organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,5-Di­phenyl­carbonohydrazide N,N-di­methyl­formamide

aDepartment of Physics and Chemistry, Henan Polytechnic University, Jiaozuo 454000, People's Republic of China, and bDepartment of Mathematics, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China
*Correspondence e-mail: zay@hpu.edu.cn

(Received 14 July 2010; accepted 30 September 2010; online 9 October 2010)

In the title compound, C13H14N4O·C3H7NO, a 1,5-phenyl­carbonohydrazide mol­ecule cocrystallizes with an N,N-dimethyl­formamide mol­ecule. In the 1,5-phenyl­carbonohydrazide mol­ecule, the two phenyl rings are twisted by an angle of 45.8 (5)°. Inter­molecular N—H⋯O hydrogen bonds and weak inter­molecular C—H⋯O inter­actions contribute to a supra­molecular two-dimensional network in the (101) plane.

Related literature

For literature on the applications of 1,5-diphenyl­carbonohydrazide, an artificial electron-donor material, see: Verma & Singh (1995[Verma, K. & Singh, D. P. (1995). Curr. Microbiol. 30, 373-379.]); Melis et al. (1992[Melis, A., Nemson, J. A. & Hanison, M. A. (1992). Biochim. Biophys. Acta, 1100, 312-320.]); Prasad et al. (1991[Prasad, S. M., Singh, J. B., Rai, L. C. & Kumar, H. D. (1991). FEMS Microbiol. Lett. 82, 95-100.]); Sundari & Raghavendra (1990[Sundari, D. S. & Raghavendra, A. S. (1990). Photosynth. Res. 23, 95-99.]); Mishra et al. (1993[Mishra, U., Kashyap, A. K. & Pande, J. (1993). Environ. Technol. 14, 373-378.]). For the structure of diphenyl­carbonohydrazide, see: De Ranter et al. (1979[De Ranter, C. J., Blaton, N. M. & Peeters, O. M. (1979). Acta Cryst. B35, 1295-1297.]). For related structures, see: Hamuro et al. (1999[Hamuro, Y., Marshall, W. J. & Scialdone, M. A. (1999). J. Comb. Chem. 1, 163-172.]); Jian et al. (2003[Jian, F. F., Xiao, H. L. & Wang, Y. (2003). Jiegou Huaxue (Chin. J. Struct. Chem.), 22, 55-59.]); Wei et al.(2006[Wei, C.-X., Chen, J.-X., Li, Z.-S., Lan, T.-Y. & Huang, Y.-B. (2006). Acta Cryst. E62, o1719-o1721.]); Wang et al. (2001[Wang, Y., Jian, F.-F., Yang, X.-J., Lu, L.-D., Wang, X., Fun, H.-K., Chantrapromma, S. & Razak, I. A. (2001). Acta Cryst. E57, o312-o314.]).

[Scheme 1]

Experimental

Crystal data
  • C13H14N4O·C3H7NO

  • Mr = 315.38

  • Monoclinic, P 21 /c

  • a = 5.9774 (2) Å

  • b = 14.8531 (6) Å

  • c = 18.4827 (7) Å

  • β = 96.029 (3)°

  • V = 1631.87 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.21 × 0.20 × 0.18 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.982, Tmax = 0.984

  • 23310 measured reflections

  • 2902 independent reflections

  • 2061 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.193

  • S = 1.06

  • 2902 reflections

  • 209 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.86 2.13 2.975 (3) 166
C6—H6A⋯O2ii 0.93 2.58 3.370 (4) 143
N2—H2B⋯O1iii 0.86 2.45 3.121 (3) 135
N3—H3B⋯O2 0.86 2.12 2.895 (3) 149
N4—H4B⋯O2ii 0.86 2.31 3.079 (3) 148
Symmetry codes: (i) -x+1, -y+1, -z; (ii) x-1, y, z; (iii) x+1, y, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

1, 5-diphenylcarbonohydrazide, an artificial electron-donor material, has a variety of applications (Verma & Singh, 1995; Melis et al., 1992; Prasad et al., 1991; Sundari & Raghavendra, 1990; Mishra et al., 1993). The structure of diphenylcarbonohydrazide (C13H14N4O), (De Ranter et al., 1979) and a number of diphenylcarbonohydrazide derivatives have been prepared (Jian et al., 2003; Wang et al., 2001; Hamuro et al., 1999; Wei et al., 2006).

The title compound, is a co-crystal with a 1,5-phenylcarbonohydrazide molecule and a N, N-dimethylformamide molecule in the unit cell (Fig. 1). In the 1,5-phenylcarbonohydrazide molecule, the dihedral angles of the two benzene rings are twisted by an angle of 45.8 (5)°. The C7/N1/N2/C8 (-91.6 (3)°) and C7/N3/N4/C1 (75.3 (3)°) torsion angles confirm this twist. Crystal packing is dominated by N—H···O hydrogen bonds and weak C—H···O intermolecular interactions (Table 1) which contribute to a supermolecular 2-D network formed in the 101 plane (Fig. 2).

Related literature top

For literature on the applications of 1, 5-diphenylcarbonohydrazide, an artificial electron-donor material, see: Verma & Singh (1995); Melis et al. (1992); Prasad et al. (1991); Sundari & Raghavendra (1990); Mishra et al. (1993). For the structure of diphenylcarbonohydrazide, see: De Ranter, Blaton & Peeters (1979). For related structures, see: Hamuro et al. (1999); Jian et al. (2003); Wei, et al.(2006); Wang, et al. (2001).

Experimental top

A mixture of 1, 5-diphenylcarbazide (0.0233 g), Cd(NO3)2(0.0132 g), N, N-dimethylformamide (5 ml), and water (12 ml) was stirred at room temperature for 6 h. The solution was filtered and the filtrate was left to stand undisturbed. Upon slow evaporation at room temperature, the title compound appeared about a month later. The title compound was filtered, washed with water and dried at 298K. The single crystals were grown by slow evaporation of water and N, N-dimethylformamide in the filtered mixture of 1, 5-diphenylcarbazide, Cd(NO3)2, N, N-dimethylformamide, and water at 298K.

Refinement top

All of the H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.93Å (CH), 0.96Å (CH3) or 0.86Å (NH). Isotropic displacement parameters for these atoms were set to 1.2 times (NH), 1.2 (CH) or 1.2 (CH3) times Ueq of the parent atom.

Structure description top

1, 5-diphenylcarbonohydrazide, an artificial electron-donor material, has a variety of applications (Verma & Singh, 1995; Melis et al., 1992; Prasad et al., 1991; Sundari & Raghavendra, 1990; Mishra et al., 1993). The structure of diphenylcarbonohydrazide (C13H14N4O), (De Ranter et al., 1979) and a number of diphenylcarbonohydrazide derivatives have been prepared (Jian et al., 2003; Wang et al., 2001; Hamuro et al., 1999; Wei et al., 2006).

The title compound, is a co-crystal with a 1,5-phenylcarbonohydrazide molecule and a N, N-dimethylformamide molecule in the unit cell (Fig. 1). In the 1,5-phenylcarbonohydrazide molecule, the dihedral angles of the two benzene rings are twisted by an angle of 45.8 (5)°. The C7/N1/N2/C8 (-91.6 (3)°) and C7/N3/N4/C1 (75.3 (3)°) torsion angles confirm this twist. Crystal packing is dominated by N—H···O hydrogen bonds and weak C—H···O intermolecular interactions (Table 1) which contribute to a supermolecular 2-D network formed in the 101 plane (Fig. 2).

For literature on the applications of 1, 5-diphenylcarbonohydrazide, an artificial electron-donor material, see: Verma & Singh (1995); Melis et al. (1992); Prasad et al. (1991); Sundari & Raghavendra (1990); Mishra et al. (1993). For the structure of diphenylcarbonohydrazide, see: De Ranter, Blaton & Peeters (1979). For related structures, see: Hamuro et al. (1999); Jian et al. (2003); Wei, et al.(2006); Wang, et al. (2001).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2 (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, C16H21N5O2, showing the atom-labeling scheme with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing diagram for the title compound viewed down the b axis. Dashed lines indicate N—H···O and C—H···O hydrogen bonds forming an infinite two-dimensional polymeric chain along the a axis.
1,5-Diphenylcarbonohydrazide N,N-dimethylformamide top
Crystal data top
C13H14N4O·C3H7NOF(000) = 672
Mr = 315.38Dx = 1.284 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3501 reflections
a = 5.9774 (2) Åθ = 2.6–21.5°
b = 14.8531 (6) ŵ = 0.09 mm1
c = 18.4827 (7) ÅT = 296 K
β = 96.029 (3)°Block, colorless
V = 1631.87 (11) Å30.21 × 0.20 × 0.18 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2902 independent reflections
Radiation source: fine-focus sealed tube2061 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
φ and ω scansθmax = 25.1°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 77
Tmin = 0.982, Tmax = 0.984k = 1717
23310 measured reflectionsl = 2222
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058H-atom parameters constrained
wR(F2) = 0.193 w = 1/[σ2(Fo2) + (0.1085P)2 + 0.5441P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2902 reflectionsΔρmax = 0.32 e Å3
209 parametersΔρmin = 0.36 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.014 (4)
Crystal data top
C13H14N4O·C3H7NOV = 1631.87 (11) Å3
Mr = 315.38Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.9774 (2) ŵ = 0.09 mm1
b = 14.8531 (6) ÅT = 296 K
c = 18.4827 (7) Å0.21 × 0.20 × 0.18 mm
β = 96.029 (3)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2902 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
2061 reflections with I > 2σ(I)
Tmin = 0.982, Tmax = 0.984Rint = 0.049
23310 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.193H-atom parameters constrained
S = 1.06Δρmax = 0.32 e Å3
2902 reflectionsΔρmin = 0.36 e Å3
209 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4510 (4)0.55844 (17)0.25962 (14)0.0456 (6)
C20.6356 (5)0.5015 (2)0.26959 (15)0.0573 (8)
H2A0.75630.50970.24230.069*
C30.6407 (5)0.4328 (2)0.31971 (17)0.0633 (8)
H3A0.76450.39460.32560.076*
C40.4651 (5)0.4197 (2)0.36131 (16)0.0639 (8)
H4A0.46890.37280.39470.077*
C50.2840 (5)0.4774 (2)0.35257 (16)0.0608 (8)
H5A0.16580.46980.38090.073*
C60.2757 (4)0.54590 (18)0.30260 (15)0.0509 (7)
H6A0.15210.58420.29740.061*
C70.5425 (4)0.57813 (16)0.09720 (13)0.0401 (6)
C80.8908 (4)0.71277 (16)0.02790 (12)0.0396 (6)
C90.6983 (4)0.74404 (19)0.01259 (15)0.0518 (7)
H9A0.56770.70950.01650.062*
C100.7002 (5)0.8262 (2)0.04697 (17)0.0646 (8)
H10A0.57060.84670.07420.078*
C110.8908 (5)0.8785 (2)0.04161 (17)0.0665 (9)
H11A0.89070.93390.06500.080*
C121.0807 (5)0.8478 (2)0.00140 (17)0.0637 (8)
H12A1.21040.88280.00230.076*
C131.0828 (4)0.76617 (19)0.03362 (15)0.0506 (7)
H13A1.21290.74660.06120.061*
C140.9098 (5)0.78263 (19)0.25852 (16)0.0550 (7)
H14A0.76160.80000.24530.066*
C150.9162 (6)0.8990 (2)0.34963 (18)0.0675 (9)
H15A1.02210.92360.38710.101*
H15B0.78870.87550.37100.101*
H15C0.86750.94540.31540.101*
C161.2467 (5)0.8018 (2)0.33949 (17)0.0656 (8)
H16A1.30150.84130.37850.098*
H16B1.34230.80600.30100.098*
H16C1.24670.74100.35710.098*
N10.7115 (3)0.57302 (14)0.05309 (11)0.0445 (5)
H1A0.70380.53460.01810.053*
N20.8964 (3)0.63018 (13)0.06480 (11)0.0437 (5)
H2B1.01170.61510.09410.052*
N30.5839 (4)0.63150 (15)0.15609 (11)0.0510 (6)
H3B0.69940.66640.15970.061*
N40.4411 (4)0.63076 (15)0.21120 (12)0.0536 (6)
H4B0.34830.67430.21520.064*
N51.0222 (3)0.82726 (15)0.31247 (11)0.0483 (6)
O10.3662 (3)0.53634 (12)0.08206 (10)0.0491 (5)
O20.9826 (3)0.72042 (14)0.22424 (12)0.0664 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0427 (14)0.0537 (16)0.0404 (14)0.0021 (11)0.0043 (11)0.0108 (11)
C20.0430 (15)0.073 (2)0.0570 (17)0.0041 (13)0.0103 (13)0.0061 (15)
C30.0531 (17)0.076 (2)0.0592 (18)0.0144 (14)0.0027 (14)0.0009 (15)
C40.0681 (19)0.0691 (19)0.0538 (17)0.0009 (16)0.0025 (15)0.0077 (15)
C50.0565 (17)0.072 (2)0.0562 (17)0.0062 (15)0.0179 (14)0.0011 (15)
C60.0445 (15)0.0541 (16)0.0558 (16)0.0024 (12)0.0129 (12)0.0057 (13)
C70.0391 (13)0.0404 (13)0.0411 (13)0.0030 (10)0.0052 (10)0.0033 (10)
C80.0367 (13)0.0462 (14)0.0367 (13)0.0037 (10)0.0078 (10)0.0056 (10)
C90.0366 (14)0.0610 (17)0.0564 (16)0.0053 (12)0.0023 (12)0.0045 (13)
C100.0560 (18)0.071 (2)0.0651 (19)0.0068 (15)0.0035 (14)0.0140 (15)
C110.073 (2)0.0569 (18)0.069 (2)0.0022 (15)0.0072 (16)0.0169 (15)
C120.0573 (18)0.0631 (19)0.071 (2)0.0181 (14)0.0092 (15)0.0067 (16)
C130.0392 (14)0.0584 (17)0.0536 (16)0.0074 (12)0.0012 (12)0.0020 (13)
C140.0434 (15)0.0590 (17)0.0609 (17)0.0041 (13)0.0024 (13)0.0002 (14)
C150.084 (2)0.0539 (17)0.0676 (19)0.0083 (16)0.0240 (17)0.0042 (15)
C160.0593 (18)0.072 (2)0.0623 (18)0.0048 (15)0.0112 (15)0.0066 (15)
N10.0410 (11)0.0466 (12)0.0468 (12)0.0116 (9)0.0092 (9)0.0087 (9)
N20.0345 (10)0.0501 (13)0.0453 (12)0.0064 (9)0.0018 (9)0.0027 (9)
N30.0486 (13)0.0596 (14)0.0468 (12)0.0145 (10)0.0146 (10)0.0109 (10)
N40.0550 (13)0.0573 (14)0.0512 (13)0.0062 (11)0.0181 (11)0.0043 (11)
N50.0454 (12)0.0487 (13)0.0503 (13)0.0043 (10)0.0024 (10)0.0043 (10)
O10.0416 (10)0.0540 (11)0.0520 (11)0.0122 (8)0.0061 (8)0.0046 (8)
O20.0627 (13)0.0650 (13)0.0687 (13)0.0034 (10)0.0060 (10)0.0200 (11)
Geometric parameters (Å, º) top
C1—C21.388 (4)C11—C121.368 (4)
C1—C61.392 (3)C11—H11A0.9300
C1—N41.395 (3)C12—C131.374 (4)
C2—C31.376 (4)C12—H12A0.9300
C2—H2A0.9300C13—H13A0.9300
C3—C41.378 (4)C14—O21.226 (3)
C3—H3A0.9300C14—N51.321 (4)
C4—C51.376 (4)C14—H14A0.9300
C4—H4A0.9300C15—N51.449 (3)
C5—C61.371 (4)C15—H15A0.9600
C5—H5A0.9300C15—H15B0.9600
C6—H6A0.9300C15—H15C0.9600
C7—O11.230 (3)C16—N51.433 (4)
C7—N31.348 (3)C16—H16A0.9600
C7—N11.365 (3)C16—H16B0.9600
C8—C131.390 (4)C16—H16C0.9600
C8—C91.385 (4)N1—N21.392 (3)
C8—N21.402 (3)N1—H1A0.8600
C9—C101.377 (4)N2—H2B0.8600
C9—H9A0.9300N3—N41.396 (3)
C10—C111.373 (4)N3—H3B0.8600
C10—H10A0.9300N4—H4B0.8600
C2—C1—C6118.6 (3)C13—C12—H12A119.5
C2—C1—N4122.3 (2)C12—C13—C8120.1 (3)
C6—C1—N4119.0 (2)C12—C13—H13A120.0
C3—C2—C1120.2 (3)C8—C13—H13A120.0
C3—C2—H2A119.9O2—C14—N5126.0 (3)
C1—C2—H2A119.9O2—C14—H14A117.0
C4—C3—C2121.0 (3)N5—C14—H14A117.0
C4—C3—H3A119.5N5—C15—H15A109.5
C2—C3—H3A119.5N5—C15—H15B109.5
C5—C4—C3118.9 (3)H15A—C15—H15B109.5
C5—C4—H4A120.6N5—C15—H15C109.5
C3—C4—H4A120.6H15A—C15—H15C109.5
C6—C5—C4120.9 (3)H15B—C15—H15C109.5
C6—C5—H5A119.6N5—C16—H16A109.5
C4—C5—H5A119.6N5—C16—H16B109.5
C5—C6—C1120.5 (3)H16A—C16—H16B109.5
C5—C6—H6A119.8N5—C16—H16C109.5
C1—C6—H6A119.8H16A—C16—H16C109.5
O1—C7—N3124.1 (2)H16B—C16—H16C109.5
O1—C7—N1120.4 (2)C7—N1—N2119.9 (2)
N3—C7—N1115.5 (2)C7—N1—H1A120.1
C13—C8—C9118.8 (2)N2—N1—H1A120.1
C13—C8—N2119.0 (2)N1—N2—C8118.7 (2)
C9—C8—N2122.2 (2)N1—N2—H2B120.7
C10—C9—C8120.0 (3)C8—N2—H2B120.7
C10—C9—H9A120.0C7—N3—N4120.7 (2)
C8—C9—H9A120.0C7—N3—H3B119.7
C11—C10—C9121.0 (3)N4—N3—H3B119.7
C11—C10—H10A119.5N3—N4—C1119.1 (2)
C9—C10—H10A119.5N3—N4—H4B120.5
C10—C11—C12119.1 (3)C1—N4—H4B120.5
C10—C11—H11A120.5C14—N5—C16120.9 (2)
C12—C11—H11A120.5C14—N5—C15120.9 (2)
C11—C12—C13121.0 (3)C16—N5—C15118.0 (2)
C11—C12—H12A119.5
C6—C1—C2—C31.7 (4)C9—C8—C13—C120.9 (4)
N4—C1—C2—C3177.9 (3)N2—C8—C13—C12179.3 (2)
C1—C2—C3—C40.7 (5)O1—C7—N1—N2170.8 (2)
C2—C3—C4—C50.7 (5)N3—C7—N1—N28.7 (3)
C3—C4—C5—C61.0 (5)C7—N1—N2—C891.6 (3)
C4—C5—C6—C10.0 (4)C13—C8—N2—N1173.7 (2)
C2—C1—C6—C51.4 (4)C9—C8—N2—N18.1 (3)
N4—C1—C6—C5177.7 (3)O1—C7—N3—N411.1 (4)
C13—C8—C9—C100.7 (4)N1—C7—N3—N4169.4 (2)
N2—C8—C9—C10179.0 (2)C7—N3—N4—C175.3 (3)
C8—C9—C10—C110.3 (4)C2—C1—N4—N319.4 (4)
C9—C10—C11—C120.0 (5)C6—C1—N4—N3164.4 (2)
C10—C11—C12—C130.2 (5)O2—C14—N5—C163.8 (5)
C11—C12—C13—C80.7 (4)O2—C14—N5—C15179.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.862.132.975 (3)166
C6—H6A···O2ii0.932.583.370 (4)143
N2—H2B···O1iii0.862.453.121 (3)135
N3—H3B···O20.862.122.895 (3)149
N4—H4B···O2ii0.862.313.079 (3)148
Symmetry codes: (i) x+1, y+1, z; (ii) x1, y, z; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC13H14N4O·C3H7NO
Mr315.38
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)5.9774 (2), 14.8531 (6), 18.4827 (7)
β (°) 96.029 (3)
V3)1631.87 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.21 × 0.20 × 0.18
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.982, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
23310, 2902, 2061
Rint0.049
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.193, 1.06
No. of reflections2902
No. of parameters209
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.36

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.862.132.975 (3)166.0
C6—H6A···O2ii0.932.583.370 (4)143.0
N2—H2B···O1iii0.862.453.121 (3)135.3
N3—H3B···O20.862.122.895 (3)149.1
N4—H4B···O2ii0.862.313.079 (3)148.4
Symmetry codes: (i) x+1, y+1, z; (ii) x1, y, z; (iii) x+1, y, z.
 

Acknowledgements

The authors thank the Universities and Colleges Natural Science Foundation of Henan (grant No. 2009 A150011) and the Natural Science Foundation of China (grant No. 200903036).

References

First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDe Ranter, C. J., Blaton, N. M. & Peeters, O. M. (1979). Acta Cryst. B35, 1295–1297.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationHamuro, Y., Marshall, W. J. & Scialdone, M. A. (1999). J. Comb. Chem. 1, 163–172.  Web of Science CSD CrossRef CAS Google Scholar
First citationJian, F. F., Xiao, H. L. & Wang, Y. (2003). Jiegou Huaxue (Chin. J. Struct. Chem.), 22, 55–59.  CAS Google Scholar
First citationMelis, A., Nemson, J. A. & Hanison, M. A. (1992). Biochim. Biophys. Acta, 1100, 312–320.  CrossRef CAS Google Scholar
First citationMishra, U., Kashyap, A. K. & Pande, J. (1993). Environ. Technol. 14, 373–378.  CrossRef CAS Google Scholar
First citationPrasad, S. M., Singh, J. B., Rai, L. C. & Kumar, H. D. (1991). FEMS Microbiol. Lett. 82, 95–100.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSundari, D. S. & Raghavendra, A. S. (1990). Photosynth. Res. 23, 95–99.  CrossRef PubMed Web of Science Google Scholar
First citationVerma, K. & Singh, D. P. (1995). Curr. Microbiol. 30, 373–379.  CrossRef CAS Web of Science Google Scholar
First citationWang, Y., Jian, F.-F., Yang, X.-J., Lu, L.-D., Wang, X., Fun, H.-K., Chantrapromma, S. & Razak, I. A. (2001). Acta Cryst. E57, o312–o314.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWei, C.-X., Chen, J.-X., Li, Z.-S., Lan, T.-Y. & Huang, Y.-B. (2006). Acta Cryst. E62, o1719–o1721.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds