organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[(E)-2-(Nitro­methyl­­idene)imidazolidin-1-yl]ethanol

aShandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, People's Republic of China
*Correspondence e-mail: chm_lidm@ujn.edu.cn

(Received 26 September 2010; accepted 1 October 2010; online 9 October 2010)

In the title compound, C6H11N3O3, the imidazolidine NH group is involved in a three-center N—H⋯O hydrogen bond, with intra­molecular and inter­molecular branches, to the nitro group O atoms. The centrosymmetric dimers that are formed are further connected by O—H⋯O hydrogen bonds between the hy­droxy and nitro groups into a two-dimensional polymeric structure extending parallel to (101).

Related literature

For related structures, see: Tian et al. (2010[Tian, Z., Dong, H., Li, D. & Wang, G. (2010). Acta Cryst. E66, o2330.]); Li et al. (2010[Li, D., Tian, Z., Wang, G., Wei, P. & Zhang, Y. (2010). Acta Cryst. E66, o2216.]). For background to neonicotinoid insecticides, see: Ohno et al. (2009[Ohno, I., Tomizawa, M., Durkin, K. A., Naruse, Y., Casida, J. E. & Kagabu, S. (2009). Chem. Res. Toxicol. 22, 476-482.]); Jeschke & Nauen (2008[Jeschke, P. & Nauen, R. (2008). Pest. Manag. Sci. 64, 1084-1098.]).

[Scheme 1]

Experimental

Crystal data
  • C6H11N3O3

  • Mr = 173.18

  • Monoclinic, P 21 /n

  • a = 6.9422 (2) Å

  • b = 8.7142 (3) Å

  • c = 12.9698 (4) Å

  • β = 94.153 (3)°

  • V = 782.55 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 293 K

  • 0.31 × 0.29 × 0.25 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.967, Tmax = 1.0

  • 4832 measured reflections

  • 1539 independent reflections

  • 1186 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.108

  • S = 1.11

  • 1539 reflections

  • 110 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O2i 0.86 2.37 3.0463 (16) 136
N2—H2⋯O2 0.86 2.12 2.6600 (16) 121
O1—H1⋯O3ii 0.82 2.06 2.8814 (16) 175
Symmetry codes: (i) -x, -y+1, -z+2; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Compared with conventional insecticides, nicotinoid insecticides have rapidly grown and become an important chemical class of insecticides in recent years because of their novel structure and mode of action (Ohno et al., 2009 and Jeschke et al., 2008). Here, we have synthesized a new compound by introducing an oxygen atom into the lead struture instead of nitrogen atom.

The structure of the title compound is shown in Fig. 1 with the atom-numbering scheme. The title compound is homolog of (E)-1-(2,2-dimethoxyethyl)-2-(nitromethylene)imidazolidine (Li et al., 2010). The imidazolidine ring is close to planar (r.m.s. deviation = 0.006 Å). Intramolecular H-bonding of N–H···O type exists and completes an S(6) ring motif. The packing of the molecules is stabilized by N–H···O and O–H···O hydrogen bonds and van der Waal's forces.

Related literature top

For related structures, see: Tian et al. (2010); Li et al. (2010). For background to neonicotinoid insecticides, see: Ohno et al. (2009); Jeschke et al. (2008).

Experimental top

A solution of 2-(2-aminoethylamino)ethanol (2 mmol), and 1,1-bis(thiomethyl)-2-nitroethylene (2 mmol) in 30 ml of ethanol was refluxed for 8 h and then cooled to room temperature. Evaporation under reduced pressure gave the title product after purifiction by flash chromatography. Single crystals suitable for X-ray analysis were obtained by slow evaporation of a solution of dichloromethane and ethyl acetate of the title compound.

Refinement top

All H atoms were placed in their calculated positions and then refined using riding model with C—H = 0.93–0.97 Å, O—H = 0.82 Å , N—H = 0.86 Å and Uiso(H) = 1.2 Ueq(C,N) or Uiso(H) = 1.5 Ueq(O).

Structure description top

Compared with conventional insecticides, nicotinoid insecticides have rapidly grown and become an important chemical class of insecticides in recent years because of their novel structure and mode of action (Ohno et al., 2009 and Jeschke et al., 2008). Here, we have synthesized a new compound by introducing an oxygen atom into the lead struture instead of nitrogen atom.

The structure of the title compound is shown in Fig. 1 with the atom-numbering scheme. The title compound is homolog of (E)-1-(2,2-dimethoxyethyl)-2-(nitromethylene)imidazolidine (Li et al., 2010). The imidazolidine ring is close to planar (r.m.s. deviation = 0.006 Å). Intramolecular H-bonding of N–H···O type exists and completes an S(6) ring motif. The packing of the molecules is stabilized by N–H···O and O–H···O hydrogen bonds and van der Waal's forces.

For related structures, see: Tian et al. (2010); Li et al. (2010). For background to neonicotinoid insecticides, see: Ohno et al. (2009); Jeschke et al. (2008).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom numbering scheme. Displacement ellipsoids are drawn at the 40% probability level. The H atoms are shown as spheres of arbitrary size.
[Figure 2] Fig. 2. Inter- and intramolecular hydrogen bonding in the titlecrystal structure.
2-[(E)-2-(Nitromethylidene)imidazolidin-1-yl]ethanol top
Crystal data top
C6H11N3O3F(000) = 368
Mr = 173.18Dx = 1.478 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.7107 Å
Hall symbol: -P 2ynCell parameters from 2585 reflections
a = 6.9422 (2) Åθ = 3.2–28.8°
b = 8.7142 (3) ŵ = 0.12 mm1
c = 12.9698 (4) ÅT = 293 K
β = 94.153 (3)°Prism, colourless
V = 782.55 (4) Å30.31 × 0.29 × 0.25 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
1539 independent reflections
Radiation source: fine-focus sealed tube1186 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
Detector resolution: 16.0355 pixels mm-1θmax = 26.0°, θmin = 3.2°
ω scansh = 88
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1010
Tmin = 0.967, Tmax = 1.0l = 1515
4832 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0606P)2 + 0.045P]
where P = (Fo2 + 2Fc2)/3
1539 reflections(Δ/σ)max < 0.001
110 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C6H11N3O3V = 782.55 (4) Å3
Mr = 173.18Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.9422 (2) ŵ = 0.12 mm1
b = 8.7142 (3) ÅT = 293 K
c = 12.9698 (4) Å0.31 × 0.29 × 0.25 mm
β = 94.153 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
1539 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1186 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 1.0Rint = 0.017
4832 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.108H-atom parameters constrained
S = 1.11Δρmax = 0.17 e Å3
1539 reflectionsΔρmin = 0.17 e Å3
110 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7352 (2)0.66673 (18)0.73309 (13)0.0428 (4)
H1A0.70100.76960.70990.051*
H1B0.87090.65090.72300.051*
C20.70406 (19)0.65267 (18)0.84644 (12)0.0387 (4)
H2A0.73380.54850.86870.046*
H2B0.79320.72070.88510.046*
C30.4516 (2)0.84632 (17)0.89333 (14)0.0481 (4)
H3A0.45360.91060.83240.058*
H3B0.53640.89040.94830.058*
C40.2490 (3)0.82924 (18)0.92650 (15)0.0519 (5)
H4A0.15700.88400.88020.062*
H4B0.23960.86680.99640.062*
C50.36609 (19)0.59107 (16)0.88760 (10)0.0296 (3)
C60.3790 (2)0.43186 (17)0.87112 (11)0.0358 (4)
H60.49330.39200.84900.043*
N10.50847 (16)0.68944 (13)0.87087 (9)0.0336 (3)
N20.21646 (17)0.66554 (14)0.92072 (10)0.0403 (3)
H20.11190.62160.93700.048*
N30.23318 (18)0.33545 (14)0.88605 (10)0.0371 (3)
O10.62388 (16)0.55935 (12)0.67291 (8)0.0481 (3)
H10.51610.59490.65800.072*
O20.07390 (15)0.38210 (13)0.91700 (9)0.0480 (3)
O30.25342 (18)0.19348 (13)0.86750 (10)0.0580 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0326 (8)0.0405 (9)0.0571 (10)0.0014 (6)0.0154 (7)0.0017 (7)
C20.0258 (7)0.0403 (9)0.0499 (9)0.0013 (6)0.0021 (6)0.0009 (7)
C30.0482 (10)0.0322 (9)0.0651 (11)0.0019 (7)0.0120 (8)0.0064 (7)
C40.0552 (11)0.0338 (9)0.0689 (12)0.0060 (7)0.0210 (9)0.0038 (7)
C50.0292 (7)0.0324 (8)0.0274 (7)0.0016 (6)0.0026 (5)0.0012 (5)
C60.0303 (8)0.0324 (8)0.0454 (8)0.0010 (6)0.0077 (6)0.0015 (6)
N10.0319 (6)0.0298 (7)0.0399 (7)0.0019 (5)0.0087 (5)0.0032 (5)
N20.0329 (7)0.0329 (7)0.0568 (8)0.0031 (5)0.0162 (6)0.0007 (5)
N30.0389 (7)0.0323 (7)0.0400 (7)0.0019 (5)0.0023 (5)0.0002 (5)
O10.0507 (7)0.0442 (7)0.0502 (7)0.0038 (5)0.0083 (5)0.0071 (5)
O20.0372 (6)0.0480 (7)0.0606 (7)0.0060 (5)0.0163 (5)0.0029 (5)
O30.0593 (8)0.0293 (7)0.0858 (9)0.0038 (5)0.0090 (7)0.0056 (6)
Geometric parameters (Å, º) top
C1—H1A0.9700C5—C61.408 (2)
C1—H1B0.9700C6—H60.9300
C1—C21.506 (2)N1—C21.4523 (17)
C2—H2A0.9700N1—C31.4582 (19)
C2—H2B0.9700N2—H20.8600
C3—H3A0.9700N2—C41.445 (2)
C3—H3B0.9700N3—O31.2701 (16)
C3—C41.508 (2)N3—C61.3406 (18)
C4—H4B0.9700O1—H10.8200
C4—H4A0.9700O1—C11.4123 (19)
C5—N11.3379 (17)O2—N31.2702 (15)
C5—N21.3227 (17)
C1—O1—H1109.5N1—C5—C6123.43 (13)
C1—C2—H2A108.9N1—C2—C1113.42 (12)
C1—C2—H2B108.9N1—C2—H2A108.9
H1A—C1—H1B107.9N1—C2—H2B108.9
C2—N1—C3121.44 (12)N1—C3—H3A111.0
C2—C1—H1A109.2N1—C3—H3B111.0
C2—C1—H1B109.2N1—C3—C4103.67 (12)
H2A—C2—H2B107.7N2—C5—N1110.19 (12)
C3—C4—H4B111.1N2—C5—C6126.39 (13)
C3—C4—H4A111.1N2—C4—C3103.18 (12)
H3A—C3—H3B109.0N2—C4—H4B111.1
C4—N2—H2123.9N2—C4—H4A111.1
C4—C3—H3A111.0N3—C6—C5122.59 (13)
C4—C3—H3B111.0N3—C6—H6118.7
H4B—C4—H4A109.1O1—C1—H1A109.2
C5—N1—C2127.40 (12)O1—C1—H1B109.2
C5—N1—C3110.75 (12)O1—C1—C2111.96 (12)
C5—N2—H2123.9O2—N3—C6121.94 (12)
C5—N2—C4112.19 (12)O3—N3—O2118.84 (12)
C5—C6—H6118.7O3—N3—C6119.21 (13)
O1—C1—C2—N164.63 (17)C2—N1—C3—C4173.37 (14)
O2—N3—C6—C50.6 (2)C3—N1—C2—C187.91 (16)
O3—N3—C6—C5178.47 (14)C5—N1—C2—C1100.19 (16)
N1—C5—N2—C41.41 (17)C5—N1—C3—C40.24 (17)
N1—C5—C6—N3178.43 (12)C5—N2—C4—C31.48 (19)
N1—C3—C4—N20.97 (18)C6—C5—N1—C28.2 (2)
N2—C5—N1—C2171.93 (13)C6—C5—N1—C3179.16 (14)
N2—C5—N1—C30.69 (16)C6—C5—N2—C4178.44 (14)
N2—C5—C6—N31.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.862.373.0463 (16)136
N2—H2···O20.862.122.6600 (16)121
O1—H1···O3ii0.822.062.8814 (16)175
Symmetry codes: (i) x, y+1, z+2; (ii) x+1/2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC6H11N3O3
Mr173.18
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)6.9422 (2), 8.7142 (3), 12.9698 (4)
β (°) 94.153 (3)
V3)782.55 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.31 × 0.29 × 0.25
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.967, 1.0
No. of measured, independent and
observed [I > 2σ(I)] reflections
4832, 1539, 1186
Rint0.017
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.108, 1.11
No. of reflections1539
No. of parameters110
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.17

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.862.373.0463 (16)136
N2—H2···O20.862.122.6600 (16)121
O1—H1···O3ii0.822.062.8814 (16)175
Symmetry codes: (i) x, y+1, z+2; (ii) x+1/2, y+1/2, z+3/2.
 

Acknowledgements

The authors thank the National Natural Science Foundation of China (grant No. 20902037) and the Doctoral Foundation of University of Jinan (B0542) for financial support.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationJeschke, P. & Nauen, R. (2008). Pest. Manag. Sci. 64, 1084–1098.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLi, D., Tian, Z., Wang, G., Wei, P. & Zhang, Y. (2010). Acta Cryst. E66, o2216.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOhno, I., Tomizawa, M., Durkin, K. A., Naruse, Y., Casida, J. E. & Kagabu, S. (2009). Chem. Res. Toxicol. 22, 476–482.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTian, Z., Dong, H., Li, D. & Wang, G. (2010). Acta Cryst. E66, o2330.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds