supplementary materials


hy2367 scheme

Acta Cryst. (2010). E66, m1500    [ doi:10.1107/S1600536810043977 ]

catena-Poly[cadmium-bis([mu]-N,N-dimethyldithiocarbamato-[kappa]3S,S':S)]

Y. Bing, X. Li, M. Zha and Y. Lu

Abstract top

In the title compound, [Cd(C3H6NS2)2]n, the CdII atom, lying on a twofold rotation axis, is coordinated by six S atoms from four different N,N-dimethyldithiocarbamate ligands in a distorted octahedral geometry. The bridging of S atoms of the ligands leads to the formation of a one-dimensional structure along [001].

Comment top

Rapid development of metal–organic frameworks has been made in recent years not only for their potential applications in materials science but also for fascinating architectures and topologies (Kitagawa et al., 2006; Papaefstathiou & MacGillivray, 2003; Yaghi et al., 1998). Dimethyldithiocarbamic acid is widely used in latex industry. Its natrium, zinc and copper salts are applied widely in antimicrobial, antisepsis and accelerant (Einstein & Field, 1974; Oskarsson & Ymén, 1983). Meanwhile, dimethyldithiocarbamic acid, possessing two S atoms, is a good candidate to coordinate metal atoms and generates rich hydrogen bonding modes. Herein we report the preparation and characterization of the first cadmium complex of dimethyldithiocarbamic acid.

In the title complex, the CdII ion is coordinated in an octahedral geometry by six S atoms from four different dimethyldithiocarbamate ligands (Fig. 1), with the Cd—S distances ranging from 2.6255 (7) to 2.7909 (6) Å (Table 1). Through the bridging of S2 atoms, the title complex forms a one-dimensional structure (Fig. 2).

Related literature top

For general background to metal–organic frameworks, see: Kitagawa et al. (2006); Papaefstathiou & MacGillivray (2003); Yaghi et al. (1998). For the natrium, zinc and copper salts of dimethyldithiocarbamate, see: Einstein & Field (1974); Oskarsson & Ymén (1983).

Experimental top

A mixture containing 0.005 mmol of Cd(NO3)2.4H2O and 0.010 mmol of dimethyldithiocarbamic acid was placed in a small vial containing MeOH (3.0 ml), DMF (1.0 ml) and H2O (0.5 ml). The vial was sealed, heated at 373 K for 2 d and allowed to cool to room temperature. Colorless crystals suitable for X-ray diffraction were collected and dried in air (yield: 50%).

Refinement top

H atoms were placed in calculated positions and treated using a riding model, with C—H = 0.98 Å and with Uiso(H) = 1.5Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing the Cd coordination. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i) 3/2-x, y, 1/2+z; (ii) 3/2-x, 1/2-y, z; (iii) x, 1/2-y, 1/2+z.]
[Figure 2] Fig. 2. One-dimensional chain in the title complex. H atoms have been omitted for clarity.
catena-Poly[cadmium-bis(µ-N,N- dimethyldithiocarbamato-κ3S,S':S)] top
Crystal data top
[Cd(C3H6NS2)2]F(000) = 696
Mr = 352.82Dx = 1.988 Mg m3
Orthorhombic, PccnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ab 2acCell parameters from 4468 reflections
a = 10.055 (2) Åθ = 2.5–27.6°
b = 14.744 (3) ŵ = 2.52 mm1
c = 7.9518 (17) ÅT = 296 K
V = 1178.9 (4) Å3Block, colorless
Z = 40.54 × 0.22 × 0.17 mm
Data collection top
Bruker APEXII CCD
diffractometer
1370 independent reflections
Radiation source: fine-focus sealed tube1221 reflections with I > 2σ(I)
graphiteRint = 0.030
φ and ω scansθmax = 27.6°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1313
Tmin = 0.519, Tmax = 0.652k = 1619
9543 measured reflectionsl = 1010
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.017H-atom parameters constrained
wR(F2) = 0.044 w = 1/[σ2(Fo2) + (0.0174P)2 + 0.6307P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
1370 reflectionsΔρmax = 0.29 e Å3
63 parametersΔρmin = 0.33 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0036 (3)
Crystal data top
[Cd(C3H6NS2)2]V = 1178.9 (4) Å3
Mr = 352.82Z = 4
Orthorhombic, PccnMo Kα radiation
a = 10.055 (2) ŵ = 2.52 mm1
b = 14.744 (3) ÅT = 296 K
c = 7.9518 (17) Å0.54 × 0.22 × 0.17 mm
Data collection top
Bruker APEXII CCD
diffractometer
1370 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1221 reflections with I > 2σ(I)
Tmin = 0.519, Tmax = 0.652Rint = 0.030
9543 measured reflectionsθmax = 27.6°
Refinement top
R[F2 > 2σ(F2)] = 0.017H-atom parameters constrained
wR(F2) = 0.044Δρmax = 0.29 e Å3
S = 1.07Δρmin = 0.33 e Å3
1370 reflectionsAbsolute structure: ?
63 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.75000.25000.17288 (2)0.03178 (9)
S10.49818 (5)0.28596 (4)0.11658 (7)0.04016 (14)
S20.71139 (5)0.37665 (3)0.08336 (6)0.03093 (12)
N10.45119 (16)0.39753 (11)0.1396 (2)0.0335 (4)
C10.54274 (18)0.35704 (12)0.0449 (2)0.0279 (4)
C20.3088 (2)0.38157 (18)0.1150 (3)0.0473 (5)
H2A0.29520.34650.01180.071*
H2B0.27340.34770.21120.071*
H2C0.26260.43990.10570.071*
C30.4855 (2)0.45777 (16)0.2802 (3)0.0481 (5)
H3A0.55490.50030.24460.072*
H3B0.40630.49170.31510.072*
H3C0.51810.42150.37490.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.02789 (12)0.04207 (14)0.02537 (12)0.00462 (8)0.0000.000
S10.0295 (2)0.0507 (3)0.0403 (3)0.0030 (2)0.0035 (2)0.0156 (2)
S20.0294 (2)0.0340 (2)0.0294 (2)0.00350 (18)0.00062 (18)0.00097 (18)
N10.0323 (8)0.0348 (9)0.0333 (8)0.0051 (7)0.0036 (7)0.0015 (7)
C10.0298 (9)0.0284 (9)0.0256 (9)0.0017 (7)0.0001 (7)0.0039 (7)
C20.0331 (11)0.0580 (14)0.0509 (13)0.0091 (10)0.0074 (10)0.0033 (11)
C30.0544 (13)0.0434 (12)0.0466 (12)0.0058 (10)0.0070 (11)0.0154 (10)
Geometric parameters (Å, °) top
Cd1—S12.6255 (7)N1—C31.469 (3)
Cd1—S22.7909 (6)C2—H2A0.9800
Cd1—S2i2.7194 (6)C2—H2B0.9800
S1—C11.7169 (19)C2—H2C0.9800
S2—C11.7473 (19)C3—H3A0.9800
S2—Cd1ii2.7194 (6)C3—H3B0.9800
N1—C11.331 (2)C3—H3C0.9800
N1—C21.464 (3)
S1—Cd1—S1iii160.37 (3)C1—N1—C2121.94 (18)
S1—Cd1—S2i96.922 (18)C1—N1—C3122.66 (17)
S1iii—Cd1—S2i97.039 (16)C2—N1—C3115.34 (17)
S1—Cd1—S2iv97.039 (16)N1—C1—S1121.09 (14)
S1iii—Cd1—S2iv96.922 (18)N1—C1—S2119.88 (14)
S2i—Cd1—S2iv89.07 (3)S1—C1—S2119.03 (10)
S1—Cd1—S2iii98.326 (18)N1—C2—H2A109.5
S1iii—Cd1—S2iii66.812 (15)N1—C2—H2B109.5
S2i—Cd1—S2iii163.74 (2)H2A—C2—H2B109.5
S2iv—Cd1—S2iii94.63 (2)N1—C2—H2C109.5
S1—Cd1—S266.812 (15)H2A—C2—H2C109.5
S1iii—Cd1—S298.326 (18)H2B—C2—H2C109.5
S2i—Cd1—S294.63 (2)N1—C3—H3A109.5
S2iv—Cd1—S2163.74 (2)N1—C3—H3B109.5
S2iii—Cd1—S286.22 (3)H3A—C3—H3B109.5
C1—S1—Cd189.95 (6)N1—C3—H3C109.5
C1—S2—Cd1ii98.61 (6)H3A—C3—H3C109.5
C1—S2—Cd184.06 (6)H3B—C3—H3C109.5
Cd1ii—S2—Cd192.35 (2)
Symmetry codes: (i) −x+3/2, y, z+1/2; (ii) −x+3/2, y, z−1/2; (iii) −x+3/2, −y+1/2, z; (iv) x, −y+1/2, z+1/2.
Table 1
Selected geometric parameters (Å)
top
Cd1—S12.6255 (7)Cd1—S2i2.7194 (6)
Cd1—S22.7909 (6)
Symmetry codes: (i) −x+3/2, y, z+1/2.
Acknowledgements top

This work was supported by the Ningbo Natural Science Foundation (grant No. 2010 A610060), the `Qianjiang Talent' Projects of Zhejiang Province (grant No. 2009R10032), the Program for Innovative Research Team of Ningbo Novel Photoelectric Materials and Devices (grant No. 2009B21007), and the K. C. Wong Magna Fund of Ningbo University.

references
References top

Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Einstein, F. W. B. & Field, J. S. (1974). Acta Cryst. B30, 2928–2930.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Kitagawa, S., Noro, S. & Nakamura, T. (2006). Chem. Commun. pp. 701–707.

Oskarsson, Å. & Ymén, I. (1983). Acta Cryst. C39, 66–68.

Papaefstathiou, G. S. & MacGillivray, L. R. (2003). Coord. Chem. Rev. 246, 169–184.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Yaghi, O. M., Li, H., Davis, C., Richardson, D. & Groy, T. L. (1998). Acc. Chem. Res. 31, 474–484.