organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,4-Di­aminopyridinium 2-carb­oxy-4,6-di­nitrophenolate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 28 September 2010; accepted 29 September 2010; online 9 October 2010)

In the title salt, C5H8N3+·C7H3N2O7, the pyridine N atom of the 3,4-diamino­pyridine mol­ecule is protonated. The 3,5-dinitro­salicylate anion shows whole-mol­ecule disorder over two orientations with a refined occupancy ratio of 0.875 (4): 0.125 (4). In the crystal, the cations and anions are connected by inter­molecular N—H⋯O and C—H⋯O hydrogen bonds, forming a three-dimensional network.

Related literature

For applications of diamino­pyridine, see: Abu Zuhri & Cox (1989[Abu Zuhri, A. Z. & Cox, J. A. (1989). Mikrochim. Acta, 11, 277-283.]); Inuzuka & Fujimoto (1990[Inuzuka, K. & Fujimoto, A. (1990). Bull. Chem. Soc. Jpn, 63, 216-220.]); El-Mossalamy (2001[El-Mossalamy, E. H. (2001). Pigm. Resin Technol. 30, 164-168.]). For related structures, see: Rubin-Preminger & Englert (2007[Rubin-Preminger, J. M. & Englert, U. (2007). Acta Cryst. E63, o757-o758.]); Koleva et al. (2007[Koleva, B., Tsanev, T., Kolev, T., Mayer-Figge, H. & Sheldrick, W. S. (2007). Acta Cryst. E63, o3356.]); Koleva et al. (2008[Koleva, B., Kolev, T., Tsanev, T., Kotov, S., Mayer-Figge, H., Seidel, R. W. & Sheldrich, W. S. (2008). J. Mol. Struct. 881, 146-155.]). For reference bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C5H8N3+·C7H3N2O7

  • Mr = 337.26

  • Monoclinic, P 21 /c

  • a = 9.1187 (4) Å

  • b = 11.3569 (5) Å

  • c = 13.1343 (6) Å

  • β = 98.204 (4)°

  • V = 1346.27 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 100 K

  • 0.52 × 0.11 × 0.10 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.931, Tmax = 0.986

  • 10195 measured reflections

  • 2785 independent reflections

  • 1979 reflections with I > 2σ(I)

  • Rint = 0.064

Refinement
  • R[F2 > 2σ(F2)] = 0.070

  • wR(F2) = 0.162

  • S = 1.12

  • 2785 reflections

  • 287 parameters

  • 526 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O1 1.07 1.76 2.753 (4) 153
N2—H2N2⋯O6i 0.89 2.24 3.120 (4) 171
N2—H1N2⋯O3ii 1.03 2.11 3.026 (5) 146
N3—H1N3⋯O6i 0.89 2.36 3.104 (4) 142
N3—H2N3⋯O5iii 1.00 2.24 3.217 (5) 163
C6—H6A⋯O3iv 0.93 2.56 3.299 (6) 136
Symmetry codes: (i) x-1, y-1, z; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x, y-{\script{1\over 2}}, -z-{\script{1\over 2}}]; (iv) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Diaminopyridine have an important role in the preparation of aromatic azo dyes (Abu Zuhri & Cox, 1989; Inuzuka & Fujimoto, 1990) and in many polarographic investigations (El-Mossalamy, 2001). The crystal structure of 3,4-diaminopyridine (Rubin-Preminger & Englert, 2007), 3,4-diaminopyridinium hydrogen squarate (Koleva et al., 2007) and 3,4-diaminopyridinium hydrogen tartarate (Koleva et al., 2008) have been reported in the literature. 3,5-Dinitrosalicylic acid (DNSA) has proved to be effective as a proton-donating acid species for stabilizing crystalline salts of Lewis bases. Since our aim is to study some interesting hydrogen-bonding interactions, the synthesis and structure of the title compound (I) is presented here.

The asymmetric unit of (I) (Fig 1), contains a protonated 3,4-diaminopyridinium cation and a 3,5-dinitrosalicylate anion. The bond lengths (Allen et al., 1987) and angles are normal. In the 3,4-diaminopyridinium cation (the proton transfer from the hydroxyl group of the anion), protonation of the N1 atom leads to a slight increase in the C1—N1—C5 angle to 122.1 (3)°, compared to 115.69 (19)° in 3,4-diaminopyridine (Rubin-Preminger & Englert, 2007). The whole 3,5-dinitrosalicylate anion is disordered over two positions with a refined occupancy ratio of 0.886 (4): 0.114 (4). Excluding amino group, the pyridine is planar, with a maximum deviation of 0.010 (3) Å for atom C2.

In the crystal structure (Fig. 2), there is an intramolecular O2—H2···O1 hydrogen bond in the 3,5-dinitrosalicylate anion, which generates an S(6) (Bernstein et al., 1995) ring motif. Furthermore, the cations and anions are connected by intermolecular strong N1—H1N1···O1; N2—H2N2···O6; N2—H1N2···O3; N3—H1N3···O6; N3—H2N3···O5 and weak C6—H6A···O3 hydrogen bonds, forming a three-dimensional network.

Related literature top

For applications of diaminopyridine, see: Abu Zuhri & Cox (1989); Inuzuka & Fujimoto (1990); El-Mossalamy (2001). For related structures, see: Rubin-Preminger & Englert (2007); Koleva et al. (2007, 2008). For reference bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

A hot methanol solution (20 ml) of 3,4-diaminopyridine (27 mg, Aldrich) and 3,5-dinitrosalicylic acid (57 mg, Merck) were mixed and warmed over a heating magnetic stirrer hotplate for a few minutes. The resulting solution was allowed to cool slowly at room temperature and crystals of the title compound appeared after a few days.

Refinement top

All the H atoms were positioned geometrically [C–H = 0.93 Å; N–H = 0.8875–1.0684 Å] and were refined using a riding model, with Uiso(H) = 1.2 Ueq(C,N,O). The whole 3,5-dinitrosalicylate anion is disordered over two positions with a refined ratio of 0.886 (4): 0.114 (4). In the final difference Fourier map, the highest peak and the deepest hole are 1.24 Å and 0.62 Å from H1N2 and C5, respectively.

Structure description top

Diaminopyridine have an important role in the preparation of aromatic azo dyes (Abu Zuhri & Cox, 1989; Inuzuka & Fujimoto, 1990) and in many polarographic investigations (El-Mossalamy, 2001). The crystal structure of 3,4-diaminopyridine (Rubin-Preminger & Englert, 2007), 3,4-diaminopyridinium hydrogen squarate (Koleva et al., 2007) and 3,4-diaminopyridinium hydrogen tartarate (Koleva et al., 2008) have been reported in the literature. 3,5-Dinitrosalicylic acid (DNSA) has proved to be effective as a proton-donating acid species for stabilizing crystalline salts of Lewis bases. Since our aim is to study some interesting hydrogen-bonding interactions, the synthesis and structure of the title compound (I) is presented here.

The asymmetric unit of (I) (Fig 1), contains a protonated 3,4-diaminopyridinium cation and a 3,5-dinitrosalicylate anion. The bond lengths (Allen et al., 1987) and angles are normal. In the 3,4-diaminopyridinium cation (the proton transfer from the hydroxyl group of the anion), protonation of the N1 atom leads to a slight increase in the C1—N1—C5 angle to 122.1 (3)°, compared to 115.69 (19)° in 3,4-diaminopyridine (Rubin-Preminger & Englert, 2007). The whole 3,5-dinitrosalicylate anion is disordered over two positions with a refined occupancy ratio of 0.886 (4): 0.114 (4). Excluding amino group, the pyridine is planar, with a maximum deviation of 0.010 (3) Å for atom C2.

In the crystal structure (Fig. 2), there is an intramolecular O2—H2···O1 hydrogen bond in the 3,5-dinitrosalicylate anion, which generates an S(6) (Bernstein et al., 1995) ring motif. Furthermore, the cations and anions are connected by intermolecular strong N1—H1N1···O1; N2—H2N2···O6; N2—H1N2···O3; N3—H1N3···O6; N3—H2N3···O5 and weak C6—H6A···O3 hydrogen bonds, forming a three-dimensional network.

For applications of diaminopyridine, see: Abu Zuhri & Cox (1989); Inuzuka & Fujimoto (1990); El-Mossalamy (2001). For related structures, see: Rubin-Preminger & Englert (2007); Koleva et al. (2007, 2008). For reference bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level. All disorder components are shown.
[Figure 2] Fig. 2. The crystal packing of the title compound, showing a hydrogen-bonded (dashed lines) network. H atoms not involved in the interactions have been omitted for clarity.
3,4-Diaminopyridinium 2-carboxy-4,6-dinitrophenolate top
Crystal data top
C5H8N3+·C7H3N2O7F(000) = 696
Mr = 337.26Dx = 1.664 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2307 reflections
a = 9.1187 (4) Åθ = 2.4–28.6°
b = 11.3569 (5) ŵ = 0.14 mm1
c = 13.1343 (6) ÅT = 100 K
β = 98.204 (4)°Needle, yellow
V = 1346.27 (10) Å30.52 × 0.11 × 0.10 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2785 independent reflections
Radiation source: fine-focus sealed tube1979 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.064
φ and ω scansθmax = 26.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1111
Tmin = 0.931, Tmax = 0.986k = 1414
10195 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.070Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.162H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0439P)2 + 2.4565P]
where P = (Fo2 + 2Fc2)/3
2785 reflections(Δ/σ)max < 0.001
279 parametersΔρmax = 0.46 e Å3
526 restraintsΔρmin = 0.28 e Å3
Crystal data top
C5H8N3+·C7H3N2O7V = 1346.27 (10) Å3
Mr = 337.26Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.1187 (4) ŵ = 0.14 mm1
b = 11.3569 (5) ÅT = 100 K
c = 13.1343 (6) Å0.52 × 0.11 × 0.10 mm
β = 98.204 (4)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2785 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
1979 reflections with I > 2σ(I)
Tmin = 0.931, Tmax = 0.986Rint = 0.064
10195 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.070526 restraints
wR(F2) = 0.162H-atom parameters constrained
S = 1.12Δρmax = 0.46 e Å3
2785 reflectionsΔρmin = 0.28 e Å3
279 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.1346 (3)0.4299 (2)0.0435 (2)0.0286 (7)
H1N10.22820.48630.02410.034*
N20.0269 (3)0.1468 (3)0.0541 (2)0.0370 (8)
H2N20.05500.10480.05730.044*
H1N20.10480.14170.11920.044*
N30.1784 (3)0.1759 (2)0.1255 (2)0.0279 (7)
H1N30.17170.11090.08760.034*
H2N30.23760.19400.19420.034*
C10.1297 (4)0.3365 (3)0.0206 (3)0.0283 (8)
H1A0.19530.33250.08160.034*
C20.0275 (3)0.2469 (3)0.0045 (3)0.0274 (8)
C30.0744 (3)0.2571 (3)0.0968 (2)0.0253 (7)
C40.0643 (4)0.3579 (3)0.1599 (3)0.0275 (8)
H4A0.12990.36710.22040.033*
C50.0411 (4)0.4406 (3)0.1315 (3)0.0298 (8)
H5A0.04860.50540.17370.036*
O10.3734 (3)0.5460 (2)0.06336 (19)0.0242 (7)0.886 (4)
O20.5011 (3)0.4686 (2)0.2297 (2)0.0278 (7)0.886 (4)
H20.44130.47770.17740.033*0.886 (4)
O30.6962 (5)0.5623 (2)0.3110 (3)0.0274 (9)0.886 (4)
O40.2470 (6)0.6533 (5)0.1085 (5)0.0309 (11)0.886 (4)
O50.3768 (6)0.7848 (5)0.1745 (3)0.0242 (10)0.886 (4)
O60.7238 (3)1.0170 (3)0.0450 (3)0.0246 (7)0.886 (4)
O70.8474 (3)0.9354 (3)0.1809 (2)0.0270 (7)0.886 (4)
N40.3541 (10)0.7207 (7)0.1015 (5)0.0204 (9)0.886 (4)
N50.7468 (3)0.9350 (3)0.1074 (3)0.0191 (7)0.886 (4)
C60.5497 (8)0.8229 (5)0.0041 (4)0.0177 (14)0.886 (4)
H6A0.54420.88010.04700.021*0.886 (4)
C70.4568 (12)0.7259 (7)0.0067 (6)0.0182 (12)0.886 (4)
C80.4606 (6)0.6350 (4)0.0699 (4)0.0179 (9)0.886 (4)
C90.5741 (4)0.6491 (3)0.1573 (3)0.0171 (8)0.886 (4)
C100.6650 (4)0.7456 (3)0.1681 (3)0.0162 (7)0.886 (4)
H10A0.73640.75300.22590.019*0.886 (4)
C110.6506 (5)0.8326 (4)0.0926 (3)0.0158 (8)0.886 (4)
C120.5956 (4)0.5570 (3)0.2394 (3)0.0210 (8)0.886 (4)
O1B0.703 (2)0.7054 (19)0.2650 (14)0.037 (6)*0.114 (4)
O2B0.598 (2)0.512 (2)0.2943 (15)0.034 (6)*0.114 (4)
H2B0.65840.56520.29560.01 (17)*0.114 (4)
O3B0.409 (3)0.4439 (19)0.1805 (19)0.051 (7)*0.114 (4)
O4B0.833 (2)0.892 (2)0.2101 (17)0.028 (6)*0.114 (4)
O5B0.722 (3)0.995 (2)0.0788 (19)0.013 (6)*0.114 (4)
O6B0.375 (7)0.811 (4)0.176 (4)0.045 (16)*0.114 (4)
O7B0.250 (6)0.660 (5)0.132 (4)0.044 (15)*0.114 (4)
N4B0.733 (3)0.908 (2)0.138 (2)0.032 (7)*0.114 (4)
N5B0.353 (10)0.733 (7)0.115 (4)0.032 (7)*0.114 (4)
C6B0.537 (6)0.824 (4)0.018 (3)0.011 (6)*0.114 (4)
H6BA0.53620.89310.02000.013*0.114 (4)
C7B0.633 (4)0.811 (3)0.110 (2)0.011 (6)*0.114 (4)
C8B0.620 (3)0.714 (2)0.1781 (16)0.007 (6)*0.114 (4)
C9B0.520 (3)0.6226 (19)0.1401 (17)0.014 (5)*0.114 (4)
C10B0.432 (5)0.633 (3)0.049 (3)0.014 (5)*0.114 (4)
H10B0.36390.57460.02750.016*0.114 (4)
C11B0.442 (12)0.732 (7)0.014 (5)0.026 (6)*0.114 (4)
C12B0.499 (3)0.521 (2)0.2106 (18)0.026 (6)*0.114 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0268 (15)0.0294 (15)0.0305 (16)0.0010 (13)0.0071 (13)0.0046 (12)
N20.0307 (15)0.0329 (17)0.0469 (19)0.0038 (14)0.0036 (14)0.0063 (14)
N30.0288 (14)0.0247 (14)0.0296 (15)0.0042 (12)0.0017 (12)0.0005 (12)
C10.0268 (17)0.0239 (17)0.037 (2)0.0027 (15)0.0138 (15)0.0011 (15)
C20.0254 (17)0.0312 (18)0.0262 (17)0.0103 (15)0.0055 (14)0.0011 (14)
C30.0219 (16)0.0277 (18)0.0282 (18)0.0005 (14)0.0098 (14)0.0089 (14)
C40.0260 (16)0.0239 (17)0.0346 (19)0.0016 (14)0.0110 (15)0.0036 (14)
C50.0318 (18)0.0268 (18)0.0319 (19)0.0035 (15)0.0089 (15)0.0015 (14)
O10.0243 (13)0.0203 (13)0.0282 (14)0.0050 (11)0.0047 (11)0.0006 (10)
O20.0340 (15)0.0211 (15)0.0283 (15)0.0031 (12)0.0053 (12)0.0083 (12)
O30.0300 (15)0.0260 (19)0.0258 (16)0.0037 (12)0.0021 (15)0.0078 (11)
O40.0240 (18)0.034 (2)0.033 (3)0.0167 (12)0.0016 (18)0.0034 (19)
O50.0281 (19)0.024 (2)0.0201 (18)0.0091 (18)0.0016 (11)0.0047 (15)
O60.0303 (16)0.0173 (15)0.0266 (18)0.0026 (11)0.0051 (14)0.0060 (13)
O70.0245 (14)0.0227 (15)0.0308 (16)0.0050 (12)0.0065 (12)0.0017 (13)
N40.0193 (16)0.023 (3)0.020 (2)0.0003 (18)0.0050 (17)0.0003 (14)
N50.0198 (16)0.0176 (18)0.0203 (18)0.0005 (14)0.0038 (14)0.0027 (15)
C60.019 (2)0.0193 (19)0.016 (2)0.0018 (15)0.009 (2)0.0020 (16)
C70.016 (3)0.020 (2)0.020 (2)0.002 (2)0.0068 (14)0.0020 (14)
C80.018 (3)0.0159 (17)0.021 (3)0.0011 (16)0.0086 (17)0.0020 (16)
C90.018 (2)0.0158 (18)0.0183 (17)0.0026 (16)0.0059 (14)0.0005 (14)
C100.0153 (17)0.0164 (18)0.0182 (18)0.0011 (16)0.0067 (14)0.0041 (14)
C110.018 (2)0.011 (2)0.020 (2)0.0012 (14)0.0103 (16)0.0006 (14)
C120.0255 (19)0.0153 (16)0.024 (2)0.0030 (15)0.0096 (16)0.0010 (15)
Geometric parameters (Å, º) top
N1—C51.341 (4)C6—C71.384 (5)
N1—C11.358 (4)C6—H6A0.9300
N1—H1N11.0684C7—C81.438 (5)
N2—C21.373 (4)C8—C91.441 (5)
N2—H2N20.8919C9—C101.369 (5)
N2—H1N21.0329C9—C121.494 (5)
N3—C31.338 (4)C10—C111.393 (5)
N3—H1N30.8875C10—H10A0.9300
N3—H2N31.0043O1B—C8B1.281 (16)
C1—C21.387 (5)O2B—C12B1.322 (16)
C1—H1A0.9300O2B—H2B0.8200
C2—C31.423 (4)O3B—C12B1.229 (17)
C3—C41.424 (5)O4B—N4B1.230 (17)
C4—C51.357 (5)O5B—N4B1.249 (17)
C4—H4A0.9300O6B—N5B1.237 (18)
C5—H5A0.9300O7B—N5B1.246 (18)
O1—C81.282 (5)N4B—C7B1.445 (16)
O2—C121.317 (4)N5B—C11B1.454 (17)
O2—H20.8200C6B—C11B1.386 (18)
O3—C121.219 (6)C6B—C7B1.388 (18)
O4—N41.234 (4)C6B—H6BA0.9300
O5—N41.244 (5)C7B—C8B1.436 (16)
O6—N51.239 (5)C8B—C9B1.424 (16)
O7—N51.233 (4)C9B—C10B1.348 (16)
N4—C71.449 (5)C9B—C12B1.507 (16)
N5—C111.453 (5)C10B—C11B1.398 (18)
C6—C111.381 (5)C10B—H10B0.9300
C5—N1—C1122.1 (3)C10—C9—C8121.8 (3)
C5—N1—H1N1122.6C10—C9—C12118.0 (3)
C1—N1—H1N1114.6C8—C9—C12120.2 (3)
C2—N2—H2N2122.6C9—C10—C11120.0 (3)
C2—N2—H1N2116.9C9—C10—H10A120.0
H2N2—N2—H1N2114.3C11—C10—H10A120.0
C3—N3—H1N3115.2C6—C11—C10121.8 (4)
C3—N3—H2N3112.3C6—C11—N5119.6 (4)
H1N3—N3—H2N3131.3C10—C11—N5118.6 (3)
N1—C1—C2120.4 (3)O3—C12—O2121.5 (3)
N1—C1—H1A119.8O3—C12—C9122.0 (3)
C2—C1—H1A119.8O2—C12—C9116.5 (3)
N2—C2—C1122.0 (3)C12B—O2B—H2B109.5
N2—C2—C3119.4 (3)O4B—N4B—O5B126 (2)
C1—C2—C3118.5 (3)O4B—N4B—C7B116.9 (19)
N3—C3—C2122.3 (3)O5B—N4B—C7B116.5 (18)
N3—C3—C4119.5 (3)O6B—N5B—O7B123 (3)
C2—C3—C4118.3 (3)O6B—N5B—C11B119 (2)
C5—C4—C3119.9 (3)O7B—N5B—C11B118 (3)
C5—C4—H4A120.1C11B—C6B—C7B118.0 (19)
C3—C4—H4A120.1C11B—C6B—H6BA121.0
N1—C5—C4120.8 (3)C7B—C6B—H6BA121.0
N1—C5—H5A119.6C6B—C7B—C8B121.6 (17)
C4—C5—H5A119.6C6B—C7B—N4B115.9 (18)
C12—O2—H2109.5C8B—C7B—N4B121.9 (17)
O4—N4—O5121.5 (4)O1B—C8B—C9B121.6 (16)
O4—N4—C7119.8 (4)O1B—C8B—C7B121.6 (17)
O5—N4—C7118.7 (4)C9B—C8B—C7B116.4 (15)
O7—N5—O6123.5 (3)C10B—C9B—C8B120.9 (16)
O7—N5—C11118.3 (4)C10B—C9B—C12B120.2 (17)
O6—N5—C11118.1 (3)C8B—C9B—C12B118.2 (15)
C11—C6—C7118.3 (4)C9B—C10B—C11B121 (2)
C11—C6—H6A120.9C9B—C10B—H10B119.5
C7—C6—H6A120.9C11B—C10B—H10B119.5
C6—C7—C8123.1 (4)C6B—C11B—C10B121.0 (19)
C6—C7—N4115.5 (4)C6B—C11B—N5B121 (2)
C8—C7—N4121.3 (4)C10B—C11B—N5B118 (2)
O1—C8—C7124.5 (4)O3B—C12B—O2B124 (2)
O1—C8—C9120.6 (4)O3B—C12B—C9B119.1 (17)
C7—C8—C9114.9 (3)O2B—C12B—C9B116.2 (17)
C5—N1—C1—C21.0 (5)O6—N5—C11—C10173.2 (4)
N1—C1—C2—N2174.7 (3)C10—C9—C12—O34.5 (5)
N1—C1—C2—C31.9 (5)C8—C9—C12—O3175.3 (4)
N2—C2—C3—N34.7 (5)C10—C9—C12—O2176.3 (3)
C1—C2—C3—N3178.6 (3)C8—C9—C12—O23.8 (5)
N2—C2—C3—C4175.5 (3)C11B—C6B—C7B—C8B10 (11)
C1—C2—C3—C41.2 (4)C11B—C6B—C7B—N4B178 (8)
N3—C3—C4—C5179.8 (3)O4B—N4B—C7B—C6B170 (5)
C2—C3—C4—C50.4 (5)O5B—N4B—C7B—C6B1 (7)
C1—N1—C5—C40.7 (5)O4B—N4B—C7B—C8B18 (6)
C3—C4—C5—N11.4 (5)O5B—N4B—C7B—C8B171 (4)
C11—C6—C7—C80.0 (17)C6B—C7B—C8B—O1B176 (5)
C11—C6—C7—N4179.7 (9)N4B—C7B—C8B—O1B5 (6)
O4—N4—C7—C6164.1 (11)C6B—C7B—C8B—C9B10 (7)
O5—N4—C7—C616.1 (17)N4B—C7B—C8B—C9B179 (4)
O4—N4—C7—C816.2 (18)O1B—C8B—C9B—C10B179 (4)
O5—N4—C7—C8163.6 (11)C7B—C8B—C9B—C10B7 (6)
C6—C7—C8—O1178.0 (9)O1B—C8B—C9B—C12B8 (5)
N4—C7—C8—O12.3 (17)C7B—C8B—C9B—C12B178 (3)
C6—C7—C8—C93.0 (16)C8B—C9B—C10B—C11B4 (10)
N4—C7—C8—C9176.7 (10)C12B—C9B—C10B—C11B175 (8)
O1—C8—C9—C10177.5 (4)C7B—C6B—C11B—C10B7 (16)
C7—C8—C9—C103.5 (9)C7B—C6B—C11B—N5B172 (10)
O1—C8—C9—C122.7 (7)C9B—C10B—C11B—C6B4 (16)
C7—C8—C9—C12176.4 (7)C9B—C10B—C11B—N5B175 (9)
C8—C9—C10—C111.0 (6)O6B—N5B—C11B—C6B9 (19)
C12—C9—C10—C11178.9 (4)O7B—N5B—C11B—C6B167 (12)
C7—C6—C11—C102.8 (12)O6B—N5B—C11B—C10B170 (11)
C7—C6—C11—N5178.3 (9)O7B—N5B—C11B—C10B15 (18)
C9—C10—C11—C62.3 (7)C10B—C9B—C12B—O3B6 (6)
C9—C10—C11—N5178.7 (4)C8B—C9B—C12B—O3B177 (3)
O7—N5—C11—C6171.6 (5)C10B—C9B—C12B—O2B175 (4)
O6—N5—C11—C67.8 (7)C8B—C9B—C12B—O2B14 (4)
O7—N5—C11—C107.3 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O11.071.762.753 (4)153
O2—H2···O10.821.722.485 (4)154
N2—H2N2···O6i0.892.243.120 (4)171
N2—H1N2···O3ii1.032.113.026 (5)146
N3—H1N3···O6i0.892.363.104 (4)142
N3—H2N3···O5iii1.002.243.217 (5)163
C6—H6A···O3iv0.932.563.299 (6)136
Symmetry codes: (i) x1, y1, z; (ii) x+1, y1/2, z+1/2; (iii) x, y1/2, z1/2; (iv) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC5H8N3+·C7H3N2O7
Mr337.26
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)9.1187 (4), 11.3569 (5), 13.1343 (6)
β (°) 98.204 (4)
V3)1346.27 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.52 × 0.11 × 0.10
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.931, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
10195, 2785, 1979
Rint0.064
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.070, 0.162, 1.12
No. of reflections2785
No. of parameters279
No. of restraints526
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.46, 0.28

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O11.071.762.753 (4)153
N2—H2N2···O6i0.892.243.120 (4)171
N2—H1N2···O3ii1.032.113.026 (5)146
N3—H1N3···O6i0.892.363.104 (4)142
N3—H2N3···O5iii1.002.243.217 (5)163
C6—H6A···O3iv0.932.563.299 (6)136.4
Symmetry codes: (i) x1, y1, z; (ii) x+1, y1/2, z+1/2; (iii) x, y1/2, z1/2; (iv) x, y+3/2, z1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

MH and HKF thank the Malaysian Government and Universiti Sains Malaysia for the Research University grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

References

First citationAbu Zuhri, A. Z. & Cox, J. A. (1989). Mikrochim. Acta, 11, 277–283.  CrossRef Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationEl-Mossalamy, E. H. (2001). Pigm. Resin Technol. 30, 164–168.  CrossRef CAS Google Scholar
First citationInuzuka, K. & Fujimoto, A. (1990). Bull. Chem. Soc. Jpn, 63, 216–220.  CrossRef CAS Web of Science Google Scholar
First citationKoleva, B., Kolev, T., Tsanev, T., Kotov, S., Mayer-Figge, H., Seidel, R. W. & Sheldrich, W. S. (2008). J. Mol. Struct. 881, 146–155.  Web of Science CSD CrossRef CAS Google Scholar
First citationKoleva, B., Tsanev, T., Kolev, T., Mayer-Figge, H. & Sheldrick, W. S. (2007). Acta Cryst. E63, o3356.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRubin-Preminger, J. M. & Englert, U. (2007). Acta Cryst. E63, o757–o758.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds