organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Chloro-N-(4-meth­­oxy­phen­yl)benzamide

aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, and bDepartment of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand
*Correspondence e-mail: aamersaeed@yahoo.com

(Received 21 October 2010; accepted 22 October 2010; online 30 October 2010)

In the title compound, C14H12ClNO2, the chloro- and meth­oxy-substituted benzene rings are close to orthogonal [dihedral angle = 79.20 (3)°]. These rings also make angles of 45.9 (3) and 33.5 (3)° with the amide –CONH– unit. The meth­oxy substituent lies close to the meth­oxy­benzene ring plane, with a maximum deviation of 0.142 (3) Å for the methyl C atom. The N—H bond is anti to the 2-chloro substituent of the aniline ring. In the crystal structure, inter­molecular N—H⋯O hydrogen bonds form C(4) chains augmented by a weak C—H⋯O inter­action involving an ortho H atom of the meth­oxy benzene ring that generates an R21(6) motif. The chains stack the mol­ecules into columns down the b axis. Adjacent columns are linked by additional C—H⋯O and C—H⋯π contacts, generating a three-dimensional network.

Related literature

For background to the biological activity of N-substituted benzamides and their use in synthesis, see: Saeed et al. (2010[Saeed, A., Khera, R. A. & Simpson, J. (2010). Acta Cryst. E66, o911-o912.]). For related structures, see: Saeed et al. (2008a[Saeed, A., Khera, R. A., Abbas, N., Simpson, J. & Stanley, R. G. (2008a). Acta Cryst. E64, o1976.],b[Saeed, A., Khera, R. A., Abbas, N., Simpson, J. & Stanley, R. G. (2008b). Acta Cryst. E64, o2187.], 2009a[Saeed, A., Khera, R. A., Ameen, S., Simpson, J. & Stanley, R. G. (2009a). Acta Cryst. E65, o201.],b[Saeed, A., Khera, R. A., Arfan, M., Simpson, J. & Stanley, R. G. (2009b). Acta Cryst. E65, o802-o803.],c[Saeed, A., Khera, R. A., Rafique, H., Simpson, J. & Stanley, R. G. (2009c). Acta Cryst. E65, o2527.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For reference bond length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C14H12ClNO2

  • Mr = 261.70

  • Monoclinic, P 21 /n

  • a = 13.1819 (10) Å

  • b = 5.0823 (4) Å

  • c = 18.4477 (14) Å

  • β = 99.563 (3)°

  • V = 1218.72 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 90 K

  • 0.50 × 0.23 × 0.08 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.885, Tmax = 1.000

  • 21245 measured reflections

  • 4228 independent reflections

  • 3106 reflections with I > 2σ(I)

  • Rint = 0.060

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.104

  • S = 1.06

  • 4228 reflections

  • 167 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C8–C13 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.854 (17) 2.067 (17) 2.8706 (15) 156.4 (15)
C13—H13⋯O1i 0.95 2.69 3.2347 (16) 117
C6—H6⋯O2ii 0.95 2.71 3.5657 (17) 150
C12—H12⋯Cg2iii 0.95 2.88 3.6203 (15) 136
Symmetry codes: (i) x, y+1, z; (ii) -x+1, -y+1, -z+1; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and TITAN2000 (Hunter & Simpson, 1999[Hunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.]); molecular graphics: SHELXTL and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97, enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

N-substituted benzamides have numerous pharmaceutical and synthetic applications (Saeed et al., 2010). In the title compound, C14H12ClNO2 (I), the C2···C7,chloro and C8···C13, methoxy substituted benzene rings are close to orthogonal, dihedral angle 79.20 (3)°. These rings also make angles of 45.9 (3) and 33.5 (3)° to the amide –C1(=O1)-N1H1- unit. The methoxy substituent lies close to the C8···C13 ring plane with a maximum deviation of 0.142 (3) Å for C14. Bond distances in the molecule are normal (Allen et al., 1987) and very similar to those other chlorophenylbenzamide derivatives (Saeed et al., 2008a, 2009c). The N1–H1 bond is anti to the Cl1 substituent of the aniline ring in sharp contrast to the syn arrangement found in a number of comparable 2-fluoro-benzamide derivatives (Saeed et al., 2008b, 2009a) including the directly analogous 2-fluoro-N-(4-methoxyphenyl)benzamide (Saeed et al., 2009b).

In the crystal structure intermolecular N1—H1···O1 hydrogen bonds form C(4) chains (Bernstein et al., 1995) strengthened by a C13—H13···O1 interaction that generates an R12(6) ring motif. These chains stack the molecules into columns down the b axis. The columns are linked by additional C6–H6···O2 and C12—H12···Cg2 contacts (Cg2 is the centroid of the C8···C13 benzene ring) to generate a three dimensional network.

Related literature top

For background to the biological activity of N-substituted benzamides and their use in synthesis, see: Saeed et al. (2010). For related structures, see: Saeed et al. (2008a,b, 2009a,b,c). For hydrogen-bond motifs, see: Bernstein et al. (1995). For reference bond length data, see: Allen et al. (1987).

Experimental top

2-Chlorobenzoyl chloride (1 mmol) in CHCl3 was treated with 4-methoxyaniline (3.5 mmol) under a nitrogen atmosphere at reflux for 3 h. Upon cooling, the reaction mixture was diluted with CHCl3 and washed consecutively with 1 M aq HCl and saturated aq NaHCO3. The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. Crystallization of the residue in ethanol afforded the title compound (80%) as colourless crystals: Anal. calcd. for C14H12ClNO2: C, 64.25; H, 4.62; N, 5.35; found: C, 64.02; H, 4.61; N, 6.23%.

Refinement top

The H1 atom bound to N1 was located in a difference map and refined isotropically. All other H-atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.95 Å, Uiso = 1.2Ueq (C) for aromatic and 0.98 Å, Uiso = 1.5Ueq (C) for the CH3 atoms.

Structure description top

N-substituted benzamides have numerous pharmaceutical and synthetic applications (Saeed et al., 2010). In the title compound, C14H12ClNO2 (I), the C2···C7,chloro and C8···C13, methoxy substituted benzene rings are close to orthogonal, dihedral angle 79.20 (3)°. These rings also make angles of 45.9 (3) and 33.5 (3)° to the amide –C1(=O1)-N1H1- unit. The methoxy substituent lies close to the C8···C13 ring plane with a maximum deviation of 0.142 (3) Å for C14. Bond distances in the molecule are normal (Allen et al., 1987) and very similar to those other chlorophenylbenzamide derivatives (Saeed et al., 2008a, 2009c). The N1–H1 bond is anti to the Cl1 substituent of the aniline ring in sharp contrast to the syn arrangement found in a number of comparable 2-fluoro-benzamide derivatives (Saeed et al., 2008b, 2009a) including the directly analogous 2-fluoro-N-(4-methoxyphenyl)benzamide (Saeed et al., 2009b).

In the crystal structure intermolecular N1—H1···O1 hydrogen bonds form C(4) chains (Bernstein et al., 1995) strengthened by a C13—H13···O1 interaction that generates an R12(6) ring motif. These chains stack the molecules into columns down the b axis. The columns are linked by additional C6–H6···O2 and C12—H12···Cg2 contacts (Cg2 is the centroid of the C8···C13 benzene ring) to generate a three dimensional network.

For background to the biological activity of N-substituted benzamides and their use in synthesis, see: Saeed et al. (2010). For related structures, see: Saeed et al. (2008a,b, 2009a,b,c). For hydrogen-bond motifs, see: Bernstein et al. (1995). For reference bond length data, see: Allen et al. (1987).

Computing details top

Data collection: APEX2 (Bruker 2006); cell refinement: APEX2 and SAINT (Bruker 2006); data reduction: SAINT (Bruker 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and TITAN2000 (Hunter & Simpson, 1999); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), enCIFer (Allen et al., 2004), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The structure of (I) with displacement ellipsoids for the non-hydrogen atoms drawn at the 50% probability level.
[Figure 2] Fig. 2. Chains of molecules formed along the b axis with hydrogen bonds drawn as dashed lines.
[Figure 3] Fig. 3. Crystal packing for (I) viewed down the b axis with hydrogen bonds drawn as dashed lines.
2-Chloro-N-(4-methoxyphenyl)benzamide top
Crystal data top
C14H12ClNO2F(000) = 544
Mr = 261.70Dx = 1.426 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3287 reflections
a = 13.1819 (10) Åθ = 2.2–31.3°
b = 5.0823 (4) ŵ = 0.31 mm1
c = 18.4477 (14) ÅT = 90 K
β = 99.563 (3)°Rectangular block, colourless
V = 1218.72 (16) Å30.50 × 0.23 × 0.08 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
4228 independent reflections
Radiation source: fine-focus sealed tube3106 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.060
ω scansθmax = 32.2°, θmin = 3.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
h = 1917
Tmin = 0.885, Tmax = 1.000k = 77
21245 measured reflectionsl = 2727
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0437P)2 + 0.2831P]
where P = (Fo2 + 2Fc2)/3
4228 reflections(Δ/σ)max = 0.001
167 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C14H12ClNO2V = 1218.72 (16) Å3
Mr = 261.70Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.1819 (10) ŵ = 0.31 mm1
b = 5.0823 (4) ÅT = 90 K
c = 18.4477 (14) Å0.50 × 0.23 × 0.08 mm
β = 99.563 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
4228 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
3106 reflections with I > 2σ(I)
Tmin = 0.885, Tmax = 1.000Rint = 0.060
21245 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.104H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.46 e Å3
4228 reflectionsΔρmin = 0.28 e Å3
167 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.48415 (8)0.3074 (2)0.61366 (6)0.0145 (2)
H10.4587 (12)0.461 (3)0.6155 (9)0.017*
C10.42206 (10)0.0944 (2)0.60396 (7)0.0137 (2)
C120.75384 (10)0.5034 (3)0.68248 (7)0.0155 (3)
H120.78930.63650.71280.019*
C20.30910 (9)0.1564 (2)0.58872 (7)0.0127 (2)
C30.23760 (10)0.0166 (2)0.62149 (7)0.0150 (2)
Cl10.27487 (3)0.22099 (7)0.688318 (18)0.02032 (9)
C40.13309 (11)0.0697 (3)0.60386 (8)0.0212 (3)
H40.08530.02580.62700.025*
C50.09866 (11)0.2618 (3)0.55254 (8)0.0219 (3)
H50.02710.29580.53970.026*
C60.16843 (10)0.4055 (3)0.51967 (7)0.0180 (3)
H60.14480.53880.48480.022*
C70.27285 (10)0.3531 (3)0.53803 (7)0.0148 (2)
H70.32050.45250.51580.018*
C80.59378 (9)0.3016 (2)0.62596 (7)0.0131 (2)
C90.64888 (10)0.1142 (3)0.59279 (7)0.0154 (2)
H90.61350.01800.56200.019*
C100.75521 (10)0.1228 (3)0.60506 (7)0.0167 (3)
H100.79270.00510.58280.020*
C110.80807 (10)0.3166 (3)0.64961 (7)0.0145 (2)
O20.91341 (7)0.3080 (2)0.65680 (5)0.0186 (2)
C140.96893 (10)0.5186 (3)0.69682 (8)0.0222 (3)
H14A0.94520.68690.67420.033*
H14B1.04260.49790.69580.033*
H14C0.95710.51530.74790.033*
O10.45382 (7)0.13338 (18)0.60577 (6)0.0192 (2)
C130.64644 (10)0.4933 (3)0.67043 (7)0.0159 (3)
H130.60900.62010.69310.019*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0114 (5)0.0092 (5)0.0221 (6)0.0006 (4)0.0001 (4)0.0005 (4)
C10.0123 (6)0.0127 (5)0.0155 (6)0.0003 (5)0.0003 (5)0.0006 (4)
C120.0146 (6)0.0135 (6)0.0176 (6)0.0015 (5)0.0002 (5)0.0013 (5)
C20.0117 (6)0.0117 (5)0.0144 (6)0.0002 (4)0.0012 (4)0.0018 (4)
C30.0166 (6)0.0118 (5)0.0164 (6)0.0003 (5)0.0022 (5)0.0008 (4)
Cl10.02428 (18)0.01703 (15)0.01980 (16)0.00019 (13)0.00408 (13)0.00509 (12)
C40.0152 (6)0.0225 (7)0.0271 (7)0.0008 (5)0.0073 (5)0.0032 (6)
C50.0107 (6)0.0273 (7)0.0278 (7)0.0032 (5)0.0035 (5)0.0034 (6)
C60.0148 (6)0.0211 (7)0.0179 (6)0.0040 (5)0.0023 (5)0.0027 (5)
C70.0139 (6)0.0144 (6)0.0164 (6)0.0017 (5)0.0030 (5)0.0009 (4)
C80.0108 (5)0.0115 (5)0.0166 (6)0.0001 (5)0.0014 (4)0.0016 (4)
C90.0151 (6)0.0139 (6)0.0172 (6)0.0008 (5)0.0023 (5)0.0021 (5)
C100.0157 (6)0.0160 (6)0.0194 (6)0.0011 (5)0.0058 (5)0.0014 (5)
C110.0117 (6)0.0167 (6)0.0150 (6)0.0007 (5)0.0019 (4)0.0027 (5)
O20.0105 (4)0.0234 (5)0.0219 (5)0.0011 (4)0.0027 (4)0.0029 (4)
C140.0129 (6)0.0278 (7)0.0249 (7)0.0058 (5)0.0001 (5)0.0021 (6)
O10.0135 (5)0.0103 (4)0.0329 (6)0.0012 (4)0.0012 (4)0.0007 (4)
C130.0135 (6)0.0124 (6)0.0214 (6)0.0010 (5)0.0020 (5)0.0007 (5)
Geometric parameters (Å, º) top
N1—C11.3506 (17)C5—H50.9500
N1—C81.4255 (16)C6—C71.3876 (18)
N1—H10.854 (17)C6—H60.9500
C1—O11.2298 (15)C7—H70.9500
C1—C21.5021 (17)C8—C131.3841 (18)
C12—C111.3870 (18)C8—C91.3985 (17)
C12—C131.3970 (18)C9—C101.3829 (18)
C12—H120.9500C9—H90.9500
C2—C31.3957 (18)C10—C111.3931 (18)
C2—C71.3977 (17)C10—H100.9500
C3—C41.3883 (19)C11—O21.3734 (15)
C3—Cl11.7373 (13)O2—C141.4305 (17)
Cl1—O13.0456 (11)C14—H14A0.9800
C4—C51.383 (2)C14—H14B0.9800
C4—H40.9500C14—H14C0.9800
C5—C61.3901 (19)C13—H130.9500
C1—N1—C8125.48 (11)C6—C7—H7119.5
C1—N1—H1120.4 (11)C2—C7—H7119.5
C8—N1—H1114.0 (11)C13—C8—C9119.53 (12)
O1—C1—N1123.69 (12)C13—C8—N1118.37 (11)
O1—C1—C2121.67 (11)C9—C8—N1122.07 (12)
N1—C1—C2114.63 (11)C10—C9—C8119.53 (12)
C11—C12—C13119.19 (12)C10—C9—H9120.2
C11—C12—H12120.4C8—C9—H9120.2
C13—C12—H12120.4C9—C10—C11120.85 (12)
C3—C2—C7118.26 (11)C9—C10—H10119.6
C3—C2—C1122.13 (11)C11—C10—H10119.6
C7—C2—C1119.56 (11)O2—C11—C12124.46 (12)
C4—C3—C2120.99 (12)O2—C11—C10115.67 (11)
C4—C3—Cl1116.99 (10)C12—C11—C10119.87 (12)
C2—C3—Cl1121.97 (10)C11—O2—C14116.64 (10)
C3—Cl1—O172.23 (5)O2—C14—H14A109.5
C5—C4—C3119.83 (13)O2—C14—H14B109.5
C5—C4—H4120.1H14A—C14—H14B109.5
C3—C4—H4120.1O2—C14—H14C109.5
C4—C5—C6120.26 (13)H14A—C14—H14C109.5
C4—C5—H5119.9H14B—C14—H14C109.5
C6—C5—H5119.9C1—O1—Cl182.11 (8)
C7—C6—C5119.61 (13)C8—C13—C12121.01 (12)
C7—C6—H6120.2C8—C13—H13119.5
C5—C6—H6120.2C12—C13—H13119.5
C6—C7—C2121.04 (12)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C8–C13 benzene ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.854 (17)2.067 (17)2.8706 (15)156.4 (15)
C13—H13···O1i0.952.693.2347 (16)117
C6—H6···O2ii0.952.713.5657 (17)150
C12—H12···Cg2iii0.952.883.6203 (15)136
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z+1; (iii) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H12ClNO2
Mr261.70
Crystal system, space groupMonoclinic, P21/n
Temperature (K)90
a, b, c (Å)13.1819 (10), 5.0823 (4), 18.4477 (14)
β (°) 99.563 (3)
V3)1218.72 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.50 × 0.23 × 0.08
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2006)
Tmin, Tmax0.885, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
21245, 4228, 3106
Rint0.060
(sin θ/λ)max1)0.751
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.104, 1.06
No. of reflections4228
No. of parameters167
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.46, 0.28

Computer programs: APEX2 (Bruker 2006), APEX2 and SAINT (Bruker 2006), SAINT (Bruker 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and TITAN2000 (Hunter & Simpson, 1999), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008), enCIFer (Allen et al., 2004), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C8–C13 benzene ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.854 (17)2.067 (17)2.8706 (15)156.4 (15)
C13—H13···O1i0.952.693.2347 (16)116.8
C6—H6···O2ii0.952.713.5657 (17)149.9
C12—H12···Cg2iii0.952.883.6203 (15)136.0
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z+1; (iii) x+1/2, y1/2, z+1/2.
 

Acknowledgements

We thank the University of Otago for purchase of the diffractometer.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSaeed, A., Khera, R. A., Abbas, N., Simpson, J. & Stanley, R. G. (2008a). Acta Cryst. E64, o1976.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSaeed, A., Khera, R. A., Abbas, N., Simpson, J. & Stanley, R. G. (2008b). Acta Cryst. E64, o2187.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSaeed, A., Khera, R. A., Ameen, S., Simpson, J. & Stanley, R. G. (2009a). Acta Cryst. E65, o201.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSaeed, A., Khera, R. A., Arfan, M., Simpson, J. & Stanley, R. G. (2009b). Acta Cryst. E65, o802–o803.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSaeed, A., Khera, R. A., Rafique, H., Simpson, J. & Stanley, R. G. (2009c). Acta Cryst. E65, o2527.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSaeed, A., Khera, R. A. & Simpson, J. (2010). Acta Cryst. E66, o911–o912.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds