organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,5-Di­methyl-3-[(3-phenyl-4,5-di­hydro-1,2-oxazol-5-yl)meth­yl]-1H-1,5-benzodiazepine-2,4(3H,5H)-dione

aLaboratoire de Chimie Organique Appliquée, Faculté des Sciences et Techniques, Université Sidi Mohamed Ben Abdallah, Fés, Morocco, bService Commun Rayons-X FR2599, Université Paul Sabatier, Bâtiment 2R1, 118 route de Narbonne, Toulouse, France, cLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco, and dINANOTECH (Institute of Nanomaterials and Nanotechnology), Mascir, avenue de l'Armée Royale, Rabat, Morocco
*Correspondence e-mail: emessassi@yahoo.fr

(Received 12 October 2010; accepted 21 October 2010; online 30 October 2010)

The reaction of 3-allyl-1,5-dimethyl-1,5-benzodiazepine-2,4-dione and benzaldoxime leads to the title compound, C21H21N3O3. The mol­ecular structure is built up from two fused six- and seven-membered rings linked to a chain including a five- and six-membered ring (isoxazoline and phen­yl) via a methyl­ene group. The seven-membered ring displays a boat conformation. The dihedral angle between the two six-membered rings is 74.3 (1)°.

Related literature

For the biological activity and pharmaceutical properties of benzodiazepines and their derivatives, see: Cherif Alaoui, et al. (2007[Cherif Alaoui, L., Kandri Rodi, Y., Haoudi, A., Obbade, S. & Essassi, E. M. (2007). Acta Cryst. E63, o3494.]); Fruscella et al. (2001[Fruscella, P., Sottocorno, M., Braccio, M. D., Diomede, L., Piccardi, N., Cagnotto, A., Grossi, G., Romano, M., Mennini, T. & Roma, G. (2001). Pharmacol. Res. 43, 445-452.]); Guerrini et al. (2006[Guerrini, G., Costanzo, A., Ciciani, G., Bruni, F., Selleri, S., Costagli, C., Besnard, F., Costa, B., Martini, C., Siena, G. D. & Malmberg-Aiello, P. (2006). Bioorg. Med. Chem. 14, 758-775.]); Jabli et al., (2009[Jabli, H., Kandri Rodi, Y., Saffon, N., Essassi, E. M. & Ng, S. W. (2009). Acta Cryst. E65, o3150.]); Keita et al. (2003[Keita, A., Lazrak, F., Essassi, E. M., Cherif Alaoui, I., Kandri Rodi, Y., Bellan, J. & Pierrot, M. (2003). Phosphorus Sulfur Silicon Relat. Elem. 178, 1541-1548.]); Rajarao et al. (2007[Rajarao, S. J., Platt, B., Sukoff, S. J., Lin, Q., Bender, C. N., Nieuwenhuijsen, B. W., Ring, R. H., Schechter, L. E., Rosenzweig-Lipson, S. & Beyer, C. E. (2007). Neuropeptides, 41, 307-320.]); Kalkhambkar et al. (2008[Kalkhambkar, R. G., Kulkarni, G. M., Kamanavalli, C. M., Premkumar, N., Asdaq, S. M. & Sun, C. M. (2008). Eur. J. Med. Chem. 43, 2178-2188.]); Poisbeau et al. (1997[Poisbeau, P., Williams, S. R. & Mody, I. (1997). J. Neurosci. 17, 3467-3475.]); Smith et al. (1998[Smith, R. H., Jorgen, W. L., Tirado, R. J. & Lamb, M. L. (1998). J. Med. Chem. 41, 5272-5286.]); Kotyatkina et al. (2001[Kotyatkina, A. I., Zhabinsky, V. N. & Khripach Russ, V. A. (2001). Chem. Rev. 70, 641-653.]). For their reactivity, see: Kosychova et al. (2004[Kosychova, L., Stumbreviciute, Z., Pleckaitiene, L., Janciene, R. & Puodziunaite, B. D. (2004). Chem. Heterocycl. Compd, 40, 811-815.]); Nabih et al. (2003[Nabih, K., Baouid, A., Hasnaoui, A., Selkti, M. & Compain, P. (2003). New J. Chem. 27, 1644-1648.]); Reddy et al. (2000[Reddy, K. V. V., Rao, P. S. & Ashok, D. (2000). Synth. Commun. 30, 1825-1836.]).

[Scheme 1]

Experimental

Crystal data
  • C21H21N3O3

  • Mr = 363.41

  • Monoclinic, P 21 /n

  • a = 9.3491 (2) Å

  • b = 6.9722 (1) Å

  • c = 27.9201 (5) Å

  • β = 93.157 (1)°

  • V = 1817.18 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.40 × 0.38 × 0.36 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • 28704 measured reflections

  • 3717 independent reflections

  • 3261 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.148

  • S = 1.04

  • 3717 reflections

  • 246 parameters

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.34 e Å−3

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia,1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Benzodiazepines and their derivatives have attracted considerable attention from researchers due to their bioactive and pharmaceutical properties. Many members of this family are widely used as anticonvulsant, anti-anxiety, anti-seizures, analgesic, seditative, antidepressive and hypnotic or anti-inflammatory agents (Rajarao et al., 2007; Guerrini et al., 2006; Kotyatkina et al., 2001; Fruscella et al., 2001). They have also been used as antibacterial and antifungal agents (Kalkhambkar et al., 2008; Smith et al.,1998) and in the management of skeletomuscular spasticity, panic or as premedication prior to surgery (Poisbeau et al., 1997). In addition, 1,5-benzodiazepines have found applications as readily available intermediates in the synthesis of fused ring compounds such as triazolo-, oxazolo-, isoxazolo-, oxazino- or furano-benzodiazepine (Kosychova et al., 2004; Nabih et al., 2003; Reddy et al., 2000). Benzodiazepine derivatives also find commercial use as dyes for acrylic fibers.

The search for new heterocyclic systems including the 1,5-benzodiazepine-2,4-dione moiety for biological activities therefore is of much current importance (Keita et al. 2003; Cherif Alaoui et al., 2007; Jabli et al., 2009).

In this work we were mainly interested in the reactivity of the exocyclic C=C bond of the allyl substituent towards nitriloxides. The latter are produced as intermediates from the dehydrohalogenation of benzaldoxime by a solution of sodium hypochlorite. The oxime then reacts with 3-allyl-1,5-dimethyl-1,5-benzodiazepine-2,4-dione in a biphasic medium (water-chloroform) at 0°C during 4 h to lead a unique cycloadduct 1,5-dimethyl-3-(3-phenyl-4,5-dihydro-isoxazol-5-ylmethyl)- 1,5-dihydro-benzo[b][1,4]diazepine-2,4-dione, in good yields (Scheme 1).

The molecular structure of 1,5-dimethyl-3-(3-phenyl-4,5-dihydro-isoxazol-5-ylmethyl)-1,5-dihydro- benzo[b][1,4]diazepine-2,4-dione is built up from two fused six-and seven-membered rings linked to a side-chain of a five and a six-membered ring via a methylene group (Fig.1). The isoxazoline and phenyl rings are almost coplanar with a dihedral angle between them of 2.67 (7)°. In the fused rings, the aromatic six-membered ring has a perfect planar conformation, whereas the seven-membered ring displays a boat conformation with total puckering amplitude QT = 0.999 (2) Å and spherical polar angles of θ = 76.63 (2)°, φ2 = -1.12 (1)° and φ3 = 0.83 (5)°. The torsion angles C9–C1–C12–C13 and C1–C12–C13–C14 are 72.20 (2)° and 177.20 (2)° respectively.

Related literature top

For the biological activity and pharmaceutical properties of benzodiazepines and their derivatives, see: Cherif Alaoui, et al. (2007); Fruscella et al. (2001); Guerrini et al. (2006); Jabli et al., (2009); Keita et al. (2003); Rajarao et al. (2007); Kalkhambkar et al. (2008); Poisbeau et al. (1997); Smith et al. (1998); Kotyatkina et al. (2001). For their reactivity, see: Kosychova et al. (2004); Nabih et al. (2003); Reddy et al. (2000).

Experimental top

To a solution of 3-allyl-1,5-dimethyl-1,5-dihydro-benzo[b][1,4]diazepine-2,4-dione (0.5 g, 2 mmol) and benzaldoxime (0.3 g, 2.5 mmol) in chloroform (16 ml) was added dropwise a 24% sodium hypochlorite solution (8 ml) at 0°C. Stirring was continued for 4 h. The organic layer was dried over Na2SO4 and the solvent was evaporated under reduced pressure. The residue was then purified by column chromatography on silica gel using a mixture of hexane/ethyl acetate (v/v = 1/1) as eluent. Colorless crystals were isolated when the solvent was allowed to evaporate (yield: 75%).

Refinement top

H atoms were located in a difference Fourier map and treated as riding with C—H = 0.96 Å for methyl groups and C—H = 0.93 Å for all other H atoms with Uiso(H) = 1.2 Ueq(aromatic, methine) or Uiso(H) = 1.5 Ueq(methyl).

Structure description top

Benzodiazepines and their derivatives have attracted considerable attention from researchers due to their bioactive and pharmaceutical properties. Many members of this family are widely used as anticonvulsant, anti-anxiety, anti-seizures, analgesic, seditative, antidepressive and hypnotic or anti-inflammatory agents (Rajarao et al., 2007; Guerrini et al., 2006; Kotyatkina et al., 2001; Fruscella et al., 2001). They have also been used as antibacterial and antifungal agents (Kalkhambkar et al., 2008; Smith et al.,1998) and in the management of skeletomuscular spasticity, panic or as premedication prior to surgery (Poisbeau et al., 1997). In addition, 1,5-benzodiazepines have found applications as readily available intermediates in the synthesis of fused ring compounds such as triazolo-, oxazolo-, isoxazolo-, oxazino- or furano-benzodiazepine (Kosychova et al., 2004; Nabih et al., 2003; Reddy et al., 2000). Benzodiazepine derivatives also find commercial use as dyes for acrylic fibers.

The search for new heterocyclic systems including the 1,5-benzodiazepine-2,4-dione moiety for biological activities therefore is of much current importance (Keita et al. 2003; Cherif Alaoui et al., 2007; Jabli et al., 2009).

In this work we were mainly interested in the reactivity of the exocyclic C=C bond of the allyl substituent towards nitriloxides. The latter are produced as intermediates from the dehydrohalogenation of benzaldoxime by a solution of sodium hypochlorite. The oxime then reacts with 3-allyl-1,5-dimethyl-1,5-benzodiazepine-2,4-dione in a biphasic medium (water-chloroform) at 0°C during 4 h to lead a unique cycloadduct 1,5-dimethyl-3-(3-phenyl-4,5-dihydro-isoxazol-5-ylmethyl)- 1,5-dihydro-benzo[b][1,4]diazepine-2,4-dione, in good yields (Scheme 1).

The molecular structure of 1,5-dimethyl-3-(3-phenyl-4,5-dihydro-isoxazol-5-ylmethyl)-1,5-dihydro- benzo[b][1,4]diazepine-2,4-dione is built up from two fused six-and seven-membered rings linked to a side-chain of a five and a six-membered ring via a methylene group (Fig.1). The isoxazoline and phenyl rings are almost coplanar with a dihedral angle between them of 2.67 (7)°. In the fused rings, the aromatic six-membered ring has a perfect planar conformation, whereas the seven-membered ring displays a boat conformation with total puckering amplitude QT = 0.999 (2) Å and spherical polar angles of θ = 76.63 (2)°, φ2 = -1.12 (1)° and φ3 = 0.83 (5)°. The torsion angles C9–C1–C12–C13 and C1–C12–C13–C14 are 72.20 (2)° and 177.20 (2)° respectively.

For the biological activity and pharmaceutical properties of benzodiazepines and their derivatives, see: Cherif Alaoui, et al. (2007); Fruscella et al. (2001); Guerrini et al. (2006); Jabli et al., (2009); Keita et al. (2003); Rajarao et al. (2007); Kalkhambkar et al. (2008); Poisbeau et al. (1997); Smith et al. (1998); Kotyatkina et al. (2001). For their reactivity, see: Kosychova et al. (2004); Nabih et al. (2003); Reddy et al. (2000).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia,1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles.
1,5-Dimethyl-3-[(3-phenyl-4,5-dihydro-1,2-oxazol-5-yl)methyl]- 1H-1,5-benzodiazepine-2,4(3H,5H)-dione top
Crystal data top
C21H21N3O3F(000) = 768
Mr = 363.41Dx = 1.328 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9929 reflections
a = 9.3491 (2) Åθ = 2.9–30.5°
b = 6.9722 (1) ŵ = 0.09 mm1
c = 27.9201 (5) ÅT = 296 K
β = 93.157 (1)°Block, colourless
V = 1817.18 (6) Å30.40 × 0.38 × 0.36 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3261 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.031
Graphite monochromatorθmax = 26.4°, θmin = 1.5°
phi and ω scansh = 1111
28704 measured reflectionsk = 88
3717 independent reflectionsl = 3434
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.148H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.057P)2 + 1.9064P]
where P = (Fo2 + 2Fc2)/3
3717 reflections(Δ/σ)max < 0.001
246 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C21H21N3O3V = 1817.18 (6) Å3
Mr = 363.41Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.3491 (2) ŵ = 0.09 mm1
b = 6.9722 (1) ÅT = 296 K
c = 27.9201 (5) Å0.40 × 0.38 × 0.36 mm
β = 93.157 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3261 reflections with I > 2σ(I)
28704 measured reflectionsRint = 0.031
3717 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.148H-atom parameters constrained
S = 1.04Δρmax = 0.49 e Å3
3717 reflectionsΔρmin = 0.34 e Å3
246 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.30152 (16)0.5636 (3)0.20375 (6)0.0494 (4)
O20.22075 (18)0.1345 (3)0.12654 (6)0.0491 (4)
O30.07230 (18)0.6193 (3)0.04335 (7)0.0613 (6)
N10.07203 (18)0.5003 (2)0.22029 (6)0.0325 (4)
N20.00716 (18)0.1746 (2)0.15947 (6)0.0318 (4)
N30.1055 (2)0.7758 (4)0.01417 (8)0.0563 (6)
C10.1419 (2)0.4598 (3)0.13807 (7)0.0330 (4)
H10.04870.51570.12820.040*
C20.1802 (2)0.5157 (3)0.18989 (8)0.0342 (5)
C30.0714 (2)0.4552 (3)0.20444 (7)0.0273 (4)
C40.1840 (2)0.5679 (3)0.21943 (7)0.0346 (5)
H40.16450.67060.24000.042*
C50.3242 (2)0.5290 (3)0.20406 (8)0.0389 (5)
H50.39820.60470.21450.047*
C60.3540 (2)0.3778 (3)0.17330 (8)0.0382 (5)
H60.44800.35330.16240.046*
C70.2445 (2)0.2627 (3)0.15860 (7)0.0336 (4)
H70.26550.16030.13810.040*
C80.1026 (2)0.2986 (3)0.17428 (7)0.0268 (4)
C90.1275 (2)0.2418 (3)0.13959 (7)0.0334 (5)
C100.1040 (3)0.5479 (4)0.27119 (8)0.0460 (6)
H10A0.19080.48480.28240.069*
H10B0.02660.50580.28980.069*
H10C0.11550.68420.27460.069*
C110.0081 (3)0.0331 (3)0.16577 (10)0.0479 (6)
H11A0.01730.09770.13710.072*
H11B0.10550.06260.17210.072*
H11C0.05400.07490.19230.072*
C120.2525 (2)0.5268 (4)0.10382 (8)0.0395 (5)
H12A0.27360.66130.10970.047*
H12B0.34040.45480.10990.047*
C130.2009 (2)0.5008 (4)0.05218 (8)0.0435 (5)
H130.17860.36560.04570.052*
C140.3060 (3)0.5754 (4)0.01653 (8)0.0454 (6)
H14A0.39930.60170.03210.054*
H14B0.31670.48560.00960.054*
C150.2327 (2)0.7564 (4)0.00061 (8)0.0400 (5)
C160.2942 (2)0.8996 (3)0.03233 (7)0.0357 (5)
C170.2153 (2)1.0624 (4)0.04645 (8)0.0416 (5)
H170.12461.08170.03520.050*
C180.2715 (2)1.1944 (4)0.07698 (9)0.0455 (6)
H180.21831.30210.08630.055*
C190.4069 (2)1.1680 (4)0.09397 (8)0.0441 (5)
H190.44381.25690.11480.053*
C200.4862 (2)1.0094 (4)0.07983 (8)0.0417 (5)
H200.57750.99200.09080.050*
C210.4301 (2)0.8760 (3)0.04936 (7)0.0376 (5)
H210.48400.76890.04010.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0309 (8)0.0572 (11)0.0589 (10)0.0073 (7)0.0071 (7)0.0018 (8)
O20.0468 (9)0.0525 (10)0.0488 (9)0.0202 (8)0.0092 (7)0.0012 (8)
O30.0354 (9)0.0933 (15)0.0558 (11)0.0041 (9)0.0070 (8)0.0310 (10)
N10.0323 (8)0.0317 (9)0.0329 (9)0.0016 (7)0.0043 (7)0.0033 (7)
N20.0353 (9)0.0258 (8)0.0341 (9)0.0033 (7)0.0004 (7)0.0021 (7)
N30.0358 (10)0.0837 (17)0.0502 (12)0.0095 (10)0.0098 (9)0.0248 (12)
C10.0240 (9)0.0394 (11)0.0355 (10)0.0023 (8)0.0023 (8)0.0057 (9)
C20.0301 (10)0.0288 (10)0.0433 (11)0.0006 (8)0.0030 (8)0.0018 (9)
C30.0294 (9)0.0271 (9)0.0254 (9)0.0012 (7)0.0005 (7)0.0043 (7)
C40.0411 (11)0.0323 (10)0.0311 (10)0.0037 (9)0.0073 (8)0.0007 (8)
C50.0343 (10)0.0454 (13)0.0381 (11)0.0097 (9)0.0108 (8)0.0105 (10)
C60.0268 (9)0.0501 (13)0.0378 (11)0.0031 (9)0.0016 (8)0.0137 (10)
C70.0334 (10)0.0360 (11)0.0309 (10)0.0064 (8)0.0022 (8)0.0032 (8)
C80.0282 (9)0.0262 (9)0.0261 (9)0.0003 (7)0.0021 (7)0.0046 (7)
C90.0316 (10)0.0406 (11)0.0279 (10)0.0093 (9)0.0007 (8)0.0003 (8)
C100.0476 (13)0.0508 (14)0.0381 (12)0.0017 (11)0.0096 (10)0.0118 (10)
C110.0525 (14)0.0262 (11)0.0638 (15)0.0033 (10)0.0079 (12)0.0012 (10)
C120.0295 (10)0.0477 (13)0.0416 (12)0.0011 (9)0.0047 (9)0.0052 (10)
C130.0413 (12)0.0481 (13)0.0417 (12)0.0002 (10)0.0078 (10)0.0031 (10)
C140.0461 (13)0.0521 (14)0.0388 (12)0.0057 (11)0.0102 (10)0.0026 (11)
C150.0359 (11)0.0525 (14)0.0317 (10)0.0034 (10)0.0014 (8)0.0006 (10)
C160.0353 (10)0.0452 (12)0.0263 (9)0.0037 (9)0.0004 (8)0.0029 (9)
C170.0331 (10)0.0492 (13)0.0426 (12)0.0057 (10)0.0037 (9)0.0041 (10)
C180.0430 (12)0.0409 (13)0.0513 (14)0.0042 (10)0.0086 (10)0.0000 (11)
C190.0430 (12)0.0484 (13)0.0404 (12)0.0126 (10)0.0015 (9)0.0013 (10)
C200.0296 (10)0.0586 (14)0.0371 (11)0.0018 (10)0.0037 (8)0.0073 (10)
C210.0347 (10)0.0458 (12)0.0322 (10)0.0068 (9)0.0001 (8)0.0033 (9)
Geometric parameters (Å, º) top
O1—C21.225 (2)C10—H10B0.9600
O2—C91.220 (2)C10—H10C0.9600
O3—N31.407 (3)C11—H11A0.9600
O3—C131.469 (3)C11—H11B0.9600
N1—C21.360 (3)C11—H11C0.9600
N1—C31.424 (2)C12—C131.506 (3)
N1—C101.474 (3)C12—H12A0.9700
N2—C91.364 (3)C12—H12B0.9700
N2—C81.420 (2)C13—C141.527 (3)
N2—C111.467 (3)C13—H130.9800
N3—C151.287 (3)C14—C151.502 (3)
C1—C121.520 (3)C14—H14A0.9700
C1—C21.522 (3)C14—H14B0.9700
C1—C91.527 (3)C15—C161.472 (3)
C1—H10.9800C16—C211.391 (3)
C3—C41.396 (3)C16—C171.398 (3)
C3—C81.400 (3)C17—C181.378 (3)
C4—C51.383 (3)C17—H170.9300
C4—H40.9300C18—C191.388 (3)
C5—C61.378 (3)C18—H180.9300
C5—H50.9300C19—C201.377 (3)
C6—C71.381 (3)C19—H190.9300
C6—H60.9300C20—C211.383 (3)
C7—C81.397 (3)C20—H200.9300
C7—H70.9300C21—H210.9300
C10—H10A0.9600
N3—O3—C13109.19 (16)N2—C11—H11B109.5
C2—N1—C3122.92 (17)H11A—C11—H11B109.5
C2—N1—C10117.75 (17)N2—C11—H11C109.5
C3—N1—C10119.14 (17)H11A—C11—H11C109.5
C9—N2—C8122.31 (17)H11B—C11—H11C109.5
C9—N2—C11118.38 (18)C13—C12—C1111.85 (18)
C8—N2—C11119.31 (18)C13—C12—H12A109.2
C15—N3—O3109.9 (2)C1—C12—H12A109.2
C12—C1—C2112.76 (17)C13—C12—H12B109.2
C12—C1—C9112.80 (18)C1—C12—H12B109.2
C2—C1—C9104.18 (16)H12A—C12—H12B107.9
C12—C1—H1109.0O3—C13—C12108.00 (19)
C2—C1—H1109.0O3—C13—C14104.44 (19)
C9—C1—H1109.0C12—C13—C14113.5 (2)
O1—C2—N1122.1 (2)O3—C13—H13110.2
O1—C2—C1122.36 (19)C12—C13—H13110.2
N1—C2—C1115.42 (17)C14—C13—H13110.2
C4—C3—C8118.96 (18)C15—C14—C13101.25 (18)
C4—C3—N1119.68 (18)C15—C14—H14A111.5
C8—C3—N1121.35 (17)C13—C14—H14A111.5
C5—C4—C3120.9 (2)C15—C14—H14B111.5
C5—C4—H4119.6C13—C14—H14B111.5
C3—C4—H4119.6H14A—C14—H14B109.3
C6—C5—C4119.9 (2)N3—C15—C16121.3 (2)
C6—C5—H5120.0N3—C15—C14113.6 (2)
C4—C5—H5120.0C16—C15—C14125.12 (19)
C5—C6—C7120.13 (19)C21—C16—C17118.5 (2)
C5—C6—H6119.9C21—C16—C15121.3 (2)
C7—C6—H6119.9C17—C16—C15120.20 (19)
C6—C7—C8120.6 (2)C18—C17—C16120.2 (2)
C6—C7—H7119.7C18—C17—H17119.9
C8—C7—H7119.7C16—C17—H17119.9
C7—C8—C3119.40 (18)C17—C18—C19120.6 (2)
C7—C8—N2119.25 (18)C17—C18—H18119.7
C3—C8—N2121.35 (17)C19—C18—H18119.7
O2—C9—N2122.0 (2)C20—C19—C18119.7 (2)
O2—C9—C1122.5 (2)C20—C19—H19120.1
N2—C9—C1115.40 (17)C18—C19—H19120.1
N1—C10—H10A109.5C19—C20—C21120.0 (2)
N1—C10—H10B109.5C19—C20—H20120.0
H10A—C10—H10B109.5C21—C20—H20120.0
N1—C10—H10C109.5C20—C21—C16121.0 (2)
H10A—C10—H10C109.5C20—C21—H21119.5
H10B—C10—H10C109.5C16—C21—H21119.5
N2—C11—H11A109.5

Experimental details

Crystal data
Chemical formulaC21H21N3O3
Mr363.41
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)9.3491 (2), 6.9722 (1), 27.9201 (5)
β (°) 93.157 (1)
V3)1817.18 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.40 × 0.38 × 0.36
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
28704, 3717, 3261
Rint0.031
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.148, 1.04
No. of reflections3717
No. of parameters246
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.34

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia,1997), WinGX (Farrugia, 1999).

 

References

First citationBruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCherif Alaoui, L., Kandri Rodi, Y., Haoudi, A., Obbade, S. & Essassi, E. M. (2007). Acta Cryst. E63, o3494.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFruscella, P., Sottocorno, M., Braccio, M. D., Diomede, L., Piccardi, N., Cagnotto, A., Grossi, G., Romano, M., Mennini, T. & Roma, G. (2001). Pharmacol. Res. 43, 445–452.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGuerrini, G., Costanzo, A., Ciciani, G., Bruni, F., Selleri, S., Costagli, C., Besnard, F., Costa, B., Martini, C., Siena, G. D. & Malmberg-Aiello, P. (2006). Bioorg. Med. Chem. 14, 758–775.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJabli, H., Kandri Rodi, Y., Saffon, N., Essassi, E. M. & Ng, S. W. (2009). Acta Cryst. E65, o3150.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKalkhambkar, R. G., Kulkarni, G. M., Kamanavalli, C. M., Premkumar, N., Asdaq, S. M. & Sun, C. M. (2008). Eur. J. Med. Chem. 43, 2178–2188.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKeita, A., Lazrak, F., Essassi, E. M., Cherif Alaoui, I., Kandri Rodi, Y., Bellan, J. & Pierrot, M. (2003). Phosphorus Sulfur Silicon Relat. Elem. 178, 1541–1548.  Web of Science CrossRef CAS Google Scholar
First citationKosychova, L., Stumbreviciute, Z., Pleckaitiene, L., Janciene, R. & Puodziunaite, B. D. (2004). Chem. Heterocycl. Compd, 40, 811–815.  CrossRef CAS Google Scholar
First citationKotyatkina, A. I., Zhabinsky, V. N. & Khripach Russ, V. A. (2001). Chem. Rev. 70, 641–653.  CAS Google Scholar
First citationNabih, K., Baouid, A., Hasnaoui, A., Selkti, M. & Compain, P. (2003). New J. Chem. 27, 1644–1648.  Web of Science CSD CrossRef CAS Google Scholar
First citationPoisbeau, P., Williams, S. R. & Mody, I. (1997). J. Neurosci. 17, 3467–3475.  CAS PubMed Web of Science Google Scholar
First citationRajarao, S. J., Platt, B., Sukoff, S. J., Lin, Q., Bender, C. N., Nieuwenhuijsen, B. W., Ring, R. H., Schechter, L. E., Rosenzweig-Lipson, S. & Beyer, C. E. (2007). Neuropeptides, 41, 307–320.  Web of Science CrossRef PubMed CAS Google Scholar
First citationReddy, K. V. V., Rao, P. S. & Ashok, D. (2000). Synth. Commun. 30, 1825–1836.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, R. H., Jorgen, W. L., Tirado, R. J. & Lamb, M. L. (1998). J. Med. Chem. 41, 5272–5286.  CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds