supplementary materials


gk2301 scheme

Acta Cryst. (2010). E66, o2967    [ doi:10.1107/S1600536810042856 ]

rac-2-Hydroxy-2-(2-oxocyclopentyl)-1H-indene-1,3(2H)-dione

J. K. Sundar, S. Maharani, R. R. Kumar, S. Natarajan, J. Suresh and P. L. N. Lakshman

Abstract top

In the title compound, C14H12O4, the indene unit is essentially planar [r.m.s. deviation = 0.0309 (1) Å] and the cyclopentanone ring adopts a twist form. In the crystal, molecules are joined via pairs of O-H...O hydrogen bonds into centrosymmetric dimers.

Comment top

Ninhydrin derivatives constitute a versatile class of compounds with profound biological activities such as antibacterial, anticonvulsant, anticancer and anti-inflammatory activities. The present work constitutes the synthesis of various ninhydrin derivatives which are being tested for anti-tubercular and other biological activities.

Related literature top

For a similar structure, see: Penthala et al. (2009).

Experimental top

A mixture of cyclopentanone (0.5 g, 0.006 mol) and ninhydrin (1.05 g, 0.006 mol) in methanol (10 ml) was heated under reflux for 4 h in the presence of solid sodium ethoxide (0.4 g, 0.006 mol). After completion of the reaction, as was evident from TLC, the reaction mixture was poured into crushed ice, extracted with dichloromethane and subjected to column chromatographic purification using petroleum ether:ethyl acetate mixture (90:10 v/v) to obtain the product in 50% yield. The compound was further recrystallized from ethyl acetate to obtain suitable crystals for X-ray studies (m.p. 543 K)

Refinement top

All H atoms were placed at calculated positions and allowed to ride on their carrier atoms with C—H = 0.93–0.97 Å, Uiso = 1.2Ueq(C) and O—H = 0.82 Å, and Uiso = 1.5Ueq(O) .

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 30% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The packing diagram of the title compound.
rac-2-Hydroxy-2-(2-oxocyclopentyl)-1H-indene-1,3(2H)-dione top
Crystal data top
C14H12O4Z = 2
Mr = 244.24F(000) = 256
Triclinic, P1Dx = 1.384 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 8.044 (3) ÅCell parameters from 25 reflections
b = 8.404 (4) Åθ = 2–25°
c = 10.239 (3) ŵ = 0.10 mm1
α = 66.95 (3)°T = 293 K
β = 74.36 (2)°Block, colourless
γ = 68.50 (3)°0.26 × 0.22 × 0.19 mm
V = 586.1 (4) Å3
Data collection top
Nonius MACH3
diffractometer
1886 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.016
graphiteθmax = 25.0°, θmin = 2.2°
ω–2θ scansh = 19
Absorption correction: ψ scan
(North et al., 1968)
k = 99
Tmin = 0.974, Tmax = 0.981l = 1112
2534 measured reflections3 standard reflections every 60 min
2054 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.104 w = 1/[σ2(Fo2) + (0.0487P)2 + 0.2034P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2054 reflectionsΔρmax = 0.25 e Å3
164 parametersΔρmin = 0.23 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.059 (7)
Crystal data top
C14H12O4γ = 68.50 (3)°
Mr = 244.24V = 586.1 (4) Å3
Triclinic, P1Z = 2
a = 8.044 (3) ÅMo Kα radiation
b = 8.404 (4) ŵ = 0.10 mm1
c = 10.239 (3) ÅT = 293 K
α = 66.95 (3)°0.26 × 0.22 × 0.19 mm
β = 74.36 (2)°
Data collection top
Nonius MACH3
diffractometer
1886 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.016
Tmin = 0.974, Tmax = 0.981θmax = 25.0°
2534 measured reflections3 standard reflections every 60 min
2054 independent reflections intensity decay: none
Refinement top
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.104Δρmax = 0.25 e Å3
S = 1.07Δρmin = 0.23 e Å3
2054 reflectionsAbsolute structure: ?
164 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4901 (2)0.0143 (2)0.33717 (14)0.0367 (4)
C20.6584 (2)0.1372 (2)0.32374 (19)0.0505 (4)
H2A0.74110.15480.38520.061*
H2B0.71910.11290.22540.061*
C30.5929 (3)0.3013 (2)0.3708 (2)0.0551 (5)
H3A0.58210.35800.47420.066*
H3B0.67450.38960.32580.066*
C40.4084 (2)0.2245 (2)0.3207 (2)0.0494 (4)
H4A0.33530.30640.37190.059*
H4B0.42060.20080.21840.059*
C50.3268 (2)0.04868 (19)0.35711 (15)0.0367 (4)
H50.27970.08180.45980.044*
C60.17097 (19)0.09543 (19)0.27852 (15)0.0353 (3)
C70.2311 (2)0.1817 (2)0.11679 (15)0.0387 (4)
C80.2136 (2)0.3728 (2)0.09029 (16)0.0379 (4)
C90.2631 (2)0.5004 (2)0.03520 (18)0.0502 (4)
H90.31690.47100.11860.060*
C100.2304 (3)0.6721 (2)0.0329 (2)0.0573 (5)
H100.26180.76000.11630.069*
C110.1513 (3)0.7168 (2)0.0916 (2)0.0561 (5)
H110.13080.83380.09020.067*
C120.1028 (2)0.5900 (2)0.21723 (19)0.0470 (4)
H120.05080.61930.30080.056*
C130.13396 (19)0.4179 (2)0.21488 (16)0.0366 (3)
C140.09696 (19)0.2590 (2)0.33215 (15)0.0362 (3)
O10.48152 (16)0.16243 (15)0.33474 (12)0.0484 (3)
O20.03172 (15)0.02227 (15)0.29221 (13)0.0487 (3)
H20.00800.01700.37730.073*
O30.2801 (2)0.10548 (17)0.02872 (13)0.0602 (4)
O40.01604 (16)0.25544 (16)0.45179 (12)0.0502 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0390 (8)0.0451 (9)0.0268 (7)0.0147 (7)0.0051 (6)0.0103 (6)
C20.0385 (9)0.0636 (11)0.0529 (10)0.0090 (8)0.0067 (7)0.0282 (9)
C30.0563 (11)0.0472 (10)0.0590 (11)0.0008 (8)0.0178 (8)0.0231 (8)
C40.0534 (10)0.0382 (9)0.0599 (10)0.0117 (7)0.0158 (8)0.0162 (7)
C50.0392 (8)0.0369 (8)0.0330 (7)0.0144 (6)0.0043 (6)0.0082 (6)
C60.0368 (8)0.0355 (8)0.0349 (7)0.0164 (6)0.0048 (6)0.0077 (6)
C70.0419 (8)0.0409 (8)0.0338 (8)0.0138 (6)0.0051 (6)0.0117 (6)
C80.0378 (8)0.0392 (8)0.0345 (7)0.0138 (6)0.0071 (6)0.0064 (6)
C90.0581 (10)0.0529 (10)0.0353 (8)0.0246 (8)0.0039 (7)0.0043 (7)
C100.0668 (12)0.0465 (10)0.0520 (10)0.0299 (9)0.0110 (9)0.0044 (8)
C110.0639 (11)0.0356 (9)0.0691 (12)0.0193 (8)0.0185 (9)0.0073 (8)
C120.0483 (9)0.0397 (9)0.0527 (10)0.0113 (7)0.0083 (7)0.0158 (7)
C130.0335 (7)0.0367 (8)0.0372 (8)0.0108 (6)0.0057 (6)0.0087 (6)
C140.0312 (7)0.0400 (8)0.0343 (8)0.0118 (6)0.0028 (6)0.0091 (6)
O10.0516 (7)0.0463 (7)0.0537 (7)0.0207 (5)0.0116 (5)0.0145 (5)
O20.0464 (7)0.0514 (7)0.0525 (7)0.0268 (5)0.0123 (5)0.0066 (5)
O30.0894 (10)0.0528 (7)0.0402 (6)0.0226 (7)0.0035 (6)0.0195 (6)
O40.0528 (7)0.0511 (7)0.0383 (6)0.0173 (5)0.0087 (5)0.0143 (5)
Geometric parameters (Å, °) top
C1—O11.2116 (19)C6—C71.545 (2)
C1—C21.499 (2)C7—O31.2059 (19)
C1—C51.526 (2)C7—C81.479 (2)
C2—C31.512 (3)C8—C91.384 (2)
C2—H2A0.9700C8—C131.393 (2)
C2—H2B0.9700C9—C101.378 (3)
C3—C41.528 (3)C9—H90.9300
C3—H3A0.9700C10—C111.391 (3)
C3—H3B0.9700C10—H100.9300
C4—C51.531 (2)C11—C121.379 (3)
C4—H4A0.9700C11—H110.9300
C4—H4B0.9700C12—C131.383 (2)
C5—C61.534 (2)C12—H120.9300
C5—H50.9800C13—C141.469 (2)
C6—O21.4160 (18)C14—O41.2169 (18)
C6—C141.536 (2)O2—H20.8200
O1—C1—C2126.74 (15)C5—C6—C14110.99 (12)
O1—C1—C5124.60 (14)O2—C6—C7107.82 (12)
C2—C1—C5108.66 (13)C5—C6—C7113.02 (12)
C1—C2—C3104.51 (14)C14—C6—C7102.49 (12)
C1—C2—H2A110.9O3—C7—C8126.80 (14)
C3—C2—H2A110.9O3—C7—C6125.30 (14)
C1—C2—H2B110.9C8—C7—C6107.89 (13)
C3—C2—H2B110.9C9—C8—C13120.56 (15)
H2A—C2—H2B108.9C9—C8—C7129.09 (15)
C2—C3—C4103.75 (14)C13—C8—C7110.35 (13)
C2—C3—H3A111.0C10—C9—C8118.04 (17)
C4—C3—H3A111.0C10—C9—H9121.0
C2—C3—H3B111.0C8—C9—H9121.0
C4—C3—H3B111.0C9—C10—C11121.33 (16)
H3A—C3—H3B109.0C9—C10—H10119.3
C3—C4—C5102.74 (13)C11—C10—H10119.3
C3—C4—H4A111.2C12—C11—C10120.90 (17)
C5—C4—H4A111.2C12—C11—H11119.6
C3—C4—H4B111.2C10—C11—H11119.6
C5—C4—H4B111.2C11—C12—C13117.90 (17)
H4A—C4—H4B109.1C11—C12—H12121.1
C1—C5—C4103.78 (13)C13—C12—H12121.1
C1—C5—C6114.77 (12)C12—C13—C8121.28 (14)
C4—C5—C6117.09 (13)C12—C13—C14129.02 (15)
C1—C5—H5106.9C8—C13—C14109.69 (14)
C4—C5—H5106.9O4—C14—C13126.49 (15)
C6—C5—H5106.9O4—C14—C6124.45 (13)
O2—C6—C5111.26 (12)C13—C14—C6109.03 (12)
O2—C6—C14110.92 (12)C6—O2—H2109.5
O1—C1—C2—C3166.12 (15)O3—C7—C8—C13173.24 (16)
C5—C1—C2—C313.03 (17)C6—C7—C8—C135.46 (17)
C1—C2—C3—C433.50 (18)C13—C8—C9—C100.3 (2)
C2—C3—C4—C541.27 (18)C7—C8—C9—C10179.19 (16)
O1—C1—C5—C4168.45 (14)C8—C9—C10—C110.5 (3)
C2—C1—C5—C412.37 (16)C9—C10—C11—C120.1 (3)
O1—C1—C5—C639.4 (2)C10—C11—C12—C130.5 (3)
C2—C1—C5—C6141.39 (14)C11—C12—C13—C80.7 (2)
C3—C4—C5—C132.54 (16)C11—C12—C13—C14179.53 (15)
C3—C4—C5—C6160.13 (14)C9—C8—C13—C120.3 (2)
C1—C5—C6—O2174.96 (11)C7—C8—C13—C12179.90 (14)
C4—C5—C6—O252.92 (18)C9—C8—C13—C14179.32 (14)
C1—C5—C6—C1461.01 (16)C7—C8—C13—C141.09 (17)
C4—C5—C6—C14176.94 (12)C12—C13—C14—O47.0 (3)
C1—C5—C6—C753.49 (17)C8—C13—C14—O4174.07 (15)
C4—C5—C6—C768.56 (17)C12—C13—C14—C6175.15 (15)
O2—C6—C7—O354.4 (2)C8—C13—C14—C63.77 (16)
C5—C6—C7—O369.0 (2)O2—C6—C14—O456.38 (19)
C14—C6—C7—O3171.52 (16)C5—C6—C14—O467.85 (19)
O2—C6—C7—C8124.29 (13)C7—C6—C14—O4171.22 (14)
C5—C6—C7—C8112.31 (14)O2—C6—C14—C13121.51 (13)
C14—C6—C7—C87.21 (15)C5—C6—C14—C13114.26 (13)
O3—C7—C8—C96.3 (3)C7—C6—C14—C136.67 (15)
C6—C7—C8—C9174.99 (15)
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O4i0.822.092.791 (2)143
C2—H2A···O4ii0.972.603.560 (2)171
C2—H2B···O3iii0.972.583.423 (2)146
Symmetry codes: (i) −x, −y, −z+1; (ii) −x+1, −y, −z+1; (iii) −x+1, −y, −z.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
O2—H2···O4i0.822.092.791 (2)143
Symmetry codes: (i) −x, −y, −z+1.
Acknowledgements top

JKS thanks the UGC for the RFSMS fellowship.

references
References top

Enraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.

Harms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany.

North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.

Penthala, N. R., Reddy, T. R. Y., Parkin, S. & Crooks, P. A. (2009). Acta Cryst. E65, o1877.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.