organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Chloro-2-hy­dr­oxy­benzaldehyde thio­semicarbazone

aDepartment of Chemistry, School of Science, Payame Noor University (PNU), Ardakan, Yazd, Iran, bDepartment of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran, cDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey, and dDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 24 October 2010; accepted 25 October 2010; online 30 October 2010)

In the title compound, C8H8ClN3OS, the whole mol­ecule assumes a planar structure, with an r.m.s. deviation of 0.108 (2) Å, and an intra­molecular O—H⋯N hydrogen bond generates and S(6) and ring motif. In the crystal structure, each of two pairs of inter­molecular N—H⋯S hydrogen bonds connects two mol­ecules, forming inversion dimers with R22(8) motifs.

Related literature

For the biological activities and pharmaceutical properties of thio­semicarbazones and their derivatives, see: Casas et al. (2000[Casas, J. S., Garcia-Tasende, M. S. & Sordo, J. (2000). Coord. Chem. Rev. 209, 197-261.]); Ferrari et al. (2000[Ferrari, M. B., Capacchi, S., Reffo, G., Pelosi, G., Tarasconi, P., Albertini, R., Pinelli, S. & Lunghi, P. (2000). J. Inorg. Biochem. 81, 89-97.]); Maccioni et al. (2003[Maccioni, E., Cardia, M. C., Distinto, S., Bonsignore, L. & De Logu, A. (2003). Il Farmaco, 58, 951-959.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C8H8ClN3OS

  • Mr = 229.69

  • Monoclinic, P 21 /c

  • a = 5.8303 (4) Å

  • b = 23.6579 (17) Å

  • c = 7.5893 (5) Å

  • β = 104.164 (6)°

  • V = 1014.99 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.55 mm−1

  • T = 296 K

  • 0.52 × 0.33 × 0.08 mm

Data collection
  • Stoe IPDS II diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.763, Tmax = 0.957

  • 4469 measured reflections

  • 1895 independent reflections

  • 1524 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.120

  • S = 1.04

  • 1895 reflections

  • 128 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯S1i 0.86 2.70 3.491 (2) 153
N3—H3A⋯S1ii 0.86 2.87 3.387 (2) 120
N3—H3A⋯N1 0.86 2.36 2.693 (3) 103
N3—H3B⋯S1iii 0.86 2.55 3.390 (2) 167
Symmetry codes: (i) -x, -y, -z+1; (ii) x+1, y, z; (iii) -x+1, -y, -z+2.

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Thiosemicarbazones constitute an important class of N,S donor ligands due to their propensity to react with a wide range of metals (Casas et al., 2000). Thiosemicarbazones exhibit various biological activities and have therefore attracted considerable pharmaceutical interest (Maccioni et al., 2003; Ferrari et al., 2000). We here report the crystal structure of the title compound (I).

The title molecule (I) shown in Fig. 1 is planar with an r.m.s. deviation of 0.108 Å and all bond lengths agree with standard values (Allen et al., 1987). Intramolecular O—H···N and N—H···N hydrogen bonds (Table 1) generate the S(6) and S(5) ring motifs, respectively (Bernstein et al., 1995).

In the crystal structure, molecules are linked by N—H···S hydrogen bonds, forming R22(8) dimers (Table 1 and Fig. 2).

Related literature top

For the biological activities and pharmaceutical properties of thiosemicarbazones and their derivatives, see: Casas et al. (2000); Ferrari et al. (2000); Maccioni et al. (2003). For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

A mixture of 5-chlorosalicylalehyde (0.01 mol) and hydrazinecarbothioamide (0.01 mol) in 20 ml of ethanol was refluxed for about 2 h. On cooling, the solid separated was filtered and recrystallized from ethanol. Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of ethanol.

Refinement top

All H atoms were geometrically placed (C—H = 0.93 Å, N—H = 0.86 Å and O—H = 0.82 Å) and refined as riding with Uiso(H) = 1.2Ueq(C,N) and 1.5Ueq(O).

Structure description top

Thiosemicarbazones constitute an important class of N,S donor ligands due to their propensity to react with a wide range of metals (Casas et al., 2000). Thiosemicarbazones exhibit various biological activities and have therefore attracted considerable pharmaceutical interest (Maccioni et al., 2003; Ferrari et al., 2000). We here report the crystal structure of the title compound (I).

The title molecule (I) shown in Fig. 1 is planar with an r.m.s. deviation of 0.108 Å and all bond lengths agree with standard values (Allen et al., 1987). Intramolecular O—H···N and N—H···N hydrogen bonds (Table 1) generate the S(6) and S(5) ring motifs, respectively (Bernstein et al., 1995).

In the crystal structure, molecules are linked by N—H···S hydrogen bonds, forming R22(8) dimers (Table 1 and Fig. 2).

For the biological activities and pharmaceutical properties of thiosemicarbazones and their derivatives, see: Casas et al. (2000); Ferrari et al. (2000); Maccioni et al. (2003). For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The title molecule with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.
[Figure 2] Fig. 2. View of the packing and hydrogen bonding interactions of (I), showing dimer formation by R22(8) ring motif. All H atoms not involved in hydrogen bonding have been omitted for clarity.
5-Chloro-2-hydroxybenzaldehyde thiosemicarbazone top
Crystal data top
C8H8ClN3OSF(000) = 472
Mr = 229.69Dx = 1.503 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8344 reflections
a = 5.8303 (4) Åθ = 1.7–26.2°
b = 23.6579 (17) ŵ = 0.55 mm1
c = 7.5893 (5) ÅT = 296 K
β = 104.164 (6)°Prism, colourless
V = 1014.99 (12) Å30.52 × 0.33 × 0.08 mm
Z = 4
Data collection top
Stoe IPDS II
diffractometer
1895 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus1524 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.051
Detector resolution: 6.67 pixels mm-1θmax = 25.6°, θmin = 1.7°
ω scansh = 57
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 2826
Tmin = 0.763, Tmax = 0.957l = 99
4469 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0681P)2 + 0.120P]
where P = (Fo2 + 2Fc2)/3
1895 reflections(Δ/σ)max < 0.001
128 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
C8H8ClN3OSV = 1014.99 (12) Å3
Mr = 229.69Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.8303 (4) ŵ = 0.55 mm1
b = 23.6579 (17) ÅT = 296 K
c = 7.5893 (5) Å0.52 × 0.33 × 0.08 mm
β = 104.164 (6)°
Data collection top
Stoe IPDS II
diffractometer
1895 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
1524 reflections with I > 2σ(I)
Tmin = 0.763, Tmax = 0.957Rint = 0.051
4469 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.120H-atom parameters constrained
S = 1.04Δρmax = 0.20 e Å3
1895 reflectionsΔρmin = 0.37 e Å3
128 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.36123 (17)0.20555 (4)0.30970 (10)0.0868 (3)
S10.15507 (9)0.01021 (3)0.79551 (8)0.0559 (2)
O10.8537 (3)0.13549 (11)0.4272 (3)0.0750 (8)
N10.4525 (3)0.08332 (9)0.4467 (3)0.0489 (6)
N20.3002 (3)0.05468 (10)0.5260 (3)0.0523 (6)
N30.5874 (3)0.04298 (10)0.7883 (3)0.0524 (7)
C10.4996 (4)0.13306 (11)0.1830 (3)0.0493 (8)
C20.7333 (4)0.15067 (12)0.2573 (4)0.0573 (8)
C30.8480 (5)0.18395 (14)0.1559 (4)0.0687 (10)
C40.7368 (6)0.20095 (13)0.0164 (4)0.0702 (10)
C50.5049 (5)0.18372 (12)0.0912 (4)0.0604 (9)
C60.3886 (5)0.15099 (11)0.0062 (3)0.0542 (8)
C70.3665 (4)0.09979 (11)0.2818 (3)0.0507 (8)
C80.3636 (4)0.03756 (11)0.6999 (3)0.0454 (7)
H10.762700.120400.480000.1120*
H20.159600.047400.462600.0630*
H31.003500.195000.205500.0830*
H3A0.687900.057100.734400.0630*
H3B0.632800.032400.899800.0630*
H40.815200.223700.082600.0840*
H60.233100.140300.045100.0650*
H70.212100.089700.224300.0610*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1118 (7)0.0820 (6)0.0700 (4)0.0054 (5)0.0287 (4)0.0188 (4)
S10.0349 (3)0.0795 (5)0.0526 (3)0.0048 (3)0.0096 (2)0.0063 (3)
O10.0458 (10)0.0951 (17)0.0791 (12)0.0077 (10)0.0058 (9)0.0132 (11)
N10.0379 (9)0.0554 (12)0.0544 (10)0.0011 (8)0.0131 (8)0.0019 (9)
N20.0336 (9)0.0683 (14)0.0529 (10)0.0059 (9)0.0065 (8)0.0074 (9)
N30.0334 (9)0.0742 (15)0.0485 (10)0.0031 (9)0.0079 (7)0.0017 (9)
C10.0447 (12)0.0466 (14)0.0597 (13)0.0017 (10)0.0189 (10)0.0007 (10)
C20.0453 (12)0.0558 (16)0.0729 (15)0.0009 (11)0.0186 (11)0.0020 (12)
C30.0489 (14)0.0623 (18)0.100 (2)0.0044 (12)0.0281 (14)0.0079 (15)
C40.0725 (17)0.0577 (18)0.0926 (19)0.0020 (14)0.0438 (15)0.0108 (15)
C50.0729 (17)0.0490 (15)0.0653 (14)0.0056 (13)0.0283 (12)0.0030 (11)
C60.0540 (13)0.0505 (15)0.0595 (12)0.0029 (11)0.0168 (10)0.0014 (11)
C70.0403 (12)0.0544 (15)0.0570 (12)0.0002 (10)0.0111 (10)0.0015 (11)
C80.0344 (10)0.0510 (14)0.0505 (11)0.0009 (9)0.0096 (9)0.0029 (10)
Geometric parameters (Å, º) top
Cl1—C51.743 (3)C1—C21.404 (4)
S1—C81.690 (2)C1—C61.405 (3)
O1—C21.357 (4)C1—C71.438 (3)
O1—H10.8200C2—C31.383 (4)
N1—N21.368 (3)C3—C41.370 (4)
N1—C71.289 (3)C4—C51.393 (5)
N2—C81.343 (3)C5—C61.361 (4)
N3—C81.319 (3)C3—H30.9300
N2—H20.8600C4—H40.9300
N3—H3A0.8600C6—H60.9300
N3—H3B0.8600C7—H70.9300
Cl1···C5i3.606 (3)C7···C8vi3.598 (4)
S1···N3ii3.387 (2)C7···N3vi3.440 (4)
S1···N2iii3.491 (2)C7···C3ii3.550 (4)
S1···N3iv3.390 (2)C8···C7vi3.598 (4)
S1···H3Aii2.8700C8···C6vii3.530 (3)
S1···H2iii2.7000C8···N1vi3.339 (3)
S1···H3Biv2.5500C3···H7v3.0300
S1···H7iii3.1700C3···H4viii2.9900
O1···N12.681 (3)C7···H3ii3.0500
O1···N2v3.168 (3)C7···H12.4800
O1···H2v2.7100H1···N11.9700
N1···O12.681 (3)H1···C72.4800
N1···N32.693 (3)H1···H3A2.5600
N1···C8vi3.339 (3)H2···O1ii2.7100
N2···O1ii3.168 (3)H2···H72.1500
N2···S1iii3.491 (2)H2···S1iii2.7000
N3···C6vii3.398 (3)H3···C7v3.0500
N3···S1iv3.390 (2)H3A···S1v2.8700
N3···S1v3.387 (2)H3A···N12.3600
N3···N12.693 (3)H3A···H12.5600
N3···C7vi3.440 (4)H3B···S1iv2.5500
N1···H11.9700H4···C3i2.9900
N1···H3A2.3600H6···H72.4000
C3···C7v3.550 (4)H7···C3ii3.0300
C5···Cl1viii3.606 (3)H7···H22.1500
C6···N3ix3.398 (3)H7···H62.4000
C6···C8ix3.530 (3)H7···S1iii3.1700
C2—O1—H1109.00Cl1—C5—C4119.6 (2)
N2—N1—C7115.9 (2)Cl1—C5—C6119.9 (2)
N1—N2—C8122.0 (2)C4—C5—C6120.5 (3)
C8—N2—H2119.00C1—C6—C5121.1 (3)
N1—N2—H2119.00N1—C7—C1122.7 (2)
H3A—N3—H3B120.00N2—C8—N3118.1 (2)
C8—N3—H3A120.00S1—C8—N2118.92 (18)
C8—N3—H3B120.00S1—C8—N3123.01 (18)
C2—C1—C6118.0 (2)C2—C3—H3119.00
C6—C1—C7118.8 (2)C4—C3—H3119.00
C2—C1—C7123.2 (2)C3—C4—H4120.00
O1—C2—C1121.9 (2)C5—C4—H4120.00
C1—C2—C3120.0 (3)C1—C6—H6119.00
O1—C2—C3118.1 (2)C5—C6—H6119.00
C2—C3—C4121.2 (3)N1—C7—H7119.00
C3—C4—C5119.2 (3)C1—C7—H7119.00
C7—N1—N2—C8176.7 (2)C6—C1—C2—C30.9 (4)
N2—N1—C7—C1176.5 (2)C7—C1—C2—O12.5 (4)
N1—N2—C8—S1171.99 (18)O1—C2—C3—C4179.8 (3)
N1—N2—C8—N38.0 (4)C1—C2—C3—C40.9 (5)
C7—C1—C2—C3178.2 (3)C2—C3—C4—C50.8 (5)
C2—C1—C6—C51.0 (4)C3—C4—C5—Cl1179.5 (2)
C7—C1—C6—C5178.3 (3)C3—C4—C5—C60.8 (5)
C2—C1—C7—N10.3 (4)Cl1—C5—C6—C1179.6 (2)
C6—C1—C7—N1177.6 (2)C4—C5—C6—C10.9 (4)
C6—C1—C2—O1179.8 (2)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x1, y, z; (iii) x, y, z+1; (iv) x+1, y, z+2; (v) x+1, y, z; (vi) x+1, y, z+1; (vii) x, y, z+1; (viii) x, y+1/2, z+1/2; (ix) x, y, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.972.681 (3)144
N2—H2···S1iii0.862.703.491 (2)153
N3—H3A···S1v0.862.873.387 (2)120
N3—H3A···N10.862.362.693 (3)103
N3—H3B···S1iv0.862.553.390 (2)167
Symmetry codes: (iii) x, y, z+1; (iv) x+1, y, z+2; (v) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC8H8ClN3OS
Mr229.69
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)5.8303 (4), 23.6579 (17), 7.5893 (5)
β (°) 104.164 (6)
V3)1014.99 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.55
Crystal size (mm)0.52 × 0.33 × 0.08
Data collection
DiffractometerStoe IPDS II
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.763, 0.957
No. of measured, independent and
observed [I > 2σ(I)] reflections
4469, 1895, 1524
Rint0.051
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.120, 1.04
No. of reflections1895
No. of parameters128
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.37

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.972.681 (3)144
N2—H2···S1i0.862.703.491 (2)153
N3—H3A···S1ii0.862.873.387 (2)120
N3—H3A···N10.862.362.693 (3)103
N3—H3B···S1iii0.862.553.390 (2)167
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z; (iii) x+1, y, z+2.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS II diffractometer (purchased under grant F.279 of the University Research Fund). HK thanks Payame Noor University (PNU) for financial support of this work. RK thanks the Science and Research Branch of Islamic Azad University of Tehran.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationCasas, J. S., Garcia-Tasende, M. S. & Sordo, J. (2000). Coord. Chem. Rev. 209, 197–261.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFerrari, M. B., Capacchi, S., Reffo, G., Pelosi, G., Tarasconi, P., Albertini, R., Pinelli, S. & Lunghi, P. (2000). J. Inorg. Biochem. 81, 89–97.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMaccioni, E., Cardia, M. C., Distinto, S., Bonsignore, L. & De Logu, A. (2003). Il Farmaco, 58, 951–959.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds