organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-Benzyl-N-(2-meth­­oxy­phen­yl)benzene­sulfonamide

aDepartment of Chemistry, Government College University, Lahore 54000, Pakistan, and bDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 24 October 2010; accepted 24 October 2010; online 30 October 2010)

In the title mol­ecule, C20H19NO3S, the dihedral angle between the phenyl rings is 48.93 (18)°, and they make dihedral angles of 38.37 (17) and 86.50 (19)° with the benzene ring. A weak intra­molecular C—H⋯O inter­action might stabilize the mol­ecular conformation. In the crystal, weak ππ stacking inter­actions between the benzene rings [centroid–centroid distance = 3.774 (2) Å] may help to establish the packing.

Related literature

For background on the biological activity of sulfonamide derivatives, see: Ozbek et al. (2007[Ozbek, N., Katircioglu, H., Karacan, N. & Baykal, T. (2007). Bioorg. Med. Chem. 15, 5105-5109.]); Parari et al. (2008[Parari, M. K., Panda, G., Srivastava, K. & Puri, S. K. (2008). Bioorg. Med. Chem. Lett. 18, 776-781.]). For the structures of some sulfonamide derivatives, see, for example: Asiri et al. (2009[Asiri, A. M., Akkurt, M., Khan, S. A., Arshad, M. N., Khan, I. U. & Sharif, H. M. A. (2009). Acta Cryst. E65, o1246-o1247.]); Aziz-ur-Rehman et al. (2010[Aziz-ur-Rehman, Sajjad, M. A., Akkurt, M., Sharif, S., Abbasi, M. A. & Khan, I. U. (2010). Acta Cryst. E66, o1769.]).

[Scheme 1]

Experimental

Crystal data
  • C20H19NO3S

  • Mr = 353.43

  • Monoclinic, P 21 /c

  • a = 10.0368 (3) Å

  • b = 9.0176 (3) Å

  • c = 20.4228 (7) Å

  • β = 103.424 (2)°

  • V = 1797.92 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 296 K

  • 0.25 × 0.13 × 0.09 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 16779 measured reflections

  • 4438 independent reflections

  • 2560 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.202

  • S = 1.04

  • 4438 reflections

  • 228 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14B⋯O3 0.97 2.36 2.972 (4) 120

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Sulfonamides are found in a number of natural as well as synthetic compounds. These molecules are considered as biologically very acitive compounds (Ozbek et al., 2007, Parari et al., 2008). As a contribution to a structural study of sulfonamide derivatives (Asiri et al., 2009, Aziz-ur-Rehman et al., 2010) here, we report the title compound (I).

In the molecule of (I), (Fig. 1), the bond lengths and bond angles are within the expected ranges. The geometry around S1 atom is distorted from a regular tetrahedron. The largest deviation is in the angle O2—S1—O1 [118.92 (12)°].

The dihedral angle between the phenyl rings (C1–C6) and (C15–C20) is 48.93 (18)° and they make dihedral angles of 38.37 (17) and 86.50 (19)°, respectively, with the benzene ring (C7–C12).

In the crystal structure, there is no classic hydrogen bonds. Weak intramolecular C—H···O interactions stabilize the molecular conformation. ππ stacking interactions [Cg2···Cg2 (1 - x, -y, 1 - z) = 3.774 (2) Å; Cg2 is a centroid of the C7–C12 benzene ring] contribute to the stabilization of the crystal structure. Fig. 2 show the packing diagram of (I) down the b axis.

Related literature top

For background on the biological activity of sulfonamide derivatives, see: Ozbek et al. (2007); Parari et al. (2008). For the structures of some sulfonamide derivatives, see, for example: Asiri et al. (2009); Aziz-ur-Rehman et al. (2010).

Experimental top

A mixture of N-(2-methoxyphenyl)benzenesulfonamide (1.24 g, 5.0 mmol), sodium hydride (0.24 g, 10 mmol) and N,N-dimethylformamide (10 ml) was stirred at room temperature for 45 min and the benzyl chloride (0.64 g, 5.0 mmol) was added. The stirring was continued further for a period of 3 h and the contents were poured over crushed ice. The precipitated product was isolated, washed and re-crystallized from methanolic solution to yield light violet blocks of (I). Yield 65%.

Refinement top

All H atoms were positioned geometrically with C—H = 0.93–0.97 Å and allowed to ride on their parent atoms, with Uiso(H) = 1.2 or 1.5Ueq(C).

Structure description top

Sulfonamides are found in a number of natural as well as synthetic compounds. These molecules are considered as biologically very acitive compounds (Ozbek et al., 2007, Parari et al., 2008). As a contribution to a structural study of sulfonamide derivatives (Asiri et al., 2009, Aziz-ur-Rehman et al., 2010) here, we report the title compound (I).

In the molecule of (I), (Fig. 1), the bond lengths and bond angles are within the expected ranges. The geometry around S1 atom is distorted from a regular tetrahedron. The largest deviation is in the angle O2—S1—O1 [118.92 (12)°].

The dihedral angle between the phenyl rings (C1–C6) and (C15–C20) is 48.93 (18)° and they make dihedral angles of 38.37 (17) and 86.50 (19)°, respectively, with the benzene ring (C7–C12).

In the crystal structure, there is no classic hydrogen bonds. Weak intramolecular C—H···O interactions stabilize the molecular conformation. ππ stacking interactions [Cg2···Cg2 (1 - x, -y, 1 - z) = 3.774 (2) Å; Cg2 is a centroid of the C7–C12 benzene ring] contribute to the stabilization of the crystal structure. Fig. 2 show the packing diagram of (I) down the b axis.

For background on the biological activity of sulfonamide derivatives, see: Ozbek et al. (2007); Parari et al. (2008). For the structures of some sulfonamide derivatives, see, for example: Asiri et al. (2009); Aziz-ur-Rehman et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title molecule with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. The packing of (I), viewing down the b axis in the unit cell. For clarity, all H atoms have been omitted.
N-Benzyl-N-(2-methoxyphenyl)benzenesulfonamide top
Crystal data top
C20H19NO3SF(000) = 744
Mr = 353.43Dx = 1.306 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3872 reflections
a = 10.0368 (3) Åθ = 2.5–21.8°
b = 9.0176 (3) ŵ = 0.20 mm1
c = 20.4228 (7) ÅT = 296 K
β = 103.424 (2)°Block, light violet
V = 1797.92 (10) Å30.25 × 0.13 × 0.09 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2560 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.037
Graphite monochromatorθmax = 28.4°, θmin = 3.3°
φ and ω scansh = 1313
16779 measured reflectionsk = 129
4438 independent reflectionsl = 2725
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.202H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.1008P)2 + 0.2694P]
where P = (Fo2 + 2Fc2)/3
4438 reflections(Δ/σ)max < 0.001
228 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C20H19NO3SV = 1797.92 (10) Å3
Mr = 353.43Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.0368 (3) ŵ = 0.20 mm1
b = 9.0176 (3) ÅT = 296 K
c = 20.4228 (7) Å0.25 × 0.13 × 0.09 mm
β = 103.424 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
2560 reflections with I > 2σ(I)
16779 measured reflectionsRint = 0.037
4438 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.202H-atom parameters constrained
S = 1.04Δρmax = 0.35 e Å3
4438 reflectionsΔρmin = 0.20 e Å3
228 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.65180 (7)0.44517 (7)0.66852 (3)0.0726 (2)
O10.5815 (3)0.5433 (2)0.70356 (11)0.1098 (9)
O20.7233 (2)0.5054 (2)0.62194 (9)0.0897 (7)
O30.6440 (2)0.0515 (2)0.65783 (15)0.1138 (9)
N10.53841 (18)0.3280 (2)0.62738 (9)0.0636 (6)
C10.7345 (3)0.2992 (4)0.78758 (13)0.0981 (13)
C20.8243 (4)0.2106 (5)0.83247 (15)0.1226 (18)
C30.9455 (4)0.1657 (4)0.81816 (18)0.1143 (14)
C40.9776 (3)0.2066 (4)0.76011 (17)0.0971 (11)
C50.8896 (3)0.2937 (3)0.71487 (14)0.0798 (10)
C60.7687 (2)0.3409 (3)0.72877 (12)0.0691 (8)
C70.5817 (2)0.2371 (3)0.57779 (13)0.0704 (9)
C80.5683 (3)0.2888 (3)0.51265 (13)0.0787 (10)
C90.6088 (4)0.2160 (5)0.4631 (2)0.1162 (17)
C100.6693 (4)0.0790 (7)0.4816 (3)0.146 (3)
C110.6818 (3)0.0179 (4)0.5442 (3)0.1157 (16)
C120.6375 (3)0.1012 (3)0.5923 (2)0.0933 (12)
C130.7184 (5)0.0828 (4)0.6767 (4)0.197 (3)
C140.4294 (3)0.2778 (4)0.65914 (14)0.0898 (12)
C150.2919 (2)0.2704 (2)0.61222 (11)0.0596 (7)
C160.2544 (3)0.3576 (3)0.55669 (14)0.0846 (10)
C170.1251 (4)0.3467 (6)0.51567 (19)0.1411 (19)
C180.0338 (4)0.2513 (8)0.5304 (2)0.163 (3)
C190.0679 (4)0.1656 (6)0.5857 (2)0.1312 (18)
C200.1961 (3)0.1745 (3)0.62612 (16)0.0913 (12)
H10.652500.330200.796900.1180*
H20.802800.181200.872400.1470*
H31.005900.106700.848800.1370*
H41.059600.175500.750900.1170*
H50.911400.321000.674700.0960*
H80.528000.381300.502400.0940*
H90.597200.254300.419900.1390*
H100.703200.026100.449900.1750*
H110.718800.076200.554100.1390*
H13A0.668400.164400.652500.2960*
H13B0.730400.098600.724200.2960*
H13C0.806400.075700.665900.2960*
H14A0.424800.344800.695700.1080*
H14B0.452900.180200.678400.1080*
H160.316600.425000.546400.1020*
H170.100800.405900.477500.1690*
H180.053300.244400.502300.1960*
H190.004000.100600.596300.1570*
H200.219300.114200.664000.1090*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0824 (4)0.0642 (4)0.0690 (4)0.0044 (3)0.0130 (3)0.0103 (3)
O10.1269 (17)0.0989 (15)0.0955 (13)0.0447 (12)0.0092 (12)0.0309 (12)
O20.1001 (13)0.0788 (12)0.0880 (12)0.0271 (10)0.0174 (11)0.0054 (10)
O30.0902 (15)0.0710 (13)0.164 (2)0.0034 (10)0.0035 (15)0.0263 (14)
N10.0586 (10)0.0718 (12)0.0640 (11)0.0007 (9)0.0216 (8)0.0025 (9)
C10.097 (2)0.134 (3)0.0643 (15)0.0410 (19)0.0209 (14)0.0038 (17)
C20.138 (3)0.166 (4)0.0667 (18)0.056 (3)0.0298 (19)0.014 (2)
C30.105 (2)0.141 (3)0.085 (2)0.048 (2)0.0021 (18)0.011 (2)
C40.0692 (17)0.115 (2)0.103 (2)0.0134 (16)0.0119 (16)0.021 (2)
C50.0717 (16)0.0852 (18)0.0841 (17)0.0051 (14)0.0212 (14)0.0140 (15)
C60.0692 (14)0.0724 (15)0.0631 (13)0.0051 (11)0.0098 (11)0.0146 (11)
C70.0557 (12)0.0657 (15)0.0943 (18)0.0151 (11)0.0269 (12)0.0128 (13)
C80.0878 (17)0.0890 (18)0.0696 (15)0.0247 (14)0.0391 (13)0.0114 (14)
C90.110 (3)0.142 (3)0.116 (3)0.047 (2)0.066 (2)0.053 (3)
C100.094 (3)0.162 (5)0.203 (5)0.054 (3)0.078 (3)0.108 (4)
C110.0668 (17)0.076 (2)0.206 (4)0.0154 (15)0.035 (2)0.056 (3)
C120.0590 (14)0.0666 (17)0.152 (3)0.0187 (13)0.0200 (17)0.018 (2)
C130.128 (3)0.080 (3)0.363 (9)0.005 (2)0.014 (4)0.065 (4)
C140.0643 (14)0.134 (3)0.0764 (16)0.0061 (15)0.0273 (13)0.0290 (17)
C150.0608 (12)0.0625 (13)0.0620 (12)0.0023 (10)0.0277 (10)0.0041 (10)
C160.0710 (15)0.096 (2)0.0869 (18)0.0005 (14)0.0187 (13)0.0136 (16)
C170.081 (2)0.231 (5)0.101 (2)0.001 (3)0.0002 (19)0.045 (3)
C180.074 (2)0.298 (8)0.110 (3)0.043 (3)0.006 (2)0.013 (4)
C190.095 (2)0.179 (4)0.133 (3)0.061 (3)0.054 (2)0.037 (3)
C200.094 (2)0.096 (2)0.100 (2)0.0161 (16)0.0556 (17)0.0029 (17)
Geometric parameters (Å, º) top
S1—O11.424 (3)C16—C171.375 (5)
S1—O21.426 (2)C17—C181.341 (7)
S1—N11.6351 (19)C18—C191.346 (7)
S1—C61.762 (2)C19—C201.360 (5)
O3—C121.398 (5)C1—H10.9300
O3—C131.428 (5)C2—H20.9300
N1—C71.446 (3)C3—H30.9300
N1—C141.467 (4)C4—H40.9300
C1—C21.381 (5)C5—H50.9300
C1—C61.376 (4)C8—H80.9300
C2—C31.376 (6)C9—H90.9300
C3—C41.350 (5)C10—H100.9300
C4—C51.368 (4)C11—H110.9300
C5—C61.376 (4)C13—H13A0.9600
C7—C81.386 (4)C13—H13B0.9600
C7—C121.351 (4)C13—H13C0.9600
C8—C91.346 (5)C14—H14A0.9700
C9—C101.390 (7)C14—H14B0.9700
C10—C111.371 (8)C16—H160.9300
C11—C121.389 (6)C17—H170.9300
C14—C151.488 (4)C18—H180.9300
C15—C161.359 (3)C19—H190.9300
C15—C201.371 (4)C20—H200.9300
O1—S1—O2118.92 (12)C6—C1—H1121.00
O1—S1—N1107.03 (13)C1—C2—H2120.00
O1—S1—C6107.94 (12)C3—C2—H2120.00
O2—S1—N1107.55 (10)C2—C3—H3120.00
O2—S1—C6108.22 (11)C4—C3—H3120.00
N1—S1—C6106.57 (11)C3—C4—H4120.00
C12—O3—C13115.8 (4)C5—C4—H4120.00
S1—N1—C7116.09 (15)C4—C5—H5120.00
S1—N1—C14118.28 (17)C6—C5—H5120.00
C7—N1—C14120.7 (2)C7—C8—H8117.00
C2—C1—C6118.8 (3)C9—C8—H8117.00
C1—C2—C3120.1 (3)C8—C9—H9123.00
C2—C3—C4120.6 (3)C10—C9—H9123.00
C3—C4—C5120.1 (3)C9—C10—H10118.00
C4—C5—C6120.0 (3)C11—C10—H10118.00
S1—C6—C1119.66 (19)C10—C11—H11121.00
S1—C6—C5119.81 (19)C12—C11—H11121.00
C1—C6—C5120.4 (2)O3—C13—H13A109.00
N1—C7—C8120.2 (2)O3—C13—H13B109.00
N1—C7—C12122.5 (3)O3—C13—H13C109.00
C8—C7—C12117.3 (3)H13A—C13—H13B110.00
C7—C8—C9125.4 (3)H13A—C13—H13C109.00
C8—C9—C10114.7 (4)H13B—C13—H13C110.00
C9—C10—C11123.4 (5)N1—C14—H14A109.00
C10—C11—C12117.9 (4)N1—C14—H14B109.00
O3—C12—C7115.2 (3)C15—C14—H14A109.00
O3—C12—C11123.5 (3)C15—C14—H14B109.00
C7—C12—C11121.3 (4)H14A—C14—H14B108.00
N1—C14—C15113.9 (2)C15—C16—H16120.00
C14—C15—C16123.2 (2)C17—C16—H16120.00
C14—C15—C20119.0 (2)C16—C17—H17120.00
C16—C15—C20117.8 (2)C18—C17—H17120.00
C15—C16—C17120.4 (3)C17—C18—H18120.00
C16—C17—C18120.4 (4)C19—C18—H18120.00
C17—C18—C19120.2 (4)C18—C19—H19120.00
C18—C19—C20119.7 (4)C20—C19—H19120.00
C15—C20—C19121.4 (3)C15—C20—H20119.00
C2—C1—H1121.00C19—C20—H20119.00
O1—S1—N1—C7168.04 (17)C3—C4—C5—C60.6 (5)
O2—S1—N1—C739.19 (19)C4—C5—C6—S1176.8 (2)
C6—S1—N1—C776.67 (18)C4—C5—C6—C11.0 (4)
O1—S1—N1—C1436.5 (2)C12—C7—C8—C91.4 (5)
O2—S1—N1—C14165.4 (2)N1—C7—C12—O33.1 (4)
C6—S1—N1—C1478.8 (2)N1—C7—C12—C11178.2 (3)
N1—S1—C6—C179.3 (3)N1—C7—C8—C9177.9 (3)
O1—S1—C6—C135.3 (3)C8—C7—C12—O3177.6 (2)
O2—S1—C6—C1165.3 (2)C8—C7—C12—C111.1 (4)
N1—S1—C6—C596.5 (2)C7—C8—C9—C100.6 (6)
O1—S1—C6—C5148.8 (2)C8—C9—C10—C113.0 (7)
O2—S1—C6—C518.9 (3)C9—C10—C11—C123.3 (7)
C13—O3—C12—C119.1 (5)C10—C11—C12—O3179.7 (3)
C13—O3—C12—C7172.2 (3)C10—C11—C12—C71.1 (5)
C7—N1—C14—C1567.7 (3)N1—C14—C15—C1627.6 (4)
C14—N1—C7—C1262.3 (3)N1—C14—C15—C20154.3 (2)
S1—N1—C7—C1292.5 (3)C14—C15—C16—C17179.2 (3)
C14—N1—C7—C8118.5 (3)C20—C15—C16—C171.2 (4)
S1—N1—C14—C15138.1 (2)C14—C15—C20—C19178.6 (3)
S1—N1—C7—C886.7 (2)C16—C15—C20—C190.4 (4)
C2—C1—C6—S1176.5 (3)C15—C16—C17—C180.9 (6)
C2—C1—C6—C50.6 (5)C16—C17—C18—C190.2 (8)
C6—C1—C2—C30.1 (6)C17—C18—C19—C201.0 (8)
C1—C2—C3—C40.5 (6)C18—C19—C20—C150.7 (6)
C2—C3—C4—C50.1 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14B···O30.972.362.972 (4)120

Experimental details

Crystal data
Chemical formulaC20H19NO3S
Mr353.43
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)10.0368 (3), 9.0176 (3), 20.4228 (7)
β (°) 103.424 (2)
V3)1797.92 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.25 × 0.13 × 0.09
Data collection
DiffractometerBruker APEXII CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
16779, 4438, 2560
Rint0.037
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.202, 1.04
No. of reflections4438
No. of parameters228
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.20

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14B···O30.972.362.972 (4)120
 

Footnotes

Additional corresponding author, e-mail: azizryk@hotmail.com.

Acknowledgements

The authors are grateful to the Higher Education Commission of Pakistan for providing financial support.

References

First citationAsiri, A. M., Akkurt, M., Khan, S. A., Arshad, M. N., Khan, I. U. & Sharif, H. M. A. (2009). Acta Cryst. E65, o1246–o1247.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAziz-ur-Rehman, Sajjad, M. A., Akkurt, M., Sharif, S., Abbasi, M. A. & Khan, I. U. (2010). Acta Cryst. E66, o1769.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationOzbek, N., Katircioglu, H., Karacan, N. & Baykal, T. (2007). Bioorg. Med. Chem. 15, 5105–5109.  Web of Science CrossRef PubMed Google Scholar
First citationParari, M. K., Panda, G., Srivastava, K. & Puri, S. K. (2008). Bioorg. Med. Chem. Lett. 18, 776–781.  PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds