organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 4-(4-meth­­oxy­phen­yl)-2-methyl-5-oxo-1,4,5,6,7,8-hexa­hydro­quinoline-3-carboxyl­ate

aInstitute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, People's Republic of China
*Correspondence e-mail: hmilydear@163.com

(Received 4 September 2010; accepted 5 October 2010; online 9 October 2010)

In the title compound, C19H21NO4, the dihydro­pyridine ring adopts a distorted screw-boat conformation. The fused cyclo­hexenone ring forms a slightly distorted envelope conformation. The dihedral angle between the mean planes of the benzene and heterocyclic rings is 86.1 (7)°. An intra­molecular C—H⋯O inter­action occurs. In the crystal, mol­ecules are linked by inter­molecular N—H⋯O hydrogen bonds, forming an infinite chain along the c axis.

Related literature

For the physiological activity of 1,4-dihydro­pyridine derivatives, see: Davies et al. (2005[Davies, D. T., Markwell, R. E., Pearson, N. D. & Takle, A. K. (2005). US Patent 6 911 442.]); Rose & Draeger (1992[Rose, U. & Draeger, M. (1992). J. Med. Chem. A, 35, 2238-2243.]); Warrior et al. (2005[Warrior, P., Heiman, D. F., Fugiel, J. A. & Petracek, P. D. (2005). WO Patent 2005060748.]).

[Scheme 1]

Experimental

Crystal data
  • C19H21NO4

  • Mr = 327.37

  • Monoclinic, P 21 /c

  • a = 13.628 (3) Å

  • b = 8.6300 (17) Å

  • c = 14.577 (3) Å

  • β = 98.39 (3)°

  • V = 1696.0 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.05 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.982, Tmax = 0.996

  • 3232 measured reflections

  • 3040 independent reflections

  • 1300 reflections with I > 2σ(I)

  • Rint = 0.078

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.070

  • wR(F2) = 0.128

  • S = 1.00

  • 3040 reflections

  • 217 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N—H0A⋯O1i 0.86 2.05 2.884 (4) 163
C10—H10A⋯O3 0.96 2.08 2.818 (5) 132
Symmetry code: (i) [x, -y-{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1996[Harms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The development of new methods for the synthesis of 1,4-dihydropyridine derivatives is a motive for the current study. 1,4-dihydropyridine derivatives attract interest because of their presence in numerous natural products. In addition, they exhibit calcium modulatory properties (Rose & Draeger, 1992), antibacterial (Davies et al., 2005) and fungicidal activity (Warrior et al., 2005).

In the title compound the heterocyclic ring adopts a distorted screw-boat conformation (Fig. 1). Atoms C7 and N deviate from the mean plane of C1/C6/C8/C9 by 0.177 (3)Å and 0.067 (7)Å, respectively. The fused cyclohexene ring displays a slightly distorted envelope conformation, with atom C3 out of the plane of the atoms by -0.314 (5)°. The dihedral angle between the mean planes of the benzene and heterocyclic rings is 86.1 (7)°. The methoxy group is nearly coplanar with the attached benzene ring with a C19/O4/C16/C17 torsion angle of -4.1 (6)°. Crystal packing is stabilized by an intermolecular N—H···O hydrogen bond forming an infinite chain of molecules along the c axis (Table 1, Fig. 2).

Related literature top

For the physiological activity of 1,4-dihydropyridine derivatives, see: Davies et al. (2005); Rose & Draeger (1992); Warrior et al. (2005).

Experimental top

A mixture of 4-methoxybenzaldehyde (2 mmol), methyl 3-oxobutanoate (4 mmol), cyclohexane-1,3-dione (2 mmol) and NH4CO3 (2 mmol) was stirred in water (2 ml) at 353 K. After completion of the reaction (TLC monitoring),the mixture was diluted with cold water (20 ml) and filtered to obtain the precipitated product which was further purified by recrystallization. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution.

Refinement top

Atom H0A was located in a difference map and refined isotropically. All other H atoms were positioned geometrically and treated as riding, with C—H distances in the range 0.93–0.98 Å and Uiso(H) = 1.2 or 1.5 times Ueq(C). In the absence of significant anomalous dispersion effects, Friedel pairs were merged.

Structure description top

The development of new methods for the synthesis of 1,4-dihydropyridine derivatives is a motive for the current study. 1,4-dihydropyridine derivatives attract interest because of their presence in numerous natural products. In addition, they exhibit calcium modulatory properties (Rose & Draeger, 1992), antibacterial (Davies et al., 2005) and fungicidal activity (Warrior et al., 2005).

In the title compound the heterocyclic ring adopts a distorted screw-boat conformation (Fig. 1). Atoms C7 and N deviate from the mean plane of C1/C6/C8/C9 by 0.177 (3)Å and 0.067 (7)Å, respectively. The fused cyclohexene ring displays a slightly distorted envelope conformation, with atom C3 out of the plane of the atoms by -0.314 (5)°. The dihedral angle between the mean planes of the benzene and heterocyclic rings is 86.1 (7)°. The methoxy group is nearly coplanar with the attached benzene ring with a C19/O4/C16/C17 torsion angle of -4.1 (6)°. Crystal packing is stabilized by an intermolecular N—H···O hydrogen bond forming an infinite chain of molecules along the c axis (Table 1, Fig. 2).

For the physiological activity of 1,4-dihydropyridine derivatives, see: Davies et al. (2005); Rose & Draeger (1992); Warrior et al. (2005).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The packing of the title compound, viewed along the a axis. Dashed lines indicate N—H···O hydrogen bonds.
Methyl 4-(4-methoxyphenyl)-2-methyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate top
Crystal data top
C19H21NO4F(000) = 696
Mr = 327.37Dx = 1.282 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 13.628 (3) Åθ = 9–12°
b = 8.6300 (17) ŵ = 0.09 mm1
c = 14.577 (3) ÅT = 293 K
β = 98.39 (3)°Block, colourless
V = 1696.0 (6) Å30.20 × 0.20 × 0.05 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
1300 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.078
Graphite monochromatorθmax = 25.3°, θmin = 1.5°
ω/2θ scansh = 016
Absorption correction: ψ scan
(North et al., 1968)
k = 010
Tmin = 0.982, Tmax = 0.996l = 1717
3232 measured reflections3 standard reflections every 200 reflections
3040 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.070Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.030P)2]
where P = (Fo2 + 2Fc2)/3
3040 reflections(Δ/σ)max < 0.001
217 parametersΔρmax = 0.16 e Å3
1 restraintΔρmin = 0.19 e Å3
Crystal data top
C19H21NO4V = 1696.0 (6) Å3
Mr = 327.37Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.628 (3) ŵ = 0.09 mm1
b = 8.6300 (17) ÅT = 293 K
c = 14.577 (3) Å0.20 × 0.20 × 0.05 mm
β = 98.39 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1300 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.078
Tmin = 0.982, Tmax = 0.9963 standard reflections every 200 reflections
3232 measured reflections intensity decay: 1%
3040 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0701 restraint
wR(F2) = 0.128H-atom parameters constrained
S = 1.00Δρmax = 0.16 e Å3
3040 reflectionsΔρmin = 0.19 e Å3
217 parameters
Special details top

Experimental. Absorption correction: semi-empirical absorption based on psi-scan (North et al., 1968)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N0.7089 (2)0.1346 (4)1.10531 (19)0.0561 (9)
H0A0.72390.16171.16240.067*
O10.7167 (2)0.2573 (3)0.79342 (17)0.0675 (8)
C10.7348 (2)0.2312 (4)1.0380 (2)0.0437 (9)
O30.5828 (3)0.3072 (4)1.0342 (2)0.1228 (14)
O20.5564 (2)0.2194 (3)0.8893 (2)0.0691 (8)
C20.7719 (3)0.3882 (4)1.0694 (2)0.0579 (11)
H2A0.71610.45451.07640.069*
H2B0.81300.37951.12940.069*
C30.8315 (3)0.4604 (5)1.0013 (3)0.0783 (14)
H3A0.84500.56801.01780.094*
H3B0.89440.40691.00400.094*
O41.0127 (2)0.2744 (3)0.7949 (2)0.0800 (9)
C40.7756 (3)0.4514 (5)0.9038 (3)0.0713 (13)
H4A0.81940.48410.86060.086*
H4B0.72040.52340.89830.086*
C50.7367 (3)0.2935 (5)0.8765 (3)0.0571 (11)
C60.7201 (3)0.1864 (4)0.9470 (2)0.0444 (9)
C70.6864 (3)0.0254 (4)0.9202 (2)0.0488 (10)
H7A0.63180.03430.86860.059*
C80.6458 (3)0.0595 (4)0.9990 (3)0.0477 (9)
C90.6599 (3)0.0044 (4)1.0854 (3)0.0486 (10)
C100.6220 (3)0.0715 (4)1.1683 (2)0.0673 (12)
H10A0.58840.16731.15140.101*
H10B0.67670.09031.21650.101*
H10C0.57670.00001.19020.101*
C110.5931 (3)0.2038 (5)0.9799 (3)0.0648 (12)
C120.5003 (4)0.3605 (5)0.8655 (3)0.1003 (17)
H12A0.47850.36310.79980.151*
H12B0.54160.44870.88320.151*
H12C0.44370.36280.89770.151*
C130.7696 (3)0.0644 (4)0.8845 (2)0.0432 (9)
C140.8566 (3)0.0938 (4)0.9442 (2)0.0570 (11)
H14A0.86190.06461.00610.068*
C150.9360 (3)0.1667 (5)0.9120 (3)0.0635 (12)
H15A0.99370.18680.95270.076*
C160.9296 (3)0.2093 (5)0.8199 (3)0.0577 (11)
C170.8445 (3)0.1823 (4)0.7607 (2)0.0519 (10)
H17A0.83930.21150.69880.062*
C180.7645 (3)0.1101 (4)0.7942 (2)0.0500 (10)
H18A0.70630.09270.75370.060*
C191.0128 (3)0.3077 (6)0.6991 (3)0.0961 (17)
H19A1.07520.35310.69080.144*
H19B0.96020.37880.67810.144*
H19C1.00320.21350.66380.144*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N0.080 (2)0.055 (2)0.0358 (17)0.0012 (18)0.0164 (16)0.0055 (16)
O10.096 (2)0.071 (2)0.0380 (14)0.0014 (16)0.0202 (15)0.0075 (15)
C10.047 (2)0.039 (2)0.046 (2)0.0057 (18)0.0089 (17)0.0011 (18)
O30.212 (4)0.069 (2)0.091 (3)0.048 (3)0.033 (3)0.015 (2)
O20.076 (2)0.0566 (19)0.074 (2)0.0125 (16)0.0078 (16)0.0084 (16)
C20.072 (3)0.047 (3)0.055 (2)0.002 (2)0.008 (2)0.002 (2)
C30.113 (4)0.055 (3)0.066 (3)0.012 (3)0.012 (3)0.005 (2)
O40.072 (2)0.092 (2)0.079 (2)0.0276 (18)0.0220 (16)0.0123 (18)
C40.096 (4)0.060 (3)0.061 (3)0.001 (3)0.022 (3)0.008 (2)
C50.071 (3)0.043 (2)0.060 (3)0.010 (2)0.018 (2)0.013 (2)
C60.052 (2)0.044 (2)0.038 (2)0.0081 (19)0.0100 (17)0.0026 (18)
C70.056 (2)0.040 (2)0.053 (2)0.0059 (19)0.016 (2)0.0072 (18)
C80.049 (2)0.040 (2)0.058 (2)0.0060 (19)0.0200 (19)0.007 (2)
C90.066 (3)0.037 (2)0.048 (2)0.0044 (19)0.025 (2)0.0020 (19)
C100.100 (3)0.051 (3)0.057 (2)0.002 (2)0.034 (2)0.009 (2)
C110.085 (3)0.044 (3)0.069 (3)0.007 (3)0.022 (3)0.003 (2)
C120.108 (4)0.072 (3)0.126 (4)0.006 (3)0.032 (3)0.026 (3)
C130.047 (2)0.037 (2)0.044 (2)0.0087 (18)0.0037 (18)0.0025 (17)
C140.073 (3)0.054 (3)0.042 (2)0.009 (2)0.002 (2)0.0095 (19)
C150.071 (3)0.063 (3)0.056 (3)0.001 (2)0.005 (2)0.002 (2)
C160.061 (3)0.054 (3)0.062 (3)0.010 (2)0.021 (2)0.008 (2)
C170.068 (3)0.047 (2)0.042 (2)0.013 (2)0.014 (2)0.0054 (18)
C180.052 (2)0.053 (3)0.046 (2)0.002 (2)0.0082 (18)0.004 (2)
C190.086 (4)0.116 (4)0.093 (4)0.036 (3)0.035 (3)0.007 (3)
Geometric parameters (Å, º) top
N—C11.372 (4)C7—H7A0.9800
N—C91.383 (4)C8—C91.334 (4)
N—H0A0.8600C8—C111.444 (5)
O1—C51.242 (4)C9—C101.498 (4)
C1—C61.367 (4)C10—H10A0.9600
C1—C21.495 (4)C10—H10B0.9600
O3—C111.214 (4)C10—H10C0.9600
O2—C111.349 (4)C12—H12A0.9600
O2—C121.453 (4)C12—H12B0.9600
C2—C31.506 (5)C12—H12C0.9600
C2—H2A0.9700C13—C181.366 (4)
C2—H2B0.9700C13—C141.388 (4)
C3—C41.514 (5)C14—C151.390 (5)
C3—H3A0.9700C14—H14A0.9300
C3—H3B0.9700C15—C161.383 (5)
O4—C161.361 (4)C15—H15A0.9300
O4—C191.426 (4)C16—C171.361 (5)
C4—C51.495 (5)C17—C181.403 (4)
C4—H4A0.9700C17—H17A0.9300
C4—H4B0.9700C18—H18A0.9300
C5—C61.425 (4)C19—H19A0.9600
C6—C71.497 (4)C19—H19B0.9600
C7—C131.527 (4)C19—H19C0.9600
C7—C81.532 (4)
C1—N—C9122.9 (3)C8—C9—C10127.2 (4)
C1—N—H0A118.5N—C9—C10112.3 (3)
C9—N—H0A118.5C9—C10—H10A109.5
C6—C1—N120.4 (3)C9—C10—H10B109.5
C6—C1—C2123.3 (3)H10A—C10—H10B109.5
N—C1—C2116.2 (3)C9—C10—H10C109.5
C11—O2—C12115.1 (3)H10A—C10—H10C109.5
C1—C2—C3111.3 (3)H10B—C10—H10C109.5
C1—C2—H2A109.4O3—C11—O2120.2 (4)
C3—C2—H2A109.4O3—C11—C8127.5 (4)
C1—C2—H2B109.4O2—C11—C8112.2 (4)
C3—C2—H2B109.4O2—C12—H12A109.5
H2A—C2—H2B108.0O2—C12—H12B109.5
C2—C3—C4110.6 (4)H12A—C12—H12B109.5
C2—C3—H3A109.5O2—C12—H12C109.5
C4—C3—H3A109.5H12A—C12—H12C109.5
C2—C3—H3B109.5H12B—C12—H12C109.5
C4—C3—H3B109.5C18—C13—C14118.0 (3)
H3A—C3—H3B108.1C18—C13—C7122.6 (3)
C16—O4—C19117.7 (3)C14—C13—C7119.3 (3)
C5—C4—C3114.0 (3)C13—C14—C15120.4 (3)
C5—C4—H4A108.7C13—C14—H14A119.8
C3—C4—H4A108.7C15—C14—H14A119.8
C5—C4—H4B108.7C16—C15—C14120.4 (4)
C3—C4—H4B108.7C16—C15—H15A119.8
H4A—C4—H4B107.6C14—C15—H15A119.8
O1—C5—C6120.4 (4)C17—C16—O4124.5 (4)
O1—C5—C4120.5 (4)C17—C16—C15119.8 (4)
C6—C5—C4119.1 (3)O4—C16—C15115.6 (4)
C1—C6—C5120.0 (4)C16—C17—C18119.2 (3)
C1—C6—C7120.7 (3)C16—C17—H17A120.4
C5—C6—C7119.2 (3)C18—C17—H17A120.4
C6—C7—C13110.2 (3)C13—C18—C17122.1 (3)
C6—C7—C8112.3 (3)C13—C18—H18A119.0
C13—C7—C8112.3 (3)C17—C18—H18A119.0
C6—C7—H7A107.2O4—C19—H19A109.5
C13—C7—H7A107.2O4—C19—H19B109.5
C8—C7—H7A107.2H19A—C19—H19B109.5
C9—C8—C11119.3 (4)O4—C19—H19C109.5
C9—C8—C7121.3 (4)H19A—C19—H19C109.5
C11—C8—C7119.4 (3)H19B—C19—H19C109.5
C8—C9—N120.4 (3)
C9—N—C1—C65.7 (5)C11—C8—C9—C103.5 (6)
C9—N—C1—C2170.1 (3)C7—C8—C9—C10177.9 (3)
C6—C1—C2—C325.1 (5)C1—N—C9—C88.0 (5)
N—C1—C2—C3159.3 (3)C1—N—C9—C10168.2 (3)
C1—C2—C3—C449.6 (5)C12—O2—C11—O33.8 (6)
C2—C3—C4—C549.9 (5)C12—O2—C11—C8178.5 (3)
C3—C4—C5—O1158.2 (4)C9—C8—C11—O322.9 (7)
C3—C4—C5—C623.5 (6)C7—C8—C11—O3155.7 (4)
N—C1—C6—C5173.0 (3)C9—C8—C11—O2159.6 (4)
C2—C1—C6—C52.4 (5)C7—C8—C11—O221.8 (5)
N—C1—C6—C76.9 (5)C6—C7—C13—C18112.6 (4)
C2—C1—C6—C7177.6 (3)C8—C7—C13—C18121.4 (4)
O1—C5—C6—C1174.9 (4)C6—C7—C13—C1463.6 (4)
C4—C5—C6—C13.4 (5)C8—C7—C13—C1462.4 (4)
O1—C5—C6—C75.1 (5)C18—C13—C14—C150.4 (5)
C4—C5—C6—C7176.7 (3)C7—C13—C14—C15175.9 (3)
C1—C6—C7—C13110.8 (4)C13—C14—C15—C160.7 (6)
C5—C6—C7—C1369.3 (4)C19—O4—C16—C174.1 (6)
C1—C6—C7—C815.3 (5)C19—O4—C16—C15174.6 (4)
C5—C6—C7—C8164.7 (3)C14—C15—C16—C171.2 (6)
C6—C7—C8—C913.1 (5)C14—C15—C16—O4177.5 (3)
C13—C7—C8—C9111.8 (4)O4—C16—C17—C18178.0 (4)
C6—C7—C8—C11168.3 (3)C15—C16—C17—C180.6 (6)
C13—C7—C8—C1166.8 (4)C14—C13—C18—C171.1 (5)
C11—C8—C9—N179.2 (3)C7—C13—C18—C17175.1 (3)
C7—C8—C9—N2.2 (6)C16—C17—C18—C130.6 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H0A···O1i0.862.052.884 (4)163
C10—H10A···O30.962.082.818 (5)132
Symmetry code: (i) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC19H21NO4
Mr327.37
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)13.628 (3), 8.6300 (17), 14.577 (3)
β (°) 98.39 (3)
V3)1696.0 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.20 × 0.20 × 0.05
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.982, 0.996
No. of measured, independent and
observed [I > 2σ(I)] reflections
3232, 3040, 1300
Rint0.078
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.070, 0.128, 1.00
No. of reflections3040
No. of parameters217
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.19

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H0A···O1i0.862.052.884 (4)163
C10—H10A···O30.962.082.818 (5)132
Symmetry code: (i) x, y1/2, z+1/2.
 

Acknowledgements

This work was supported by the President of the Chinese Academy of Forestry Foundation (CAFYBB2008009).

References

First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationDavies, D. T., Markwell, R. E., Pearson, N. D. & Takle, A. K. (2005). US Patent 6 911 442.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationRose, U. & Draeger, M. (1992). J. Med. Chem. A, 35, 2238–2243.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWarrior, P., Heiman, D. F., Fugiel, J. A. & Petracek, P. D. (2005). WO Patent 2005060748.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds