organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Morpholinium styphnate

aPG & Research Department of Chemistry, Seethalakshmi Ramaswami College, Tiruchirappalli 620 002, Tamil Nadu, India
*Correspondence e-mail: kalaivbalaj@yahoo.co.in

(Received 18 September 2010; accepted 25 September 2010; online 2 October 2010)

In the title mol­ecular salt (systematic name: morpholinium 3-hy­droxy-2,4,6-trinitro­phenolate), C4H10NO+·C6H2N3O8, two of the nitro groups of the anion are close to parallel with the plane of the benzene ring [dihedral angles = 3.46 (9) and 11.60 (10)°] and one is almost perpendicular [dihedral angle = 82.23 (8)°]. An intra­molecular O—H⋯O hydrogen bond occurs in the anion. The morpholinium cation has a slightly distorted chair conformation. In the crystal, the components are linked by simple N—H⋯O and trifurcated N—H⋯(O,O,O) hydrogen bonds.

Related literature

For related mol­ecular salts, see: Radha et al. (1987[Radha, N., Dhoulethbegum, S. & Sahayamary, J. (1987). Indian J. Chem. Sect. A, 26, 1006-1008.]).

[Scheme 1]

Experimental

Crystal data
  • C4H10NO+·C6H2N3O8

  • Mr = 332.24

  • Triclinic, [P \overline 1]

  • a = 7.680 (5) Å

  • b = 7.973 (5) Å

  • c = 11.852 (5) Å

  • α = 94.785 (5)°

  • β = 99.016 (5)°

  • γ = 108.188 (5)°

  • V = 674.1 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.15 mm−1

  • T = 293 K

  • 0.30 × 0.16 × 0.16 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999[Bruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.957, Tmax = 0.977

  • 16214 measured reflections

  • 3841 independent reflections

  • 2944 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.157

  • S = 1.06

  • 3841 reflections

  • 225 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.77 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O8—H8⋯O5 0.91 (3) 1.75 (3) 2.571 (2) 149 (2)
N4—H4A⋯O7 0.87 (2) 1.87 (2) 2.715 (2) 164 (2)
N4—H4B⋯O2i 0.86 (2) 2.31 (2) 2.962 (2) 132.4 (17)
N4—H4B⋯O5ii 0.86 (2) 2.42 (2) 2.967 (2) 121.5 (17)
N4—H4B⋯O3iii 0.86 (2) 2.54 (2) 3.206 (3) 134.3 (17)
Symmetry codes: (i) -x+2, -y+1, -z; (ii) -x+1, -y, -z; (iii) x+1, y, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Picric acid (1-hydroxy – 2,4,6- trinitrobenzene) forms 1:1 donor –acceptor adducts with amines and in these adducts, the main stabilizing factor is the proton transfer from OH of nitro compound to the nitrogen atom of amine (Radha et al.,1987). Unlike picric acid, styphnic acid (2,4,6-trinitro -1,3-benzene diol) contains two phenolic OH groups and hence the type of adduct formation with amines and the mode of interaction are to be envisaged. This necessitates the synthesis of the title molecule from styphnic acid and morpholine (tetrahydro – 1,4-oxazine). Single crystal X-ray analysis data clearly indicate that 1:1 adduct (Scheme 1)is formed from styphnic acid and morpholine and the main contributing factor for the formation of the adduct is the proton transfer from phenolic OH of styphnic acid to the nitrogen atom of morpholine. Hydrogen bond (N—H···O) is noticed between cation and anion moieties. Intramolecular hydrogen bond [O—H···O; R11(6) motif] is also observed. Puckering parameters[(q2 = 0.0243(0.0017), q3=0.5764 (0.0019), φ2=-175.98(5.69), QT=0.5770(0.0019);θ2=2.41(0.17)] of the cation moiety (morpholinium ion) indicate that it has slightly distorted chair conformation.

Related literature top

For related molecular salts, see: Radha et al. (1987).

Experimental top

Styphnic acid (2.45 g, 0.01 mol) was dissolved in the minimum quantity of ethanol. Morpholine(0.90 g, 0.01 mol) dissolved in the minimum amount of ethanol was added to styphnic acid solution. The mixture was stirred well for 3 h and kept as such for another 6 h. The mixture was then poured into ice cold water with stirring. The adduct formed was filtered and washed first with water and then with alcohol and dried. The dried adduct was washed several times with ether and recrystallized from ethanol (yield 70–75% mp.481–483 K). Yellow prisms of (I) were obtained by slow evaporation of ethanol at room temperature. The same product was obtained when styphnic acid (0.01 mol) was mixed with excess morpholine (0.03 mol).

Refinement top

The highset difference peak is 0.90Å from O4.

Structure description top

Picric acid (1-hydroxy – 2,4,6- trinitrobenzene) forms 1:1 donor –acceptor adducts with amines and in these adducts, the main stabilizing factor is the proton transfer from OH of nitro compound to the nitrogen atom of amine (Radha et al.,1987). Unlike picric acid, styphnic acid (2,4,6-trinitro -1,3-benzene diol) contains two phenolic OH groups and hence the type of adduct formation with amines and the mode of interaction are to be envisaged. This necessitates the synthesis of the title molecule from styphnic acid and morpholine (tetrahydro – 1,4-oxazine). Single crystal X-ray analysis data clearly indicate that 1:1 adduct (Scheme 1)is formed from styphnic acid and morpholine and the main contributing factor for the formation of the adduct is the proton transfer from phenolic OH of styphnic acid to the nitrogen atom of morpholine. Hydrogen bond (N—H···O) is noticed between cation and anion moieties. Intramolecular hydrogen bond [O—H···O; R11(6) motif] is also observed. Puckering parameters[(q2 = 0.0243(0.0017), q3=0.5764 (0.0019), φ2=-175.98(5.69), QT=0.5770(0.0019);θ2=2.41(0.17)] of the cation moiety (morpholinium ion) indicate that it has slightly distorted chair conformation.

For related molecular salts, see: Radha et al. (1987).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 50% displecement ellipsoids.
[Figure 2] Fig. 2. The hydrogen bonding pattern
[Figure 3] Fig. 3. The packing view of the adduct
morpholinium 3-hydroxy-2,4,6-trinitrophenolate top
Crystal data top
C4H10NO+·C6H2N3O8Z = 2
Mr = 332.24F(000) = 344
Triclinic, P1Dx = 1.637 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.680 (5) ÅCell parameters from 5851 reflections
b = 7.973 (5) Åθ = 1.8–29.8°
c = 11.852 (5) ŵ = 0.15 mm1
α = 94.785 (5)°T = 293 K
β = 99.016 (5)°Prism, yellow
γ = 108.188 (5)°0.30 × 0.16 × 0.16 mm
V = 674.1 (7) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3841 independent reflections
Radiation source: fine-focus sealed tube2944 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω and φ scanθmax = 29.8°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 1010
Tmin = 0.957, Tmax = 0.977k = 1111
16214 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.157 w = 1/[σ2(Fo2) + (0.0867P)2 + 0.1583P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
3841 reflectionsΔρmax = 0.77 e Å3
225 parametersΔρmin = 0.38 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.049 (7)
Crystal data top
C4H10NO+·C6H2N3O8γ = 108.188 (5)°
Mr = 332.24V = 674.1 (7) Å3
Triclinic, P1Z = 2
a = 7.680 (5) ÅMo Kα radiation
b = 7.973 (5) ŵ = 0.15 mm1
c = 11.852 (5) ÅT = 293 K
α = 94.785 (5)°0.30 × 0.16 × 0.16 mm
β = 99.016 (5)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3841 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
2944 reflections with I > 2σ(I)
Tmin = 0.957, Tmax = 0.977Rint = 0.023
16214 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.157H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.77 e Å3
3841 reflectionsΔρmin = 0.38 e Å3
225 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.48003 (18)0.27015 (18)0.13460 (12)0.0293 (3)
C20.31234 (18)0.11938 (18)0.14972 (11)0.0287 (3)
C30.24207 (17)0.02930 (17)0.06486 (12)0.0270 (3)
C40.33875 (18)0.09746 (17)0.05024 (11)0.0274 (3)
C50.49948 (18)0.24441 (18)0.07302 (12)0.0288 (3)
C60.57105 (17)0.32628 (17)0.01487 (12)0.0278 (3)
C70.7665 (3)0.2429 (2)0.41273 (15)0.0457 (4)
H7A0.70220.12530.39540.055*
H7B0.86440.23440.45330.055*
C80.6313 (3)0.3086 (3)0.48707 (15)0.0497 (4)
H8A0.57890.22780.55890.060*
H8B0.52980.30970.44790.060*
C90.7903 (3)0.6028 (3)0.40700 (17)0.0536 (5)
H9A0.68800.60210.36810.064*
H9B0.84540.72250.42440.064*
C100.9345 (2)0.5533 (2)0.32858 (15)0.0453 (4)
H10A1.04050.56000.36520.054*
H10B0.97840.63550.25710.054*
N10.74511 (16)0.47391 (16)0.01785 (11)0.0332 (3)
N20.21517 (18)0.0548 (2)0.26913 (11)0.0398 (3)
N30.27441 (17)0.01490 (17)0.14458 (11)0.0352 (3)
N40.84911 (19)0.36922 (19)0.30416 (11)0.0373 (3)
O10.81876 (17)0.54823 (17)0.05681 (12)0.0544 (4)
O20.81128 (17)0.52044 (18)0.12078 (11)0.0533 (3)
O30.1114 (3)0.1265 (3)0.31268 (14)0.0847 (6)
O40.2437 (3)0.0695 (3)0.31820 (14)0.0838 (6)
O50.14855 (16)0.13353 (15)0.12339 (10)0.0440 (3)
O60.3436 (2)0.0883 (2)0.24304 (10)0.0587 (4)
O70.53339 (16)0.33703 (18)0.21939 (10)0.0463 (3)
O80.08817 (14)0.11441 (14)0.09399 (10)0.0371 (3)
O90.7206 (2)0.4823 (2)0.51108 (10)0.0534 (3)
H4A0.762 (3)0.371 (3)0.2657 (19)0.053 (6)*
H4B0.931 (3)0.333 (3)0.2646 (18)0.047 (5)*
H50.562 (3)0.285 (3)0.1470 (19)0.048 (5)*
H80.079 (4)0.160 (3)0.026 (2)0.069 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0251 (6)0.0320 (6)0.0319 (7)0.0093 (5)0.0077 (5)0.0079 (5)
C20.0269 (6)0.0312 (6)0.0266 (6)0.0088 (5)0.0033 (5)0.0025 (5)
C30.0242 (6)0.0244 (6)0.0323 (7)0.0082 (5)0.0050 (5)0.0033 (5)
C40.0273 (6)0.0269 (6)0.0288 (6)0.0088 (5)0.0066 (5)0.0067 (5)
C50.0273 (6)0.0283 (6)0.0297 (7)0.0090 (5)0.0030 (5)0.0033 (5)
C60.0221 (5)0.0250 (6)0.0352 (7)0.0065 (5)0.0045 (5)0.0049 (5)
C70.0533 (9)0.0447 (9)0.0365 (8)0.0164 (7)0.0019 (7)0.0028 (7)
C80.0473 (9)0.0627 (11)0.0332 (8)0.0175 (8)0.0039 (7)0.0003 (7)
C90.0680 (12)0.0471 (10)0.0506 (10)0.0233 (9)0.0134 (9)0.0136 (8)
C100.0451 (9)0.0448 (9)0.0385 (8)0.0042 (7)0.0080 (7)0.0061 (7)
N10.0245 (5)0.0284 (6)0.0452 (7)0.0076 (4)0.0049 (5)0.0047 (5)
N20.0351 (6)0.0491 (8)0.0297 (6)0.0079 (5)0.0050 (5)0.0014 (5)
N30.0343 (6)0.0384 (6)0.0337 (6)0.0106 (5)0.0084 (5)0.0124 (5)
N40.0343 (6)0.0486 (8)0.0272 (6)0.0108 (6)0.0046 (5)0.0101 (5)
O10.0419 (6)0.0498 (7)0.0578 (8)0.0079 (5)0.0139 (6)0.0147 (6)
O20.0385 (6)0.0535 (7)0.0484 (7)0.0044 (5)0.0036 (5)0.0010 (6)
O30.0871 (12)0.1311 (16)0.0459 (8)0.0682 (12)0.0171 (8)0.0025 (9)
O40.1088 (14)0.0908 (13)0.0509 (9)0.0491 (11)0.0020 (9)0.0255 (8)
O50.0432 (6)0.0382 (6)0.0473 (7)0.0038 (5)0.0130 (5)0.0167 (5)
O60.0635 (8)0.0691 (9)0.0290 (6)0.0013 (7)0.0071 (5)0.0107 (6)
O70.0364 (6)0.0621 (8)0.0379 (6)0.0070 (5)0.0117 (5)0.0204 (5)
O80.0320 (5)0.0316 (5)0.0389 (6)0.0003 (4)0.0047 (4)0.0040 (4)
O90.0640 (8)0.0711 (9)0.0337 (6)0.0321 (7)0.0077 (5)0.0185 (6)
Geometric parameters (Å, º) top
C1—O71.2426 (17)C8—H8B0.9700
C1—C21.4356 (19)C9—O91.416 (2)
C1—C61.446 (2)C9—C101.503 (3)
C2—C31.3665 (19)C9—H9A0.9700
C2—N21.4603 (19)C9—H9B0.9700
C3—O81.3378 (17)C10—N41.482 (2)
C3—C41.4194 (19)C10—H10A0.9700
C4—C51.3817 (19)C10—H10B0.9700
C4—N31.4214 (17)N1—O11.2203 (17)
C5—C61.3719 (19)N1—O21.2233 (18)
C5—H50.91 (2)N2—O31.197 (2)
C6—N11.4498 (18)N2—O41.203 (2)
C7—N41.484 (2)N3—O61.2184 (18)
C7—C81.502 (3)N3—O51.2482 (18)
C7—H7A0.9700N4—H4A0.87 (2)
C7—H7B0.9700N4—H4B0.86 (2)
C8—O91.416 (3)O8—H80.91 (3)
C8—H8A0.9700
O7—C1—C2120.48 (13)O9—C9—C10111.16 (15)
O7—C1—C6126.99 (13)O9—C9—H9A109.4
C2—C1—C6112.53 (11)C10—C9—H9A109.4
C3—C2—C1126.43 (12)O9—C9—H9B109.4
C3—C2—N2118.38 (12)C10—C9—H9B109.4
C1—C2—N2115.13 (12)H9A—C9—H9B108.0
O8—C3—C2119.07 (12)N4—C10—C9108.79 (14)
O8—C3—C4124.16 (12)N4—C10—H10A109.9
C2—C3—C4116.77 (12)C9—C10—H10A109.9
C5—C4—C3120.65 (12)N4—C10—H10B109.9
C5—C4—N3118.42 (12)C9—C10—H10B109.9
C3—C4—N3120.92 (12)H10A—C10—H10B108.3
C6—C5—C4120.95 (13)O1—N1—O2122.51 (13)
C6—C5—H5119.1 (13)O1—N1—C6119.61 (13)
C4—C5—H5119.9 (13)O2—N1—C6117.88 (12)
C5—C6—C1122.56 (12)O3—N2—O4123.56 (16)
C5—C6—N1116.61 (13)O3—N2—C2118.88 (15)
C1—C6—N1120.83 (12)O4—N2—C2117.55 (15)
N4—C7—C8109.05 (15)O6—N3—O5121.80 (13)
N4—C7—H7A109.9O6—N3—C4119.89 (13)
C8—C7—H7A109.9O5—N3—C4118.30 (13)
N4—C7—H7B109.9C10—N4—C7110.99 (13)
C8—C7—H7B109.9C10—N4—H4A107.0 (14)
H7A—C7—H7B108.3C7—N4—H4A109.7 (14)
O9—C8—C7111.04 (15)C10—N4—H4B110.8 (14)
O9—C8—H8A109.4C7—N4—H4B107.9 (14)
C7—C8—H8A109.4H4A—N4—H4B110.4 (19)
O9—C8—H8B109.4C3—O8—H8103.0 (16)
C7—C8—H8B109.4C8—O9—C9109.86 (13)
H8A—C8—H8B108.0
O7—C1—C2—C3177.37 (14)C2—C1—C6—N1178.50 (11)
C6—C1—C2—C32.0 (2)N4—C7—C8—O957.88 (19)
O7—C1—C2—N20.1 (2)O9—C9—C10—N458.2 (2)
C6—C1—C2—N2179.23 (12)C5—C6—N1—O1177.61 (13)
C1—C2—C3—O8176.85 (13)C1—C6—N1—O12.3 (2)
N2—C2—C3—O80.29 (19)C5—C6—N1—O23.30 (19)
C1—C2—C3—C43.7 (2)C1—C6—N1—O2176.81 (13)
N2—C2—C3—C4179.14 (12)C3—C2—N2—O399.3 (2)
O8—C3—C4—C5178.49 (12)C1—C2—N2—O383.3 (2)
C2—C3—C4—C52.12 (19)C3—C2—N2—O480.3 (2)
O8—C3—C4—N30.6 (2)C1—C2—N2—O497.2 (2)
C2—C3—C4—N3178.84 (12)C5—C4—N3—O610.8 (2)
C3—C4—C5—C61.0 (2)C3—C4—N3—O6170.13 (14)
N3—C4—C5—C6178.09 (12)C5—C4—N3—O5168.37 (13)
C4—C5—C6—C12.8 (2)C3—C4—N3—O510.7 (2)
C4—C5—C6—N1177.07 (12)C9—C10—N4—C754.78 (19)
O7—C1—C6—C5179.29 (14)C8—C7—N4—C1054.73 (19)
C2—C1—C6—C51.38 (19)C7—C8—O9—C961.7 (2)
O7—C1—C6—N10.8 (2)C10—C9—O9—C862.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H8···O50.91 (3)1.75 (3)2.571 (2)149 (2)
N4—H4A···O70.87 (2)1.87 (2)2.715 (2)164 (2)
N4—H4B···O2i0.86 (2)2.31 (2)2.962 (2)132.4 (17)
N4—H4B···O5ii0.86 (2)2.42 (2)2.967 (2)121.5 (17)
N4—H4B···O3iii0.86 (2)2.54 (2)3.206 (3)134.3 (17)
Symmetry codes: (i) x+2, y+1, z; (ii) x+1, y, z; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC4H10NO+·C6H2N3O8
Mr332.24
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.680 (5), 7.973 (5), 11.852 (5)
α, β, γ (°)94.785 (5), 99.016 (5), 108.188 (5)
V3)674.1 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.15
Crystal size (mm)0.30 × 0.16 × 0.16
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.957, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
16214, 3841, 2944
Rint0.023
(sin θ/λ)max1)0.699
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.157, 1.06
No. of reflections3841
No. of parameters225
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.77, 0.38

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2004), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H8···O50.91 (3)1.75 (3)2.571 (2)149 (2)
N4—H4A···O70.87 (2)1.87 (2)2.715 (2)164 (2)
N4—H4B···O2i0.86 (2)2.31 (2)2.962 (2)132.4 (17)
N4—H4B···O5ii0.86 (2)2.42 (2)2.967 (2)121.5 (17)
N4—H4B···O3iii0.86 (2)2.54 (2)3.206 (3)134.3 (17)
Symmetry codes: (i) x+2, y+1, z; (ii) x+1, y, z; (iii) x+1, y, z.
 

Acknowledgements

The authors are thankful to the SAIF, IIT Madras, for the data collection.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRadha, N., Dhoulethbegum, S. & Sahayamary, J. (1987). Indian J. Chem. Sect. A, 26, 1006–1008.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds