organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

10-(Prop-2-yn­yl)-10H-pheno­thia­zine

aLaboratoire de Chimie Organique, Faculté des Sciences, Dhar el Mahraz, Université Sidi Mohammed Ben Abdellah, Fès, Morocco, and bLaboratoires de Diffraction des Rayons X, Centre National pour la Recherche Scientifique et Technique, Angle Allal, AlFassi et Avenue des FAR, Hay Ryad, BP 8027, Rabat, Morocco
*Correspondence e-mail: alamianouar@yahoo.fr

(Received 8 October 2010; accepted 10 October 2010; online 20 October 2010)

In the mol­ecule of the title compound, C15H11NS, the butterfly angle between the two planes defined by the two wings of the phenothia­zine unit is 33.5 (8)°. The dihedral angles between the two benzene rings and the propynyl group are 85 (4) and 63 (4)°.

Related literature

For the 1,3-dipolar addition reaction in chemical synthesis, see: Kumar et al. (2006[Kumar, R. R., Perumal, S. & Guillot, H. B. (2006). Tetrahedron, 62, 12380-12391.]); Kalita et al. (2006[Kalita, P. K., Baruah, B. & Bhuyan, P. J. (2006). Tetrahedron Lett. 47, 7779-7782.]); Sibi et al. (2006[Sibi, M. P., Stanley, L. M. & Soeta, T. (2006). Adv. Synth. Catal. 348, 2371-2375.]); Choi et al. (2006[Choi, W. J., Shi, Zh. D., Worthy, K. M., Bindu, L., Karki, R. G., Nicklaus, M. C., Fisher, R. J. Jr & Burke, T. R. (2006). Bioorg. Med. Chem. Lett. 16, 5262-5265.]); Ji-Cai et al. (2007[Ji-Cai, F., Liang, J., Wang, Y. & Shang, Z.-C. (2007). Theochem, 821, 145-152.]); Aouine et al. (2008[Aouine, Y., Faraj, H., Alami, A., El Hallaoui, A., Elachqar, A., El Hajji, S., Kerbal, A., Labriti, B., Martinez, J. & Rolland, V. (2008). J. Mar. Chim. Heterocycl. 7, 44-49.]).

[Scheme 1]

Experimental

Crystal data
  • C15H11NS

  • Mr = 237.31

  • Monoclinic, P 21 /n

  • a = 10.5306 (10) Å

  • b = 7.2981 (6) Å

  • c = 15.6782 (14) Å

  • β = 96.023 (3)°

  • V = 1198.27 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 296 K

  • 0.42 × 0.38 × 0.17 mm

Data collection
  • Bruker APEXII CCD detector diffractometer

  • 16905 measured reflections

  • 3688 independent reflections

  • 2683 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.151

  • S = 1.08

  • 3688 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The 1,3-dipolar addition reaction as a versatile method for preparing five-membered heterocyclic compounds is a classical reaction in organic chemistry and has been studied extensively. These cycloadditions have been utilized for the preparation of compounds that are fundamental importance in diverse fields of chemistry, see: Kumar et al. (2006); Kalita et al. (2006); Sibi et al. (2006); Choi et al. (2006); Ji-Cai et al. (2007). This approach consists of preparing firstly, heterocyclic dipolarophiles by nucleophilic substitution of propargyl bromide with heterocyclic compounds, see: Y. Aouine et al. (2008). The dipolarophile 10-(prop-2-ynyl)-10H-phenothiazine was obtained with good yield.

In the molecule of the title compound, C15H11NS, the butterfly angle between the two planes defined by the two wings of the phenothiazine unit is 33.5 (8)°. The dihedral angles between the two phenyls and the propynyl are: 85 (4)° and 63 (4)°, respictively.

Related literature top

For the 1,3-dipolar addition reaction in chemical synthesis, see: Kumar et al. (2006); Kalita et al. (2006); Sibi et al. (2006); Choi et al. (2006); Ji-Cai et al. (2007); Aouine et al. (2008).

Experimental top

To a stirred solution (10 mmoles) of phenothiazine, potassium carbonate (15 mmoles) and a catalytic amount of tetrabutylammonium bromide in 10 ml of dry acetone, 10 mmoles of propargyl bromide was added. The mixture was stirred at room temperature for 6 h. The solvent was evaporated under vacuum and the residue was extracted with ether. The organic layer was washed with water, dried with sodium sulfate (Na2SO4), and the solvent was removed. The product was purified by column chromatography on silica gel using ether/hexane as eluant to afford pure alkyne. The purity of the compound was checked by determining its melting point (82–84°C). Suitable single-crystal of the title compound was obtained by recrystallization from ethanol. The structure of the product was established on the basis of NMR spectroscopy (1H, 13 C) and MS data.

Refinement top

All H atoms were fixed geometrically and treated as riding with C—H = 0.97 Å (methyne) and 0.93Å (aromatic) with Uiso(H) = 1.2Ueq(C).

Structure description top

The 1,3-dipolar addition reaction as a versatile method for preparing five-membered heterocyclic compounds is a classical reaction in organic chemistry and has been studied extensively. These cycloadditions have been utilized for the preparation of compounds that are fundamental importance in diverse fields of chemistry, see: Kumar et al. (2006); Kalita et al. (2006); Sibi et al. (2006); Choi et al. (2006); Ji-Cai et al. (2007). This approach consists of preparing firstly, heterocyclic dipolarophiles by nucleophilic substitution of propargyl bromide with heterocyclic compounds, see: Y. Aouine et al. (2008). The dipolarophile 10-(prop-2-ynyl)-10H-phenothiazine was obtained with good yield.

In the molecule of the title compound, C15H11NS, the butterfly angle between the two planes defined by the two wings of the phenothiazine unit is 33.5 (8)°. The dihedral angles between the two phenyls and the propynyl are: 85 (4)° and 63 (4)°, respictively.

For the 1,3-dipolar addition reaction in chemical synthesis, see: Kumar et al. (2006); Kalita et al. (2006); Sibi et al. (2006); Choi et al. (2006); Ji-Cai et al. (2007); Aouine et al. (2008).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. ORTEP of the molecule of the title compound showing the atom-labelling scheme and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Partial packing view.
10-(Prop-2-ynyl)-10H-phenothiazine top
Crystal data top
C15H11NSF(000) = 496
Mr = 237.31Dx = 1.315 Mg m3
Monoclinic, P21/nMelting point: 355 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 10.5306 (10) ÅCell parameters from 2646 reflections
b = 7.2981 (6) Åθ = 1.7–26.2°
c = 15.6782 (14) ŵ = 0.24 mm1
β = 96.023 (3)°T = 296 K
V = 1198.27 (18) Å3Block, colourless
Z = 40.42 × 0.38 × 0.17 mm
Data collection top
Bruker APEXII CCD detector
diffractometer
2683 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.034
Graphite monochromatorθmax = 30.6°, θmin = 2.2°
ω and φ scansh = 1515
16905 measured reflectionsk = 1010
3688 independent reflectionsl = 2122
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.151 w = 1/[σ2(Fo2) + (0.0829P)2 + 0.0989P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.002
3688 reflectionsΔρmax = 0.35 e Å3
155 parametersΔρmin = 0.24 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.015 (3)
Crystal data top
C15H11NSV = 1198.27 (18) Å3
Mr = 237.31Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.5306 (10) ŵ = 0.24 mm1
b = 7.2981 (6) ÅT = 296 K
c = 15.6782 (14) Å0.42 × 0.38 × 0.17 mm
β = 96.023 (3)°
Data collection top
Bruker APEXII CCD detector
diffractometer
2683 reflections with I > 2σ(I)
16905 measured reflectionsRint = 0.034
3688 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.151H-atom parameters constrained
S = 1.08Δρmax = 0.35 e Å3
3688 reflectionsΔρmin = 0.24 e Å3
155 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.74384 (5)1.23619 (6)1.08918 (3)0.06194 (18)
C10.64205 (14)1.18256 (18)0.99624 (9)0.0453 (3)
C120.81567 (13)1.0206 (2)1.10752 (9)0.0476 (3)
C60.68419 (12)1.06413 (17)0.93508 (8)0.0409 (3)
C70.84191 (12)0.9120 (2)1.03762 (8)0.0444 (3)
C50.60793 (14)1.0439 (2)0.85724 (9)0.0482 (3)
H50.63380.96610.81540.058*
C40.49414 (14)1.1390 (2)0.84205 (11)0.0572 (4)
H40.44641.12860.78890.069*
C30.45030 (16)1.2484 (2)0.90383 (12)0.0594 (4)
H30.37241.30870.89350.071*
C140.78307 (14)0.6913 (2)0.86512 (9)0.0512 (3)
C20.52371 (17)1.26762 (19)0.98158 (11)0.0545 (4)
H20.49371.33821.02460.065*
C130.84863 (13)0.8676 (2)0.88310 (9)0.0504 (3)
H13A0.93910.84450.89700.060*
H13B0.83860.94190.83150.060*
C80.90857 (15)0.7493 (2)1.05489 (11)0.0582 (4)
H80.92660.67401.00990.070*
C100.91968 (17)0.8038 (3)1.20672 (11)0.0690 (5)
H100.94570.76761.26270.083*
C110.85181 (15)0.9640 (3)1.19087 (10)0.0585 (4)
H110.83011.03461.23650.070*
C150.72916 (18)0.5503 (3)0.85403 (11)0.0663 (4)
H150.68660.43910.84530.080*
C90.94833 (17)0.6984 (3)1.13868 (12)0.0707 (5)
H90.99520.59121.14900.085*
N10.80200 (10)0.97117 (16)0.95310 (7)0.0436 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0868 (3)0.0449 (2)0.0533 (3)0.00690 (19)0.0031 (2)0.01417 (16)
C10.0585 (8)0.0314 (6)0.0470 (7)0.0052 (5)0.0096 (6)0.0007 (5)
C120.0450 (6)0.0521 (8)0.0449 (7)0.0122 (6)0.0006 (5)0.0051 (6)
C60.0473 (6)0.0334 (6)0.0426 (6)0.0073 (5)0.0075 (5)0.0020 (5)
C70.0374 (6)0.0507 (8)0.0447 (7)0.0080 (5)0.0033 (5)0.0021 (6)
C50.0555 (8)0.0423 (7)0.0463 (7)0.0043 (6)0.0027 (6)0.0008 (6)
C40.0575 (8)0.0522 (9)0.0595 (9)0.0032 (7)0.0053 (7)0.0091 (7)
C30.0560 (8)0.0437 (8)0.0788 (11)0.0036 (6)0.0088 (8)0.0134 (7)
C140.0540 (8)0.0558 (9)0.0452 (7)0.0055 (7)0.0118 (6)0.0064 (6)
C20.0685 (9)0.0341 (7)0.0638 (9)0.0034 (6)0.0202 (8)0.0038 (6)
C130.0456 (7)0.0608 (9)0.0469 (7)0.0033 (6)0.0150 (6)0.0047 (6)
C80.0486 (7)0.0684 (11)0.0566 (9)0.0095 (7)0.0013 (6)0.0029 (7)
C100.0587 (9)0.0943 (14)0.0512 (9)0.0004 (9)0.0072 (7)0.0113 (9)
C110.0553 (8)0.0759 (11)0.0434 (7)0.0118 (8)0.0008 (6)0.0050 (7)
C150.0830 (12)0.0568 (10)0.0602 (10)0.0058 (9)0.0134 (8)0.0081 (8)
C90.0587 (9)0.0832 (12)0.0681 (11)0.0157 (9)0.0038 (8)0.0121 (10)
N10.0435 (6)0.0475 (6)0.0402 (6)0.0038 (5)0.0066 (4)0.0041 (5)
Geometric parameters (Å, º) top
S1—C121.7563 (17)C3—H30.9300
S1—C11.7599 (15)C14—C151.179 (2)
C1—C21.390 (2)C14—C131.473 (2)
C1—C61.3974 (19)C2—H20.9300
C12—C111.385 (2)C13—N11.4594 (16)
C12—C71.4034 (19)C13—H13A0.9700
C6—C51.3965 (19)C13—H13B0.9700
C6—N11.4162 (17)C8—C91.387 (2)
C7—C81.391 (2)C8—H80.9300
C7—N11.4151 (17)C10—C91.374 (3)
C5—C41.384 (2)C10—C111.379 (3)
C5—H50.9300C10—H100.9300
C4—C31.372 (2)C11—H110.9300
C4—H40.9300C15—H150.9300
C3—C21.380 (3)C9—H90.9300
C12—S1—C198.67 (7)C3—C2—H2119.7
C2—C1—C6120.44 (14)C1—C2—H2119.7
C2—C1—S1119.69 (12)N1—C13—C14114.10 (11)
C6—C1—S1119.73 (11)N1—C13—H13A108.7
C11—C12—C7120.73 (15)C14—C13—H13A108.7
C11—C12—S1119.52 (12)N1—C13—H13B108.7
C7—C12—S1119.66 (11)C14—C13—H13B108.7
C5—C6—C1118.04 (13)H13A—C13—H13B107.6
C5—C6—N1122.35 (12)C9—C8—C7120.59 (16)
C1—C6—N1119.61 (12)C9—C8—H8119.7
C8—C7—C12117.82 (14)C7—C8—H8119.7
C8—C7—N1122.48 (13)C9—C10—C11119.11 (16)
C12—C7—N1119.70 (13)C9—C10—H10120.4
C4—C5—C6120.38 (14)C11—C10—H10120.4
C4—C5—H5119.8C10—C11—C12120.58 (16)
C6—C5—H5119.8C10—C11—H11119.7
C3—C4—C5121.32 (15)C12—C11—H11119.7
C3—C4—H4119.3C14—C15—H15180.0
C5—C4—H4119.3C10—C9—C8121.09 (18)
C4—C3—C2118.93 (15)C10—C9—H9119.5
C4—C3—H3120.5C8—C9—H9119.5
C2—C3—H3120.5C7—N1—C6120.06 (10)
C15—C14—C13177.31 (16)C7—N1—C13117.11 (12)
C3—C2—C1120.68 (15)C6—N1—C13117.06 (11)

Experimental details

Crystal data
Chemical formulaC15H11NS
Mr237.31
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)10.5306 (10), 7.2981 (6), 15.6782 (14)
β (°) 96.023 (3)
V3)1198.27 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.42 × 0.38 × 0.17
Data collection
DiffractometerBruker APEXII CCD detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
16905, 3688, 2683
Rint0.034
(sin θ/λ)max1)0.716
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.151, 1.08
No. of reflections3688
No. of parameters155
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.24

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), publCIF (Westrip, 2010).

 

Acknowledgements

The authors thank the CNRST, Morocco, for making this work possible.

References

First citationAouine, Y., Faraj, H., Alami, A., El Hallaoui, A., Elachqar, A., El Hajji, S., Kerbal, A., Labriti, B., Martinez, J. & Rolland, V. (2008). J. Mar. Chim. Heterocycl. 7, 44–49.  CAS Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, W. J., Shi, Zh. D., Worthy, K. M., Bindu, L., Karki, R. G., Nicklaus, M. C., Fisher, R. J. Jr & Burke, T. R. (2006). Bioorg. Med. Chem. Lett. 16, 5262–5265.  Google Scholar
First citationJi-Cai, F., Liang, J., Wang, Y. & Shang, Z.-C. (2007). Theochem, 821, 145–152.  Google Scholar
First citationKalita, P. K., Baruah, B. & Bhuyan, P. J. (2006). Tetrahedron Lett. 47, 7779–7782.  Web of Science CrossRef CAS Google Scholar
First citationKumar, R. R., Perumal, S. & Guillot, H. B. (2006). Tetrahedron, 62, 12380–12391.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSibi, M. P., Stanley, L. M. & Soeta, T. (2006). Adv. Synth. Catal. 348, 2371–2375.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds