organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Methyl-1-(4-methylbenzyl­idene)thio­semicarbazide

aMicroscale Science Institute, Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: liyufeng8111@163.com

(Received 30 September 2010; accepted 11 October 2010; online 20 October 2010)

The title compound, C10H13N3S, prepared by the reaction of 4-methyl­benzaldehyde and 4-methyl­thio­semicarbazide, is approximately planar (r.m.s. deviation for the non-H atoms = 0.032 Å). Its conformation is stabilized by an intra­molecular N—H⋯N hydrogen bond, generating an S(5) ring. In the crystal, inversion dimers linked by pairs of N—H⋯S hydrogen bonds occur. Further weak N—H⋯S links connect the dimers into (100) sheets.

Related literature

For related structures, see: Li & Jian (2010[Li, Y.-F. & Jian, F.-F. (2010). Acta Cryst. E66, o1397.]); Li et al. (2009[Li, Y.-F., Liu, H.-X. & Jian, F.-F. (2009). Acta Cryst. E65, o2959.]).

[Scheme 1]

Experimental

Crystal data
  • C10H13N3S

  • Mr = 207.29

  • Monoclinic, P 21 /c

  • a = 9.1139 (18) Å

  • b = 13.689 (3) Å

  • c = 9.1195 (18) Å

  • β = 91.92 (3)°

  • V = 1137.1 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 293 K

  • 0.25 × 0.23 × 0.20 mm

Data collection
  • Bruker SMART CCD diffractometer

  • 10620 measured reflections

  • 2585 independent reflections

  • 1739 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.146

  • S = 1.14

  • 2585 reflections

  • 127 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯N3 0.86 2.27 2.644 (2) 107
N1—H1A⋯S1i 0.86 2.89 3.4869 (16) 128
N2—H2A⋯S1ii 0.86 2.57 3.4205 (18) 171
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x+1, -y, -z+2.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Related literature top

For related structures, see: Li & Jian (2010); Li et al. (2009).

Experimental top

A mixture of the 4-methylbenzaldehyde (0.10 mol) and 4-methylthiosemicarbazide (0.10 mol) was stirred in refluxing ethanol (10 mL) for 4 h to afford the title compound (0.078 mol, yield 78%). Colourless bars of (I) were obtained by recrystallization from ethanol at room temperature.

Refinement top

H atoms were fixed geometrically and allowed to ride on their attached atoms, with C—H distances = 0.93–0.97 Å; N—H = 0.86Å and with Uiso(H) = 1.2Ueq(C,N) or 1.5Ueq(Cmethyl).

Structure description top

For related structures, see: Li & Jian (2010); Li et al. (2009).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I) showing 30% probability displacement ellipsoids.
4-Methyl-1-(4-methylbenzylidene)thiosemicarbazide top
Crystal data top
C10H13N3SF(000) = 440
Mr = 207.29Dx = 1.211 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1840 reflections
a = 9.1139 (18) Åθ = 3.3–25.2°
b = 13.689 (3) ŵ = 0.25 mm1
c = 9.1195 (18) ÅT = 293 K
β = 91.92 (3)°Bar, colorless
V = 1137.1 (4) Å30.25 × 0.23 × 0.20 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
1739 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.030
Graphite monochromatorθmax = 27.5°, θmin = 3.5°
phi and ω scansh = 1111
10620 measured reflectionsk = 1617
2585 independent reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0782P)2 + 0.0376P]
where P = (Fo2 + 2Fc2)/3
2585 reflections(Δ/σ)max = 0.001
127 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C10H13N3SV = 1137.1 (4) Å3
Mr = 207.29Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.1139 (18) ŵ = 0.25 mm1
b = 13.689 (3) ÅT = 293 K
c = 9.1195 (18) Å0.25 × 0.23 × 0.20 mm
β = 91.92 (3)°
Data collection top
Bruker SMART CCD
diffractometer
1739 reflections with I > 2σ(I)
10620 measured reflectionsRint = 0.030
2585 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.146H-atom parameters constrained
S = 1.14Δρmax = 0.28 e Å3
2585 reflectionsΔρmin = 0.19 e Å3
127 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.32325 (7)0.10479 (4)1.03876 (5)0.0635 (2)
N30.52576 (18)0.10902 (11)0.66835 (16)0.0500 (4)
N20.48287 (19)0.08528 (11)0.80716 (16)0.0546 (4)
H2A0.52760.03960.85550.065*
N10.30549 (18)0.20245 (12)0.78748 (16)0.0577 (4)
H1A0.33750.21390.70150.069*
C20.3712 (2)0.13330 (14)0.86754 (17)0.0480 (4)
C40.6920 (2)0.08023 (14)0.47593 (18)0.0484 (4)
C70.8095 (2)0.11507 (15)0.1996 (2)0.0549 (5)
C30.6335 (2)0.06052 (14)0.6196 (2)0.0536 (5)
H3B0.67570.01130.67740.064*
C90.6309 (2)0.14953 (15)0.3821 (2)0.0603 (5)
H9A0.54960.18510.41030.072*
C50.8110 (2)0.02762 (16)0.4281 (2)0.0612 (5)
H5A0.85270.02040.48830.073*
C60.8688 (2)0.04527 (18)0.2926 (2)0.0656 (6)
H6A0.94930.00930.26360.079*
C80.6893 (3)0.16642 (16)0.2469 (2)0.0640 (6)
H8A0.64670.21370.18590.077*
C100.8716 (3)0.1343 (2)0.0510 (2)0.0766 (7)
H10A0.95420.09210.03700.115*
H10B0.90260.20120.04540.115*
H10C0.79760.12170.02400.115*
C10.1832 (3)0.2597 (2)0.8363 (3)0.0953 (10)
H1B0.15370.30530.76110.143*
H1C0.21210.29460.92390.143*
H1D0.10260.21710.85640.143*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0813 (4)0.0682 (4)0.0421 (3)0.0139 (3)0.0186 (2)0.00603 (19)
N30.0541 (10)0.0515 (9)0.0452 (8)0.0020 (7)0.0137 (7)0.0010 (6)
N20.0613 (11)0.0587 (9)0.0444 (8)0.0068 (8)0.0135 (7)0.0048 (6)
N10.0608 (11)0.0644 (10)0.0491 (8)0.0117 (8)0.0193 (7)0.0127 (7)
C20.0525 (11)0.0490 (10)0.0430 (9)0.0033 (8)0.0081 (7)0.0011 (7)
C40.0456 (11)0.0519 (10)0.0481 (10)0.0013 (8)0.0075 (7)0.0004 (7)
C70.0503 (12)0.0649 (12)0.0501 (10)0.0083 (9)0.0095 (8)0.0013 (8)
C30.0548 (12)0.0547 (11)0.0517 (10)0.0023 (9)0.0086 (8)0.0040 (8)
C90.0606 (14)0.0608 (13)0.0605 (12)0.0157 (10)0.0146 (9)0.0079 (9)
C50.0540 (13)0.0715 (13)0.0586 (11)0.0135 (10)0.0102 (8)0.0107 (9)
C60.0510 (13)0.0826 (15)0.0644 (12)0.0124 (10)0.0180 (9)0.0041 (10)
C80.0682 (15)0.0639 (13)0.0603 (11)0.0094 (10)0.0104 (9)0.0147 (9)
C100.0778 (17)0.0945 (17)0.0587 (13)0.0095 (14)0.0226 (11)0.0069 (11)
C10.096 (2)0.108 (2)0.0849 (16)0.0483 (16)0.0451 (14)0.0415 (14)
Geometric parameters (Å, º) top
S1—C21.6813 (17)C3—H3B0.9300
N3—C31.277 (2)C9—C81.378 (3)
N3—N21.376 (2)C9—H9A0.9300
N2—C21.345 (2)C5—C61.381 (3)
N2—H2A0.8600C5—H5A0.9300
N1—C21.326 (2)C6—H6A0.9300
N1—C11.444 (3)C8—H8A0.9300
N1—H1A0.8600C10—H10A0.9600
C4—C91.382 (3)C10—H10B0.9600
C4—C51.385 (3)C10—H10C0.9600
C4—C31.456 (2)C1—H1B0.9600
C7—C61.376 (3)C1—H1C0.9600
C7—C81.383 (3)C1—H1D0.9600
C7—C101.509 (2)
C3—N3—N2116.28 (16)C6—C5—C4121.15 (18)
C2—N2—N3120.22 (16)C6—C5—H5A119.4
C2—N2—H2A119.9C4—C5—H5A119.4
N3—N2—H2A119.9C7—C6—C5121.32 (19)
C2—N1—C1123.79 (16)C7—C6—H6A119.3
C2—N1—H1A118.1C5—C6—H6A119.3
C1—N1—H1A118.1C9—C8—C7121.85 (19)
N1—C2—N2117.22 (15)C9—C8—H8A119.1
N1—C2—S1123.41 (14)C7—C8—H8A119.1
N2—C2—S1119.37 (14)C7—C10—H10A109.5
C9—C4—C5117.71 (17)C7—C10—H10B109.5
C9—C4—C3122.18 (17)H10A—C10—H10B109.5
C5—C4—C3120.09 (17)C7—C10—H10C109.5
C6—C7—C8117.33 (18)H10A—C10—H10C109.5
C6—C7—C10121.6 (2)H10B—C10—H10C109.5
C8—C7—C10121.1 (2)N1—C1—H1B109.5
N3—C3—C4121.71 (18)N1—C1—H1C109.5
N3—C3—H3B119.1H1B—C1—H1C109.5
C4—C3—H3B119.1N1—C1—H1D109.5
C8—C9—C4120.63 (18)H1B—C1—H1D109.5
C8—C9—H9A119.7H1C—C1—H1D109.5
C4—C9—H9A119.7
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N30.862.272.644 (2)107
N1—H1A···S1i0.862.893.4869 (16)128
N2—H2A···S1ii0.862.573.4205 (18)171
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y, z+2.

Experimental details

Crystal data
Chemical formulaC10H13N3S
Mr207.29
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)9.1139 (18), 13.689 (3), 9.1195 (18)
β (°) 91.92 (3)
V3)1137.1 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.25 × 0.23 × 0.20
Data collection
DiffractometerBruker SMART CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
10620, 2585, 1739
Rint0.030
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.146, 1.14
No. of reflections2585
No. of parameters127
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.19

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N30.862.272.644 (2)107
N1—H1A···S1i0.862.893.4869 (16)128
N2—H2A···S1ii0.862.573.4205 (18)171
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y, z+2.
 

References

First citationBruker (1997). SMART and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, Y.-F. & Jian, F.-F. (2010). Acta Cryst. E66, o1397.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, Y.-F., Liu, H.-X. & Jian, F.-F. (2009). Acta Cryst. E65, o2959.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds