supplementary materials


cv2773 scheme

Acta Cryst. (2010). E66, o2814    [ doi:10.1107/S1600536810040729 ]

4,4',5,5'-Tetraphenyl-3,3'-[methylidenebis(sulfanediyl)]bis(4H-1,2,4-triazole)

B. Zhao, Z. Liu, Y. Gao, B. Song and Q. Deng

Abstract top

The asymmetric unit of the title compound, C29H22N6S2, contains one half-molecule situated on a twofold rotational axis. The two triazole rings form a dihedral angle of 27.6 (2)°. In the crystal, weak intermolecular C-H...N hydrogen bonds link the molecules into ribbons extending along [001].

Comment top

Functionalized 1,2,4-triazole derivatives received considerable attention due to their antihypertensive, antifungal and antibacterial properties (Paulvannan et al., 2001; Wahbi et al., 1995). Some crystal structures of 1H-1,2,4-triazole ring containing ether derivatives have been reported recently (Özel Güven et al., 2008a,b). Herewith we report the synthesis and crystal structure of the title compound, (I).

In (I) (Fig.1), the molecule is situated on a twofold rotational axis, so asymmetric unit contains a half of the molecule. The 1,2,4-triazole ring is planar with an r.m.s. deviation of 0.023 (2)Å and maximum deviation of 0.0037 (2)Å for atoms C8. The C8 atom shows a distorted Csp2 hybridization state with the bond angles of 110.98 (16)° (N2—C8—N3) and 126.50 (14)°(N2—C8—S1). The triazole ring and two attached phenyl rings (C1—C6 and C9—C14) form dihedral angles of 34.3 (2) and 62.2 (2)°, respectively. The dihedral angle between the two phenyl rings is 61.2 (2)°. As a result of π-π conjugation, the Csp2-S bond length [S1—C8 = 1.7439 (2) Å] is significantly shorter than the Csp3-S bond length [S1—C15 = 1.8092 (2) Å].

In the crystal structure, weak intermolecular C—H···N hydrogen bonds (Table 1) link the molecules into ribbons extended in direction [001].

Related literature top

For related structures, see: Özel Güven et al. (2008a,b). For the pharmacological properties of triazole derivatives, see: Paulvannan et al. (2001); Wahbi et al. (1995).

Experimental top

A suspension of 4,5-diphenyl-4H-1,2,4-triazole-3-thiol (2.0 mmol) and 1,1-dibromomethane (1.0 mmol) in ethanol (10 ml) was stirred at room temperature. The reaction progress was monitored via TLC. The resulting precipitate was filtered off, washed with cold ethanol, dried and purified to give the target product as light yellow solid in 95% yield. Crystals of (I) suitable for single-crystal X-ray analysis were grown by slow evaporation of a solution in chloroform-ethanol (1:1).

Refinement top

All H atoms were positioned geometrically and refined as riding (C—H = 0.95–0.99 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq (C).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 1999); cell refinement: CrystalClear (Rigaku/MSC, 1999); data reduction: CrystalClear (Rigaku/MSC, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of (I) showing the atom-labelling scheme [symmetry code: (A) -x + 1,y,-z + 1/2]. Displacement ellipsoids are drawn at the 50% probability level.
4,4',5,5'-Tetraphenyl-3,3'-[methylidenebis(sulfanediyl)]bis(4H- 1,2,4-triazole) top
Crystal data top
C29H22N6S2F(000) = 1080
Mr = 518.65Dx = 1.404 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 6468 reflections
a = 30.449 (6) Åθ = 1.3–27.9°
b = 8.2759 (17) ŵ = 0.25 mm1
c = 9.7353 (19) ÅT = 113 K
V = 2453.2 (9) Å3Prism, colorless
Z = 40.22 × 0.18 × 0.12 mm
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
2147 independent reflections
Radiation source: rotating anode1970 reflections with I > 2σ(I)
confocalRint = 0.045
Detector resolution: 7.31 pixels mm-1θmax = 25.0°, θmin = 1.3°
φ and ω scansh = 3636
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 1999)
k = 99
Tmin = 0.947, Tmax = 0.971l = 1110
17244 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.125 w = 1/[σ2(Fo2) + (0.0826P)2 + 0.5471P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.002
2147 reflectionsΔρmax = 0.39 e Å3
169 parametersΔρmin = 0.29 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.050 (4)
Crystal data top
C29H22N6S2V = 2453.2 (9) Å3
Mr = 518.65Z = 4
Orthorhombic, PbcnMo Kα radiation
a = 30.449 (6) ŵ = 0.25 mm1
b = 8.2759 (17) ÅT = 113 K
c = 9.7353 (19) Å0.22 × 0.18 × 0.12 mm
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
2147 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 1999)
1970 reflections with I > 2σ(I)
Tmin = 0.947, Tmax = 0.971Rint = 0.045
17244 measured reflectionsθmax = 25.0°
Refinement top
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.125Δρmax = 0.39 e Å3
S = 1.10Δρmin = 0.29 e Å3
2147 reflectionsAbsolute structure: ?
169 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.484576 (14)0.18721 (6)0.40035 (4)0.0246 (2)
N10.37084 (5)0.2686 (2)0.23508 (15)0.0243 (4)
N20.41528 (5)0.23130 (19)0.22557 (15)0.0244 (4)
N30.39880 (5)0.27134 (18)0.44399 (15)0.0185 (4)
C10.28189 (6)0.2592 (2)0.34631 (19)0.0254 (4)
H10.28720.19130.26940.030*
C20.23919 (6)0.2897 (3)0.3878 (2)0.0288 (5)
H20.21530.24380.33880.035*
C30.23142 (6)0.3863 (3)0.49991 (19)0.0299 (5)
H30.20210.40610.52910.036*
C40.26622 (7)0.4548 (2)0.5704 (2)0.0302 (5)
H40.26060.52110.64810.036*
C50.30922 (6)0.4281 (2)0.52912 (18)0.0260 (4)
H50.33290.47750.57680.031*
C60.31729 (6)0.3280 (2)0.41710 (18)0.0207 (4)
C70.36147 (6)0.2918 (2)0.36533 (19)0.0203 (4)
C80.43093 (6)0.2328 (2)0.35103 (18)0.0207 (4)
C90.40330 (6)0.2658 (2)0.59099 (17)0.0190 (4)
C100.37948 (6)0.1537 (2)0.66540 (18)0.0251 (4)
H100.36010.08120.62000.030*
C110.38411 (6)0.1481 (3)0.80686 (19)0.0291 (5)
H110.36730.07340.85900.035*
C120.41327 (7)0.2513 (3)0.87285 (19)0.0298 (5)
H120.41670.24640.96980.036*
C130.43734 (6)0.3613 (2)0.79676 (19)0.0297 (5)
H130.45760.43100.84170.036*
C140.43218 (6)0.3708 (2)0.65523 (18)0.0240 (4)
H140.44820.44820.60330.029*
C150.50000.0719 (3)0.25000.0245 (6)
H15A0.47510.00110.22500.029*0.50
H15B0.52490.00110.27500.029*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0196 (3)0.0371 (4)0.0171 (3)0.00410 (18)0.00078 (16)0.00138 (18)
N10.0225 (8)0.0335 (9)0.0168 (8)0.0024 (6)0.0003 (6)0.0006 (6)
N20.0226 (8)0.0324 (9)0.0181 (8)0.0017 (7)0.0001 (6)0.0006 (6)
N30.0188 (8)0.0224 (8)0.0143 (8)0.0001 (6)0.0011 (6)0.0003 (6)
C10.0261 (10)0.0308 (10)0.0193 (10)0.0008 (8)0.0022 (7)0.0001 (8)
C20.0223 (10)0.0385 (12)0.0256 (11)0.0025 (8)0.0010 (7)0.0084 (8)
C30.0244 (9)0.0360 (12)0.0292 (10)0.0067 (8)0.0054 (8)0.0100 (9)
C40.0344 (10)0.0294 (11)0.0267 (10)0.0083 (8)0.0062 (8)0.0002 (9)
C50.0286 (9)0.0269 (10)0.0224 (10)0.0026 (8)0.0009 (8)0.0000 (8)
C60.0221 (9)0.0232 (10)0.0169 (9)0.0026 (7)0.0001 (7)0.0045 (7)
C70.0201 (9)0.0231 (9)0.0176 (9)0.0004 (7)0.0023 (7)0.0008 (7)
C80.0223 (9)0.0248 (9)0.0152 (9)0.0005 (7)0.0010 (7)0.0002 (7)
C90.0205 (9)0.0240 (10)0.0125 (9)0.0044 (7)0.0008 (7)0.0008 (7)
C100.0259 (9)0.0293 (10)0.0203 (10)0.0010 (8)0.0008 (7)0.0007 (8)
C110.0305 (10)0.0361 (11)0.0207 (9)0.0039 (9)0.0058 (8)0.0070 (8)
C120.0348 (11)0.0417 (12)0.0130 (9)0.0129 (9)0.0014 (8)0.0001 (8)
C130.0317 (10)0.0355 (11)0.0218 (9)0.0040 (9)0.0063 (8)0.0089 (8)
C140.0253 (9)0.0265 (10)0.0201 (9)0.0007 (7)0.0014 (7)0.0014 (8)
C150.0228 (12)0.0283 (14)0.0224 (13)0.0000.0048 (10)0.000
Geometric parameters (Å, °) top
S1—C81.7439 (19)C5—C61.391 (3)
S1—C151.8092 (15)C5—H50.9500
N1—C71.314 (2)C6—C71.467 (3)
N1—N21.391 (2)C9—C101.382 (3)
N2—C81.311 (2)C9—C141.386 (3)
N3—C81.370 (2)C10—C111.385 (3)
N3—C71.381 (2)C10—H100.9500
N3—C91.438 (2)C11—C121.389 (3)
C1—C21.385 (3)C11—H110.9500
C1—C61.400 (3)C12—C131.384 (3)
C1—H10.9500C12—H120.9500
C2—C31.373 (3)C13—C141.389 (3)
C2—H20.9500C13—H130.9500
C3—C41.384 (3)C14—H140.9500
C3—H30.9500C15—S1i1.8092 (15)
C4—C51.387 (3)C15—H15A0.9900
C4—H40.9500C15—H15B0.9900
C8—S1—C1597.73 (6)N2—C8—N3110.98 (16)
C7—N1—N2107.93 (14)N2—C8—S1126.50 (14)
C8—N2—N1106.82 (14)N3—C8—S1122.50 (13)
C8—N3—C7104.47 (15)C10—C9—C14121.16 (17)
C8—N3—C9125.57 (15)C10—C9—N3119.54 (16)
C7—N3—C9129.35 (15)C14—C9—N3119.29 (16)
C2—C1—C6120.33 (19)C9—C10—C11119.34 (18)
C2—C1—H1119.8C9—C10—H10120.3
C6—C1—H1119.8C11—C10—H10120.3
C3—C2—C1119.98 (19)C10—C11—C12120.29 (18)
C3—C2—H2120.0C10—C11—H11119.9
C1—C2—H2120.0C12—C11—H11119.9
C2—C3—C4120.05 (18)C13—C12—C11119.70 (18)
C2—C3—H3120.0C13—C12—H12120.2
C4—C3—H3120.0C11—C12—H12120.2
C3—C4—C5120.90 (19)C12—C13—C14120.54 (18)
C3—C4—H4119.5C12—C13—H13119.7
C5—C4—H4119.5C14—C13—H13119.7
C4—C5—C6119.26 (18)C9—C14—C13118.94 (18)
C4—C5—H5120.4C9—C14—H14120.5
C6—C5—H5120.4C13—C14—H14120.5
C5—C6—C1119.46 (17)S1—C15—S1i116.36 (15)
C5—C6—C7123.54 (17)S1—C15—H15A108.2
C1—C6—C7116.99 (17)S1i—C15—H15A108.2
N1—C7—N3109.79 (16)S1—C15—H15B108.2
N1—C7—C6124.08 (16)S1i—C15—H15B108.2
N3—C7—C6126.09 (16)H15A—C15—H15B107.4
C7—N1—N2—C80.3 (2)N1—N2—C8—S1177.52 (14)
C6—C1—C2—C30.7 (3)C7—N3—C8—N20.7 (2)
C1—C2—C3—C40.8 (3)C9—N3—C8—N2172.43 (17)
C2—C3—C4—C50.3 (3)C7—N3—C8—S1177.52 (13)
C3—C4—C5—C61.4 (3)C9—N3—C8—S15.8 (3)
C4—C5—C6—C11.4 (3)C15—S1—C8—N220.82 (19)
C4—C5—C6—C7179.98 (17)C15—S1—C8—N3157.12 (16)
C2—C1—C6—C50.4 (3)C8—N3—C9—C10113.1 (2)
C2—C1—C6—C7179.05 (17)C7—N3—C9—C1056.5 (3)
N2—N1—C7—N30.2 (2)C8—N3—C9—C1465.6 (2)
N2—N1—C7—C6177.72 (17)C7—N3—C9—C14124.8 (2)
C8—N3—C7—N10.5 (2)C14—C9—C10—C111.0 (3)
C9—N3—C7—N1171.81 (16)N3—C9—C10—C11179.62 (16)
C8—N3—C7—C6177.31 (17)C9—C10—C11—C121.7 (3)
C9—N3—C7—C66.0 (3)C10—C11—C12—C130.8 (3)
C5—C6—C7—N1146.00 (19)C11—C12—C13—C140.8 (3)
C1—C6—C7—N132.6 (3)C10—C9—C14—C130.6 (3)
C5—C6—C7—N336.5 (3)N3—C9—C14—C13178.03 (16)
C1—C6—C7—N3144.92 (18)C12—C13—C14—C91.5 (3)
N1—N2—C8—N30.6 (2)C8—S1—C15—S1i80.05 (6)
Symmetry codes: (i) −x+1, y, −z+1/2.
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
C12—H12···N2ii0.952.493.438 (2)173
Symmetry codes: (ii) x, y, z+1.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
C12—H12···N2i0.952.493.438 (2)173
Symmetry codes: (i) x, y, z+1.
Acknowledgements top

We gratefully acknowledge financial support from the Science Fund for Young Scholars of Heilongjiang Province of China under grant No. QC2009C61.

references
References top

Özel Güven, Ö., Tahtacı, H., Coles, S. J. & Hökelek, T. (2008a). Acta Cryst. E64, o1914–o1915.

Özel Güven, Ö., Tahtacı, H., Coles, S. J. & Hökelek, T. (2008b). Acta Cryst. E64, o1254.

Paulvannan, K., Hale, R., Sedehi, D. & Chen, T. (2001). Tetrahedron, 57, 9677–9682.

Rigaku/MSC (1999). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Wahbi, Y., Caujolle, R., Tournaire, C., Payard, M., Linas, M. D. & Seguela, J. P. (1995). Eur. J. Med. Chem. 30, 955–962.