metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[μ-4-methyl-2-(2-pyridyl­methyl­sulfan­yl)pyrimidine-κN1]bis­­[(tri­fluoro­methane­sulfonato-κO)silver(I)]

aCollege of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, People's Republic of China
*Correspondence e-mail: xieyabo@bjut.edu.cn

(Received 18 October 2010; accepted 26 October 2010; online 31 October 2010)

In the centrosymmetric dinuclear title complex, [Ag2(CF3SO3)2(C11H11N3S)2], the AgI atom is coordinated by two N atoms from two 4-methyl-2-(2-pyridyl­methyl­sulfan­yl)pyrimidine ligands and one O atom from a trifluoro­methane­sulfonate anion in a distorted T-type coordination geometry. The ligand adopts a bidentate bridging coordination mode through one pyridyl N atom and one pyrimidine N atom. In the crystal structure, ππ inter­actions are present between adjacent pyrimidine rings, with a centroid-to-centroid distance of 3.875 (7) Å.

Related literature

For the architectures of metal complexes, see: Hamblin et al. (2002[Hamblin, J., Childs, L. J., Alcock, N. W. & Hannon, M. J. (2002). J. Chem. Soc. Dalton Trans. pp. 164-169.]). For a related structure, see: Xie et al. (2006[Xie, Y.-B., Jiang, L.-Y. & Wang, D. (2006). Acta Cryst. E62, m2479-m2481.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag2(CF3O3S)2(C11H11N3S)2]

  • Mr = 948.50

  • Triclinic, [P \overline 1]

  • a = 8.9999 (18) Å

  • b = 9.1087 (18) Å

  • c = 10.937 (2) Å

  • α = 75.07 (3)°

  • β = 88.59 (3)°

  • γ = 68.97 (3)°

  • V = 806.3 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.56 mm−1

  • T = 293 K

  • 0.15 × 0.12 × 0.10 mm

Data collection
  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.800, Tmax = 0.860

  • 8621 measured reflections

  • 3681 independent reflections

  • 3007 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.138

  • S = 0.97

  • 3681 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.72 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Selected bond lengths (Å)

Ag1—N1 2.150 (4)
Ag1—N3i 2.161 (3)
Ag1—O5 2.700 (4)
Symmetry code: (i) -x+1, -y+1, -z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The coordination geometry of metal ions and the nature of ligands decide the generation of coordination architectures (Hamblin et al., 2002). In previous studies, much attention has been paid to the use of flexible bridging ligands because of their conformational freedom and flexible properties (Xie et al., 2006). As part of our investigation of flexible ligands and their complexes, the crystal structure of a silver(I) complex with a flexible thioether ligand, the title compound, is reported here.

In the binuclear structure of the title complex (Fig. 1), the AgI atom is coordinated by two N atoms from two 4-methyl-2-(2-pyridylmethylsulfanyl)pyrimidine ligands and one O atom from a trifluoromethanesulfonate anion (Table 1), displaying a slightly distorted T-type coordination geometry. The ligand adopts a bidentate bridging coordination mode through two N atoms. The dihedral angle between the pyrimidine ring and pyridine ring is 82.67 (3)°. The two pyrimidine rings are nearly parallel, and so are the two pyridine rings. In the crystal structure, ππ interactions between adjacent pyrimidine rings are present, with a centroid–centroid distance of 3.875 (7) Å.

Related literature top

For the architectures of metal complexes, see: Hamblin et al. (2002). For a related structure, see: Xie et al. (2006).

Experimental top

A solution of AgSO3CF3 (0.04 mmol) in acetone (4 ml) was carefully layered on top of a mixture of chloroform (2 ml) and acetone (2 ml), which was carefully layered on top of a solution of 4-methyl-2-(2-pyridylmethylsulfanyl)pyrimidine (0.04 mmol) in chloroform (4 ml) in a test tube. After 2 weeks at room temperature, colourless prism single crystals appeared.

Refinement top

All H atoms were positioned geometrically and refined as riding, with C—H = 0.93–0.97 Å and Uiso(H) = 1.2(1.5 for methyl)Ueq(C).

Structure description top

The coordination geometry of metal ions and the nature of ligands decide the generation of coordination architectures (Hamblin et al., 2002). In previous studies, much attention has been paid to the use of flexible bridging ligands because of their conformational freedom and flexible properties (Xie et al., 2006). As part of our investigation of flexible ligands and their complexes, the crystal structure of a silver(I) complex with a flexible thioether ligand, the title compound, is reported here.

In the binuclear structure of the title complex (Fig. 1), the AgI atom is coordinated by two N atoms from two 4-methyl-2-(2-pyridylmethylsulfanyl)pyrimidine ligands and one O atom from a trifluoromethanesulfonate anion (Table 1), displaying a slightly distorted T-type coordination geometry. The ligand adopts a bidentate bridging coordination mode through two N atoms. The dihedral angle between the pyrimidine ring and pyridine ring is 82.67 (3)°. The two pyrimidine rings are nearly parallel, and so are the two pyridine rings. In the crystal structure, ππ interactions between adjacent pyrimidine rings are present, with a centroid–centroid distance of 3.875 (7) Å.

For the architectures of metal complexes, see: Hamblin et al. (2002). For a related structure, see: Xie et al. (2006).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level. [Symmetry code: (A) -x + 1, -y + 1, -z.]
Bis[µ-4-methyl-2-(2-pyridylmethylsulfanyl)pyrimidine- κN1]bis[(trifluoromethanesulfonato-κO)silver(I)] top
Crystal data top
[Ag2(CF3O3S)2(C11H11N3S)2]Z = 1
Mr = 948.50F(000) = 468
Triclinic, P1Dx = 1.953 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.9999 (18) ÅCell parameters from 3696 reflections
b = 9.1087 (18) Åθ = 3.1–27.5°
c = 10.937 (2) ŵ = 1.56 mm1
α = 75.07 (3)°T = 293 K
β = 88.59 (3)°Prism, colourless
γ = 68.97 (3)°0.15 × 0.12 × 0.10 mm
V = 806.3 (3) Å3
Data collection top
Bruker APEX CCD
diffractometer
3681 independent reflections
Radiation source: fine-focus sealed tube3007 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
φ and ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1111
Tmin = 0.800, Tmax = 0.860k = 1111
8621 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
3681 reflections(Δ/σ)max = 0.001
217 parametersΔρmax = 0.72 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
[Ag2(CF3O3S)2(C11H11N3S)2]γ = 68.97 (3)°
Mr = 948.50V = 806.3 (3) Å3
Triclinic, P1Z = 1
a = 8.9999 (18) ÅMo Kα radiation
b = 9.1087 (18) ŵ = 1.56 mm1
c = 10.937 (2) ÅT = 293 K
α = 75.07 (3)°0.15 × 0.12 × 0.10 mm
β = 88.59 (3)°
Data collection top
Bruker APEX CCD
diffractometer
3681 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
3007 reflections with I > 2σ(I)
Tmin = 0.800, Tmax = 0.860Rint = 0.028
8621 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.138H-atom parameters constrained
S = 0.97Δρmax = 0.72 e Å3
3681 reflectionsΔρmin = 0.41 e Å3
217 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.76401 (4)0.50847 (4)0.08737 (3)0.04428 (16)
S10.60205 (13)0.26916 (13)0.01310 (10)0.0376 (3)
N10.7984 (4)0.2971 (4)0.2435 (3)0.0379 (8)
N20.5373 (4)0.0216 (4)0.1602 (3)0.0348 (7)
N30.3225 (4)0.2503 (4)0.0425 (3)0.0318 (7)
C10.8050 (6)0.3150 (6)0.3602 (4)0.0463 (11)
H1A0.80720.41310.36900.056*
C20.8086 (6)0.1969 (6)0.4671 (5)0.0526 (12)
H2A0.81220.21430.54700.063*
C30.8067 (7)0.0511 (6)0.4541 (5)0.0540 (12)
H3A0.80820.03160.52530.065*
C40.8026 (5)0.0294 (5)0.3361 (5)0.0440 (10)
H4A0.80260.06890.32610.053*
C50.7986 (5)0.1535 (5)0.2314 (4)0.0340 (8)
C60.7891 (5)0.1365 (5)0.1003 (4)0.0357 (9)
H6A0.80380.02430.10480.043*
H6B0.87510.16060.05510.043*
C70.4768 (5)0.1670 (5)0.0809 (4)0.0314 (8)
C80.4366 (5)0.0528 (5)0.2077 (4)0.0374 (9)
C90.2748 (5)0.0237 (5)0.1742 (5)0.0420 (10)
H9A0.20360.02690.20680.050*
C100.2224 (5)0.1756 (5)0.0921 (5)0.0420 (10)
H10A0.11360.22910.06970.050*
C110.5077 (6)0.2182 (6)0.2968 (5)0.0533 (12)
H11A0.62140.24890.30640.080*
H11B0.48310.29540.26380.080*
H11C0.46450.21710.37790.080*
S40.93636 (13)0.38405 (13)0.22242 (10)0.0377 (3)
F40.6405 (4)0.5740 (6)0.2672 (5)0.1020 (14)
F50.7551 (7)0.5239 (5)0.4298 (4)0.130 (2)
F60.8009 (6)0.6879 (4)0.3447 (5)0.1096 (16)
O40.8891 (5)0.2489 (4)0.2085 (4)0.0680 (11)
O50.9355 (5)0.4366 (5)0.1096 (3)0.0722 (12)
O61.0735 (5)0.3760 (5)0.2887 (5)0.0839 (15)
C240.7756 (8)0.5505 (7)0.3235 (5)0.0635 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0506 (2)0.0315 (2)0.0441 (2)0.01457 (15)0.00205 (16)0.00090 (15)
S10.0406 (6)0.0352 (5)0.0372 (6)0.0193 (4)0.0008 (4)0.0018 (4)
N10.0400 (19)0.0379 (19)0.0376 (19)0.0195 (16)0.0016 (15)0.0051 (15)
N20.0354 (17)0.0285 (16)0.0391 (19)0.0131 (14)0.0017 (15)0.0044 (14)
N30.0337 (17)0.0267 (16)0.0347 (17)0.0119 (13)0.0004 (14)0.0065 (13)
C10.062 (3)0.041 (2)0.044 (3)0.028 (2)0.003 (2)0.011 (2)
C20.067 (3)0.052 (3)0.044 (3)0.029 (2)0.001 (2)0.011 (2)
C30.076 (3)0.044 (3)0.040 (3)0.030 (3)0.001 (2)0.005 (2)
C40.045 (2)0.033 (2)0.055 (3)0.0189 (19)0.004 (2)0.006 (2)
C50.0302 (19)0.0310 (19)0.039 (2)0.0112 (16)0.0035 (17)0.0058 (17)
C60.030 (2)0.036 (2)0.043 (2)0.0138 (16)0.0022 (17)0.0113 (18)
C70.035 (2)0.0287 (19)0.033 (2)0.0123 (16)0.0003 (16)0.0118 (16)
C80.048 (2)0.0286 (19)0.038 (2)0.0159 (18)0.0007 (19)0.0090 (17)
C90.041 (2)0.037 (2)0.052 (3)0.0249 (19)0.001 (2)0.004 (2)
C100.030 (2)0.038 (2)0.055 (3)0.0130 (17)0.0072 (19)0.007 (2)
C110.053 (3)0.040 (2)0.059 (3)0.019 (2)0.002 (2)0.003 (2)
S40.0418 (6)0.0342 (5)0.0405 (6)0.0173 (4)0.0089 (5)0.0110 (4)
F40.053 (2)0.114 (3)0.111 (3)0.003 (2)0.013 (2)0.029 (3)
F50.206 (6)0.096 (3)0.053 (2)0.003 (4)0.048 (3)0.029 (2)
F60.160 (4)0.0394 (19)0.110 (3)0.030 (2)0.016 (3)0.005 (2)
O40.073 (3)0.0426 (19)0.096 (3)0.0370 (19)0.015 (2)0.009 (2)
O50.079 (3)0.071 (3)0.050 (2)0.002 (2)0.015 (2)0.029 (2)
O60.072 (3)0.068 (3)0.121 (4)0.036 (2)0.055 (3)0.030 (3)
C240.092 (4)0.046 (3)0.040 (3)0.010 (3)0.010 (3)0.011 (2)
Geometric parameters (Å, º) top
Ag1—N12.150 (4)C4—H4A0.9300
Ag1—N3i2.161 (3)C5—C61.488 (6)
Ag1—O52.700 (4)C6—H6A0.9700
S1—C71.744 (4)C6—H6B0.9700
S1—C61.797 (4)C8—C91.381 (6)
N1—C11.333 (6)C8—C111.488 (6)
N1—C51.347 (5)C9—C101.362 (6)
N2—C71.311 (5)C9—H9A0.9300
N2—C81.337 (5)C10—H10A0.9300
N3—C71.337 (5)C11—H11A0.9600
N3—C101.340 (5)C11—H11B0.9600
N3—Ag1i2.161 (3)C11—H11C0.9600
C1—C21.362 (7)S4—O61.404 (4)
C1—H1A0.9300S4—O41.412 (3)
C2—C31.378 (7)S4—O51.433 (4)
C2—H2A0.9300S4—C241.804 (6)
C3—C41.358 (7)F4—C241.323 (8)
C3—H3A0.9300F5—C241.278 (6)
C4—C51.377 (6)F6—C241.313 (7)
N1—Ag1—N3i164.97 (13)N2—C7—N3126.4 (4)
N1—Ag1—O5112.81 (13)N2—C7—S1119.9 (3)
N3i—Ag1—O581.84 (13)N3—C7—S1113.7 (3)
C7—S1—C6100.93 (19)N2—C8—C9120.3 (4)
C1—N1—C5118.1 (4)N2—C8—C11116.8 (4)
C1—N1—Ag1117.2 (3)C9—C8—C11122.9 (4)
C5—N1—Ag1124.4 (3)C10—C9—C8118.0 (4)
C7—N2—C8117.6 (3)C10—C9—H9A121.0
C7—N3—C10115.5 (3)C8—C9—H9A121.0
C7—N3—Ag1i123.1 (3)N3—C10—C9122.2 (4)
C10—N3—Ag1i121.4 (3)N3—C10—H10A118.9
N1—C1—C2123.3 (4)C9—C10—H10A118.9
N1—C1—H1A118.4C8—C11—H11A109.5
C2—C1—H1A118.4C8—C11—H11B109.5
C1—C2—C3118.3 (5)H11A—C11—H11B109.5
C1—C2—H2A120.8C8—C11—H11C109.5
C3—C2—H2A120.8H11A—C11—H11C109.5
C4—C3—C2119.3 (5)H11B—C11—H11C109.5
C4—C3—H3A120.4O6—S4—O4115.1 (3)
C2—C3—H3A120.4O6—S4—O5113.5 (3)
C3—C4—C5119.8 (4)O4—S4—O5115.0 (3)
C3—C4—H4A120.1O6—S4—C24105.0 (3)
C5—C4—H4A120.1O4—S4—C24103.5 (3)
N1—C5—C4121.2 (4)O5—S4—C24102.9 (2)
N1—C5—C6117.4 (4)S4—O5—Ag1144.3 (3)
C4—C5—C6121.4 (4)F5—C24—F6108.9 (5)
C5—C6—S1112.7 (3)F5—C24—F4108.0 (6)
C5—C6—H6A109.0F6—C24—F4106.2 (5)
S1—C6—H6A109.0F5—C24—S4112.2 (4)
C5—C6—H6B109.0F6—C24—S4111.1 (5)
S1—C6—H6B109.0F4—C24—S4110.1 (4)
H6A—C6—H6B107.8
N3i—Ag1—N1—C151.9 (6)C6—S1—C7—N27.9 (4)
O5—Ag1—N1—C1141.6 (3)C6—S1—C7—N3172.8 (3)
N3i—Ag1—N1—C5121.5 (5)C7—N2—C8—C90.7 (6)
O5—Ag1—N1—C545.0 (4)C7—N2—C8—C11179.6 (4)
C5—N1—C1—C21.4 (7)N2—C8—C9—C100.1 (7)
Ag1—N1—C1—C2172.5 (4)C11—C8—C9—C10179.8 (4)
N1—C1—C2—C30.6 (8)C7—N3—C10—C91.2 (6)
C1—C2—C3—C40.5 (8)Ag1i—N3—C10—C9179.9 (4)
C2—C3—C4—C50.8 (8)C8—C9—C10—N30.9 (7)
C1—N1—C5—C41.1 (6)O6—S4—O5—Ag1177.9 (4)
Ag1—N1—C5—C4172.3 (3)O4—S4—O5—Ag146.7 (5)
C1—N1—C5—C6179.2 (4)C24—S4—O5—Ag165.0 (5)
Ag1—N1—C5—C65.8 (5)N1—Ag1—O5—S485.8 (4)
C3—C4—C5—N10.0 (7)N3i—Ag1—O5—S490.7 (4)
C3—C4—C5—C6178.1 (4)O6—S4—C24—F562.5 (6)
N1—C5—C6—S165.9 (4)O4—S4—C24—F558.5 (6)
C4—C5—C6—S1112.3 (4)O5—S4—C24—F5178.5 (5)
C7—S1—C6—C576.0 (3)O6—S4—C24—F659.7 (5)
C8—N2—C7—N30.5 (6)O4—S4—C24—F6179.3 (4)
C8—N2—C7—S1178.8 (3)O5—S4—C24—F659.2 (5)
C10—N3—C7—N20.5 (6)O6—S4—C24—F4177.1 (4)
Ag1i—N3—C7—N2179.2 (3)O4—S4—C24—F461.8 (4)
C10—N3—C7—S1179.7 (3)O5—S4—C24—F458.2 (5)
Ag1i—N3—C7—S11.6 (4)
Symmetry code: (i) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[Ag2(CF3O3S)2(C11H11N3S)2]
Mr948.50
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.9999 (18), 9.1087 (18), 10.937 (2)
α, β, γ (°)75.07 (3), 88.59 (3), 68.97 (3)
V3)806.3 (3)
Z1
Radiation typeMo Kα
µ (mm1)1.56
Crystal size (mm)0.15 × 0.12 × 0.10
Data collection
DiffractometerBruker APEX CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.800, 0.860
No. of measured, independent and
observed [I > 2σ(I)] reflections
8621, 3681, 3007
Rint0.028
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.138, 0.97
No. of reflections3681
No. of parameters217
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.72, 0.41

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Ag1—N12.150 (4)Ag1—O52.700 (4)
Ag1—N3i2.161 (3)
Symmetry code: (i) x+1, y+1, z.
 

Acknowledgements

This work was supported by the Eighth Technology Fund for Postgraduates of Beijing University of Technology (grant No. ykj-2010-3399), the National Natural Science Foundation of China (grant No. 21075114), the Science and Technology Development Project of Beijing Education Committee (grant No. KM200910005025) and the Special Environmental Protection Fund for Public Welfare (project No. 201009015).

References

First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHamblin, J., Childs, L. J., Alcock, N. W. & Hannon, M. J. (2002). J. Chem. Soc. Dalton Trans. pp. 164–169.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXie, Y.-B., Jiang, L.-Y. & Wang, D. (2006). Acta Cryst. E62, m2479–m2481.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds