(3-cinnamoylthioureido)acetate (Hassan et al., 2010a) (II), propyl-2-(3-benzoylthioureido)acetate (Hassan et al., 2008b) (III), butyl-2-(3-benzoylthioureido)acetate (Hassan et al., 2008c) (IV), methyl-2-(3-benzoylthioureido)acetate (Hassan et al., 2009) (V) and ethyl-2-(3-cinnamoylthioureido)acetate (Hassan et al., 2010b) (VI). As in most of carbonylthiourea derivatives of the type R1C(O)NHC(S)NHR2, the molecule maintains the E—Z configuration with respect to the positions of the cinnamoyl moiety and the hydrogen atom of the terminal amide group, respectively, relative to the S atom across the C10—N2 bond (Fig 1). The bond lengths (Allen et al., 1987) and angles in the molecule are in normal ranges and comparable to those observed in (II), (III), (IV), (V) and (VI). However, the CS bond length [1.679 (2) Å] is slightly longer than that observed in (II) [1.666 (3) Å]. The S1/O1/N1/N2/C6/C7/C8/C9/C10 fragment is essentially planar with a maximum deviation of 0.053 (3) Å, for atom C8. The C1–C6 phenyl ring is inclined to the above plane with a dihedral angle of 10.54 (11)°, which is smaller than that found in (II) [11.17 (14)°]. There is one intramolecular hydrogen bond, N2—H2A···O1 (Table 1), which resulted in the formation of pseudo-six-membered ring (N2/H2A/O1/C9/N1/C10) (Fig 1). The molecular packing is stablized by two intermolecular hydrogen bonds viz. N1—H1A···S1 and N1—H1A···S1 (Table 1) which form a two-dimensional network parallel to (100) [Fig. 2].

Related literature top

For the preparation, see: Hassan et al. (2010a). For related structures, see: Hung et al. (2010); Hassan et al. (2008a,b,c, 2009, 2010a,b); Yamin & Hassan (2004). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound was obtained from a reaction sheme similar to the cinnamoylthiourea ester synthesis starting from 2-(3-cinnamoylthioureido) acetic acid with alcohol in the presence of LaCl3 reported earlier (Hassan et al., 2010a). Colourless single crystals, suitable for X-ray analysis, were obtained by slow evaporation of a CH2Cl2 solution at room temperature (yield 77%).

Refinement top

H atoms of C atoms were positioned geometrically [C–H = 0.93 Å] and allowed to ride on their parent atoms, with Uiso = 1.2Ueq(C). The H atoms of N atoms were located in difference fouriuor maps and allowed to ride on their parent atoms, with N–H = 0.87 (1) Å and Uiso = 1.2Ueq(N).

Structure description top

The title compound, (I), is an amide thiourea derivative of cinnamoyl analogous to our previously reported molecules, methyl-2-(3-cinnamoylthioureido)acetate (Hassan et al., 2010a) (II), propyl-2-(3-benzoylthioureido)acetate (Hassan et al., 2008b) (III), butyl-2-(3-benzoylthioureido)acetate (Hassan et al., 2008c) (IV), methyl-2-(3-benzoylthioureido)acetate (Hassan et al., 2009) (V) and ethyl-2-(3-cinnamoylthioureido)acetate (Hassan et al., 2010b) (VI). As in most of carbonylthiourea derivatives of the type R1C(O)NHC(S)NHR2, the molecule maintains the E—Z configuration with respect to the positions of the cinnamoyl moiety and the hydrogen atom of the terminal amide group, respectively, relative to the S atom across the C10—N2 bond (Fig 1). The bond lengths (Allen et al., 1987) and angles in the molecule are in normal ranges and comparable to those observed in (II), (III), (IV), (V) and (VI). However, the CS bond length [1.679 (2) Å] is slightly longer than that observed in (II) [1.666 (3) Å]. The S1/O1/N1/N2/C6/C7/C8/C9/C10 fragment is essentially planar with a maximum deviation of 0.053 (3) Å, for atom C8. The C1–C6 phenyl ring is inclined to the above plane with a dihedral angle of 10.54 (11)°, which is smaller than that found in (II) [11.17 (14)°]. There is one intramolecular hydrogen bond, N2—H2A···O1 (Table 1), which resulted in the formation of pseudo-six-membered ring (N2/H2A/O1/C9/N1/C10) (Fig 1). The molecular packing is stablized by two intermolecular hydrogen bonds viz. N1—H1A···S1 and N1—H1A···S1 (Table 1) which form a two-dimensional network parallel to (100) [Fig. 2].

For the preparation, see: Hassan et al. (2010a). For related structures, see: Hung et al. (2010); Hassan et al. (2008a,b,c, 2009, 2010a,b); Yamin & Hassan (2004). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Part of the crystal packing of (I), viewed down the b axis. Hydrogen bonds are shown as dashed lines.
1-(3-phenylprop-2-enoyl)thiourea top
Crystal data top
C10H10N2OSF(000) = 432
Mr = 206.26Dx = 1.339 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1059 reflections
a = 14.3313 (18) Åθ = 1.5–28.3°
b = 4.9801 (6) ŵ = 0.28 mm1
c = 15.4199 (19) ÅT = 273 K
β = 111.612 (3)°Plate, colourless
V = 1023.2 (2) Å30.34 × 0.12 × 0.09 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2551 independent reflections
Radiation source: fine-focus sealed tube1688 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ω scansθmax = 28.3°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
h = 1819
Tmin = 0.960, Tmax = 0.975k = 66
7192 measured reflectionsl = 2016
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.156H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0703P)2 + 0.1088P]
where P = (Fo2 + 2Fc2)/3
2551 reflections(Δ/σ)max = 0.001
127 parametersΔρmax = 0.40 e Å3
3 restraintsΔρmin = 0.20 e Å3
Crystal data top
C10H10N2OSV = 1023.2 (2) Å3
Mr = 206.26Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.3313 (18) ŵ = 0.28 mm1
b = 4.9801 (6) ÅT = 273 K
c = 15.4199 (19) Å0.34 × 0.12 × 0.09 mm
β = 111.612 (3)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2551 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
1688 reflections with I > 2σ(I)
Tmin = 0.960, Tmax = 0.975Rint = 0.039
7192 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0653 restraints
wR(F2) = 0.156H-atom parameters constrained
S = 1.08Δρmax = 0.40 e Å3
2551 reflectionsΔρmin = 0.20 e Å3
127 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.03467 (5)0.16643 (15)0.35571 (4)0.0559 (3)
O10.24962 (15)0.6309 (4)0.51663 (12)0.0647 (6)
N10.11111 (14)0.5226 (4)0.38961 (13)0.0428 (5)
H1A0.07900.57400.33390.051*
N20.11216 (16)0.2739 (5)0.51525 (14)0.0551 (6)
H2A0.16800.36410.54790.066*
H2B0.08500.15710.54150.066*
C10.2743 (2)1.2916 (6)0.26352 (19)0.0553 (7)
H1B0.21121.21490.23500.066*
C20.3067 (2)1.4824 (6)0.2166 (2)0.0674 (8)
H2C0.26551.53310.15670.081*
C30.3993 (2)1.5982 (6)0.2575 (2)0.0676 (8)
H3A0.42061.72730.22530.081*
C40.4604 (2)1.5251 (6)0.3454 (2)0.0669 (8)
H4A0.52321.60430.37310.080*
C50.42846 (19)1.3317 (6)0.3932 (2)0.0551 (7)
H5A0.47041.28190.45300.066*
C60.33484 (18)1.2118 (5)0.35306 (17)0.0431 (6)
C70.30347 (18)1.0120 (5)0.40557 (17)0.0456 (6)
H7A0.34620.98380.46700.055*
C80.22069 (18)0.8664 (5)0.37521 (16)0.0434 (6)
H8A0.17580.89000.31430.052*
C90.19735 (18)0.6684 (5)0.43484 (16)0.0433 (6)
C100.06860 (17)0.3267 (5)0.42595 (15)0.0395 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0556 (4)0.0654 (5)0.0402 (4)0.0166 (3)0.0101 (3)0.0071 (3)
O10.0744 (13)0.0688 (13)0.0390 (10)0.0198 (10)0.0072 (9)0.0076 (9)
N10.0475 (11)0.0421 (11)0.0342 (10)0.0031 (9)0.0097 (9)0.0060 (9)
N20.0651 (14)0.0608 (15)0.0354 (11)0.0148 (11)0.0139 (10)0.0072 (10)
C10.0558 (15)0.0559 (17)0.0509 (15)0.0097 (13)0.0160 (13)0.0026 (13)
C20.077 (2)0.065 (2)0.0623 (18)0.0090 (17)0.0280 (16)0.0113 (16)
C30.081 (2)0.0569 (18)0.083 (2)0.0114 (16)0.0516 (19)0.0027 (17)
C40.0598 (17)0.0601 (19)0.092 (2)0.0174 (15)0.0407 (18)0.0169 (18)
C50.0523 (15)0.0526 (16)0.0576 (17)0.0040 (13)0.0170 (13)0.0088 (14)
C60.0444 (12)0.0373 (13)0.0470 (14)0.0009 (10)0.0162 (11)0.0036 (11)
C70.0488 (14)0.0427 (14)0.0392 (12)0.0002 (11)0.0090 (11)0.0021 (11)
C80.0490 (13)0.0410 (14)0.0368 (12)0.0022 (11)0.0117 (10)0.0003 (11)
C90.0504 (13)0.0408 (14)0.0369 (13)0.0005 (11)0.0140 (11)0.0009 (11)
C100.0455 (12)0.0383 (12)0.0360 (12)0.0041 (11)0.0162 (10)0.0034 (10)
Geometric parameters (Å, º) top
S1—C101.679 (2)C2—H2C0.93
O1—C91.221 (3)C3—C41.365 (4)
N1—C101.374 (3)C3—H3A0.93
N1—C91.381 (3)C4—C51.389 (4)
N1—H1A0.85C4—H4A0.93
N2—C101.312 (3)C5—C61.389 (3)
N2—H2A0.89C5—H5A0.93
N2—H2B0.88C6—C71.455 (3)
C1—C21.374 (4)C7—C81.320 (3)
C1—C61.391 (3)C7—H7A0.93
C1—H1B0.93C8—C91.468 (3)
C2—C31.369 (4)C8—H8A0.93
C10—N1—C9128.04 (19)C6—C5—C4121.0 (3)
C10—N1—H1A118.0C6—C5—H5A119.5
C9—N1—H1A113.7C4—C5—H5A119.5
C10—N2—H2A118.2C5—C6—C1117.8 (2)
C10—N2—H2B119.8C5—C6—C7119.5 (2)
H2A—N2—H2B122.0C1—C6—C7122.7 (2)
C2—C1—C6120.8 (3)C8—C7—C6126.9 (2)
C2—C1—H1B119.6C8—C7—H7A116.6
C6—C1—H1B119.6C6—C7—H7A116.6
C3—C2—C1120.4 (3)C7—C8—C9121.9 (2)
C3—C2—H2C119.8C7—C8—H8A119.0
C1—C2—H2C119.8C9—C8—H8A119.0
C4—C3—C2120.3 (3)O1—C9—N1122.4 (2)
C4—C3—H3A119.9O1—C9—C8123.7 (2)
C2—C3—H3A119.9N1—C9—C8113.9 (2)
C3—C4—C5119.7 (3)N2—C10—N1117.3 (2)
C3—C4—H4A120.1N2—C10—S1123.18 (19)
C5—C4—H4A120.1N1—C10—S1119.49 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O10.891.952.649 (3)134
N1—H1A···S1i0.852.793.602 (2)159
N2—H2B···S1ii0.882.543.409 (2)169
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC10H10N2OS
Mr206.26
Crystal system, space groupMonoclinic, P21/c
Temperature (K)273
a, b, c (Å)14.3313 (18), 4.9801 (6), 15.4199 (19)
β (°) 111.612 (3)
V3)1023.2 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.34 × 0.12 × 0.09
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2000)
Tmin, Tmax0.960, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
7192, 2551, 1688
Rint0.039
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.156, 1.08
No. of reflections2551
No. of parameters127
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.20

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O10.891.952.649 (3)134
N1—H1A···S1i0.852.793.602 (2)159
N2—H2B···S1ii0.882.543.409 (2)169
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y, z+1.
 

Acknowledgements

The authors thank Universiti Kebangsaan Malaysia for providing facilities and grants (UKM-GUP-BTT-07–30-190 and UKM-OUP-TK-16–73/2010) and the Kementerian Pengajian Tinggi, Malaysia, for the research fund No. UKM-ST-06-FRGS0111–2009.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHassan, I. N., Yamin, B. M. & Kassim, M. B. (2008a). Acta Cryst. E64, o1727.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHassan, I. N., Yamin, B. M. & Kassim, M. B. (2008b). Acta Cryst. E64, o2083.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHassan, I. N., Yamin, B. M. & Kassim, M. B. (2008c). Acta Cryst. E64, o2167.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHassan, I. N., Yamin, B. M. & Kassim, M. B. (2009). Acta Cryst. E65, o3078.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHassan, I. N., Yamin, B. M. & Kassim, M. B. (2010a). Acta Cryst. E66, o2242.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHassan, I. N., Yamin, B. M. & Kassim, M. B. (2010b). Acta Cryst. E66, o2784.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHung, W. W., Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2010). Acta Cryst. E66, o314.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYamin, B. M. & Hassan, I. N. (2004). Acta Cryst. E60, o2513–o2514.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds