organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-3,5-Dimeth­­oxy­benzaldehyde oxime

aAffliated Hospital of Hebei University, Baoding 071000, People's Republic of China, and bHebei Xushui County Health Bureau, Baoding 071000, People's Republic of China
*Correspondence e-mail: dbin2000@hotmail.com

(Received 27 September 2010; accepted 28 September 2010; online 2 October 2010)

In the title compound, C9H11NO3, the oxime grouping is twisted by 12.68 (6)° with respect to the dimethoxyl­benzene ring. In the crystal, mol­ecules are linked into an infinite [100] chain via O—H⋯N hydrogen bonds, instead of the more common oxime packing motif of dimers with an R22(6) graph-set motif.

Related literature

For backgroud to oximes as therapeutic agents, see: Marrs et al. (2006[Marrs, T. C., Rice, P. & Vale, J. A. (2006). Toxicol. Rev. 25, 297-323.]); Jokanovic et al. (2009[Jokanovic, M. & Prostran, M. (2009). Curr. Med. Chem. 16, 2177-2188.]). For related structures, see: Bao (2008[Bao, F.-Y. (2008). Acta Cryst. E64, o2134.]); Abbas et al. (2010[Abbas, A., Hussain, S., Hafeez, N., Badshah, A., Hasan, A. & Lo, K. M. (2010). Acta Cryst. E66, o1130.]). For graph-set theory, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C9H11NO3

  • Mr = 181.19

  • Orthorhombic, P 21 21 21

  • a = 4.4027 (9) Å

  • b = 13.800 (3) Å

  • c = 14.300 (3) Å

  • V = 868.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 113 K

  • 0.20 × 0.18 × 0.10 mm

Data collection
  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.979, Tmax = 0.990

  • 7173 measured reflections

  • 1239 independent reflections

  • 1115 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.081

  • S = 1.08

  • 1239 reflections

  • 124 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯N1i 0.916 (19) 1.90 (2) 2.7970 (17) 166.5 (19)
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+2].

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Oximes are an therapeutic agent in organophosphorus poisoning (Marrs et al., 2006; Jokanovic et al., 2009). As part of our interest in the study of oxime derivatives, we herein report the crystal structure of the title compound (I).

In the crystal structure of the title compound, Fig. 1, the oxime moiety has an E configuration [C5—C9—N1—O3= 178.22 (11)°] and is twisted with respect to the dimethoxylbenzene ring by 12.68 (6)°. Molecules are linked to form an infinite chain down the a axis via O—H···N hydrogen bonds (Fig. 2 and Table 1), which differates from the reported R22(6) graph-set motif (Etter et al., 1990; Bernstein et al., 1995; Bao, 2008; Abbas et al., 2010).

Related literature top

For backgroud to oximes as therapeutic agents, see: Marrs et al. (2006); Jokanovic et al. (2009). For related structures, see: Bao (2008); Abbas et al. (2010). For graph-set theory, see: Etter et al. (1990); Bernstein et al. (1995).

Experimental top

To a solution of 3,4-dimethoxylbenzaldehyde (0.95 g, 5 mmol) in 25 ml e thanol, hydroxylamine hydrochloride (0.42 g, 6 mmol) and aqueous sodium hydroxide (0.24 g, 6 mmol) were added and the mixture was heated under reflux until completion of the reaction. The reaction mixture was concentrated and water added. The precipitate was collected by filtration, washed with water and dried under vaccu. Colourless blocks of (I) were grown out via recrystallization from ethanol.

Refinement top

All H atoms were placed in calculated position and treated as riding on their parent atoms with C—H = 0.93 and 0.97Å or O—H =0.82 Å with Uiso(H) = 1.2 Ueq(C) for aromatic H atoms, or 1.5Ueq (O and C) for hydroxyl H and methyl H atom].

Structure description top

Oximes are an therapeutic agent in organophosphorus poisoning (Marrs et al., 2006; Jokanovic et al., 2009). As part of our interest in the study of oxime derivatives, we herein report the crystal structure of the title compound (I).

In the crystal structure of the title compound, Fig. 1, the oxime moiety has an E configuration [C5—C9—N1—O3= 178.22 (11)°] and is twisted with respect to the dimethoxylbenzene ring by 12.68 (6)°. Molecules are linked to form an infinite chain down the a axis via O—H···N hydrogen bonds (Fig. 2 and Table 1), which differates from the reported R22(6) graph-set motif (Etter et al., 1990; Bernstein et al., 1995; Bao, 2008; Abbas et al., 2010).

For backgroud to oximes as therapeutic agents, see: Marrs et al. (2006); Jokanovic et al. (2009). For related structures, see: Bao (2008); Abbas et al. (2010). For graph-set theory, see: Etter et al. (1990); Bernstein et al. (1995).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecule of (I) showing displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The infinite chain formed via O—H···N down the a axis.
(E)-3,5-Dimethoxybenzaldehyde oxime top
Crystal data top
C9H11NO3F(000) = 384
Mr = 181.19Dx = 1.385 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3117 reflections
a = 4.4027 (9) Åθ = 2.1–27.9°
b = 13.800 (3) ŵ = 0.11 mm1
c = 14.300 (3) ÅT = 113 K
V = 868.9 (3) Å3Block, colorless
Z = 40.20 × 0.18 × 0.10 mm
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
1239 independent reflections
Radiation source: rotating anode1115 reflections with I > 2σ(I)
Multilayer monochromatorRint = 0.036
Detector resolution: 7.31 pixels mm-1θmax = 27.9°, θmin = 2.1°
ω and φ scansh = 55
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
k = 1812
Tmin = 0.979, Tmax = 0.990l = 1818
7173 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.081 w = 1/[σ2(Fo2) + (0.0566P)2 + 0.0067P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
1239 reflectionsΔρmax = 0.22 e Å3
124 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.135 (12)
Crystal data top
C9H11NO3V = 868.9 (3) Å3
Mr = 181.19Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 4.4027 (9) ŵ = 0.11 mm1
b = 13.800 (3) ÅT = 113 K
c = 14.300 (3) Å0.20 × 0.18 × 0.10 mm
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
1239 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
1115 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 0.990Rint = 0.036
7173 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.081H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.22 e Å3
1239 reflectionsΔρmin = 0.17 e Å3
124 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.1440 (3)0.57833 (8)1.13939 (7)0.0215 (3)
O21.2719 (3)0.66671 (7)0.81997 (7)0.0212 (3)
O30.2763 (3)0.27744 (7)0.90865 (7)0.0195 (3)
H30.211 (5)0.2351 (13)0.9537 (13)0.029*
N10.4898 (3)0.33604 (8)0.95540 (9)0.0159 (3)
C11.0843 (4)0.56661 (10)1.04608 (10)0.0170 (3)
C21.2075 (4)0.62501 (10)0.97646 (10)0.0179 (3)
H21.34040.67670.99230.021*
C31.1337 (4)0.60688 (10)0.88299 (10)0.0169 (3)
C40.9316 (4)0.53398 (10)0.85910 (10)0.0168 (3)
H40.87750.52330.79560.020*
C50.8078 (4)0.47596 (10)0.93064 (10)0.0156 (3)
C60.8833 (4)0.49179 (10)1.02358 (10)0.0167 (3)
H60.79940.45221.07140.020*
C71.3439 (4)0.65620 (10)1.16453 (11)0.0221 (4)
H7A1.53960.64761.13290.033*
H7B1.37520.65611.23240.033*
H7C1.25360.71801.14550.033*
C81.2008 (4)0.65223 (11)0.72320 (10)0.0255 (4)
H8A1.25740.58620.70480.038*
H8B1.31400.69900.68520.038*
H8C0.98240.66160.71350.038*
C90.5886 (3)0.40214 (10)0.90072 (10)0.0161 (3)
H90.51700.40350.83810.019*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0254 (6)0.0209 (5)0.0180 (5)0.0057 (5)0.0022 (5)0.0001 (4)
O20.0242 (6)0.0191 (5)0.0204 (5)0.0043 (4)0.0028 (5)0.0047 (4)
O30.0208 (6)0.0195 (5)0.0182 (5)0.0073 (5)0.0012 (5)0.0006 (4)
N10.0136 (6)0.0151 (6)0.0188 (6)0.0007 (5)0.0006 (6)0.0019 (4)
C10.0169 (7)0.0151 (7)0.0189 (7)0.0014 (6)0.0015 (6)0.0009 (5)
C20.0161 (7)0.0137 (6)0.0238 (7)0.0007 (6)0.0006 (6)0.0007 (5)
C30.0156 (7)0.0135 (7)0.0218 (7)0.0024 (6)0.0032 (6)0.0038 (5)
C40.0175 (7)0.0163 (7)0.0166 (7)0.0015 (6)0.0001 (6)0.0009 (5)
C50.0132 (7)0.0134 (6)0.0203 (7)0.0018 (6)0.0003 (6)0.0002 (5)
C60.0162 (7)0.0149 (7)0.0188 (7)0.0005 (6)0.0008 (6)0.0020 (5)
C70.0230 (8)0.0214 (8)0.0218 (8)0.0030 (6)0.0016 (7)0.0046 (6)
C80.0334 (10)0.0252 (8)0.0179 (8)0.0010 (7)0.0049 (7)0.0048 (6)
C90.0157 (7)0.0171 (7)0.0156 (7)0.0010 (6)0.0014 (6)0.0000 (5)
Geometric parameters (Å, º) top
O1—C11.3697 (18)C4—C51.4089 (19)
O1—C71.4349 (19)C4—H40.9500
O2—C31.3653 (17)C5—C61.387 (2)
O2—C81.4328 (17)C5—C91.467 (2)
O3—N11.4087 (15)C6—H60.9500
O3—H30.916 (19)C7—H7A0.9800
N1—C91.2777 (18)C7—H7B0.9800
C1—C21.391 (2)C7—H7C0.9800
C1—C61.397 (2)C8—H8A0.9800
C2—C31.398 (2)C8—H8B0.9800
C2—H20.9500C8—H8C0.9800
C3—C41.386 (2)C9—H90.9500
C1—O1—C7116.76 (12)C5—C6—C1119.26 (14)
C3—O2—C8117.12 (12)C5—C6—H6120.4
N1—O3—H3103.9 (12)C1—C6—H6120.4
C9—N1—O3110.28 (12)O1—C7—H7A109.5
O1—C1—C2123.64 (14)O1—C7—H7B109.5
O1—C1—C6115.67 (13)H7A—C7—H7B109.5
C2—C1—C6120.68 (14)O1—C7—H7C109.5
C1—C2—C3119.34 (14)H7A—C7—H7C109.5
C1—C2—H2120.3H7B—C7—H7C109.5
C3—C2—H2120.3O2—C8—H8A109.5
O2—C3—C4124.22 (13)O2—C8—H8B109.5
O2—C3—C2114.79 (13)H8A—C8—H8B109.5
C4—C3—C2120.98 (13)O2—C8—H8C109.5
C3—C4—C5118.82 (14)H8A—C8—H8C109.5
C3—C4—H4120.6H8B—C8—H8C109.5
C5—C4—H4120.6N1—C9—C5122.77 (13)
C6—C5—C4120.89 (14)N1—C9—H9118.6
C6—C5—C9123.12 (13)C5—C9—H9118.6
C4—C5—C9115.94 (13)
C7—O1—C1—C20.4 (2)C3—C4—C5—C60.7 (2)
C7—O1—C1—C6178.53 (13)C3—C4—C5—C9178.22 (13)
O1—C1—C2—C3179.67 (14)C4—C5—C6—C10.2 (2)
C6—C1—C2—C31.4 (2)C9—C5—C6—C1177.15 (13)
C8—O2—C3—C40.0 (2)O1—C1—C6—C5179.15 (14)
C8—O2—C3—C2179.10 (14)C2—C1—C6—C50.2 (2)
C1—C2—C3—O2178.50 (13)O3—N1—C9—C5178.28 (12)
C1—C2—C3—C42.3 (2)C6—C5—C9—N112.4 (2)
O2—C3—C4—C5178.97 (14)C4—C5—C9—N1170.15 (14)
C2—C3—C4—C52.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···N1i0.916 (19)1.90 (2)2.7970 (17)166.5 (19)
Symmetry code: (i) x1/2, y+1/2, z+2.

Experimental details

Crystal data
Chemical formulaC9H11NO3
Mr181.19
Crystal system, space groupOrthorhombic, P212121
Temperature (K)113
a, b, c (Å)4.4027 (9), 13.800 (3), 14.300 (3)
V3)868.9 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.20 × 0.18 × 0.10
Data collection
DiffractometerRigaku Saturn CCD area-detector
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.979, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
7173, 1239, 1115
Rint0.036
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.081, 1.08
No. of reflections1239
No. of parameters124
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.17

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···N1i0.916 (19)1.90 (2)2.7970 (17)166.5 (19)
Symmetry code: (i) x1/2, y+1/2, z+2.
 

Acknowledgements

This work was supported by a Hebei Province Heath Bureau grant (No. 20090176), the Ministry of Science and Technology of the People's Republic of China Inter­national Cooperation Project (No. 2008DFR10530) and the Science and Technology Support Program of Hebei Province Science and Technology Department (No. 08243531D).

References

First citationAbbas, A., Hussain, S., Hafeez, N., Badshah, A., Hasan, A. & Lo, K. M. (2010). Acta Cryst. E66, o1130.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBao, F.-Y. (2008). Acta Cryst. E64, o2134.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJokanovic, M. & Prostran, M. (2009). Curr. Med. Chem. 16, 2177–2188.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMarrs, T. C., Rice, P. & Vale, J. A. (2006). Toxicol. Rev. 25, 297–323.  CrossRef PubMed CAS Google Scholar
First citationRigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds