organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(1,2-Di­phenyl­ethen­yl)-2-phenyl-1H-indole

aDepartment of Physics, The New College (Autonomous), Chennai 600 014, India, and bOrganic Chemistry Division, Central Leather Research Institute, Chennai 600 020, India
*Correspondence e-mail: mnizam_new@yahoo.in

(Received 9 September 2010; accepted 1 October 2010; online 9 October 2010)

In the title compound, C28H21N, the planar pyrrole ring makes dihedral angles of 1.5 (2), 42.4 (2), 65.4 (2) and 79.7 (1)°, with the least squares planes of the four phenyl rings. The mol­ecular structure and crystal packing are stabilized by weak inter- and intra­molecular C—H⋯π inter­actions.

Related literature

For applications of heteroarenes, see: Ritleng et al. (2002[Ritleng, V., Sirlin, C. & Pfeffer, M. (2002). Chem. Rev. 102, 1731-1769.]). For their pharmaceutical properties and related reactions, see: Sundberg (1996[Sundberg, R. J. (1996). Indoles. London: Academic Press.]); Ferrer et al. (2007[Ferrer, C., Amijs, C. H. M. & Echavarren, A. M. (2007). Chem. Eur. J. pp. 1358-1373.]); Nair et al. (2004[Nair, V., Ros, S., Jayan, C. N. & Pillai, B. S. (2004). Tetrahedron 60, 1959-1982.]; Sakai et al. (2006[Sakai, N., Annaka, K. & Konakahara, T. (2006). Tetrahedron Lett. 47, 631-634.], 2008[Sakai, N., Annaka, K., Fujita, A., Sato, A. & Konakahara, T. (2008). J. Org. Chem. 73, 4160-4165.]); Cheng et al. (2007[Cheng, C. H., Bhuvaneswari, S. & Jeganmohan, M. (2007). Chem. Eur. J. pp. 8285-8293.]); For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For bond distances and angles in related structures, see: NizamMohideen et al. (2010a[NizamMohideen, M., Bhaskar, G. & Perumal, P. T. (2010a). Acta Cryst. E66, o2506.],b[NizamMohideen, M., Bhaskar, G. & Perumal, P. T. (2010b). Acta Cryst. E66, o2514.]).

[Scheme 1]

Experimental

Crystal data
  • C28H21N

  • Mr = 371.46

  • Monoclinic, P 21 /c

  • a = 11.4227 (6) Å

  • b = 8.6998 (5) Å

  • c = 20.6203 (13) Å

  • β = 94.413 (4)°

  • V = 2043.1 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 298 K

  • 0.32 × 0.28 × 0.22 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer'

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.978, Tmax = 0.985

  • 14625 measured reflections

  • 4674 independent reflections

  • 1701 reflections with I > 2σ(I)

  • Rint = 0.057

Refinement
  • R[F2 > 2σ(F2)] = 0.070

  • wR(F2) = 0.221

  • S = 1.01

  • 4674 reflections

  • 266 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the N1/C1/C2/C3/C8 and C3–C8 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18⋯Cg1 0.93 2.92 3.562 (2) 127
C20—H20⋯Cg2i 0.93 2.92 3.825 (2) 164
Symmetry code: (i) [x, -y-{\script{1\over 2}}, z-{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97 and PLATON.

Supporting information


Comment top

The indole ring system exists ubiquitously in natural products, and exhibits biological and pharmaceutical properties (Sundberg, 1996). Ferrer and co-workers reported a systematic investigation on the gold-catalyzed intra- and intermolecular addition of indoles to alkynes (Ferrer et al., 2007). Cheng and co-workers investigated the reaction of indoles with alkynyl alcohols employing platinum as a catalyst (Cheng et al., 2007). Development of heteroarene functionalization has attracted much attention of their wide range of applications such as fluorescent dyes, synthetic analogues of natural products, and pharmaceuticals (Ritleng et al., 2002). There has been considerable interest in the catalytic use of indium(III) halides in organic synthesis (Nair et al., 2004), due to their unique properties such as non-toxicity, stability in air, and water tolerance (Sakai et al., 2006). Indium(III) bromide is known to catalyze intramolecular cyclization of 2-alkynylanilines (Sakai et al., 2008). In continuation of our work in this area, the title compound, C28H21N, (I) has been prepared and its crystal structure is reported.

In the title compound the pyrrole ring is planar, the maximum deviation from the least squares plane being -0.009 (1)Å for atom N1. The dihedral angle formed by the least squares planes of the pyrrole ring and the four benzene rings is 1.5 (2)° (C3—C8), 42.4 (2)° (C9—C14), 65.4 (2)° (C17—C22) and 79.7 (1)° (C23—C28), respectively. The dihedral angle between the phenyl rings C9—C14 and C23—C28 is 88.5 (2)°. The dihedral angle between benzene rings C3—C8 and C17—C22 is 66.7 (7)° and between rings C17—C22 and C23—C28 is 87.0 (2)°. All bond lengths and angles are within normal ranges (Allen et al., 1987) and comparable with those in a previously reported structure (NizamMohideen et al., 2010a,b). The molecular packing is stabilized by an intra and intermolecular C—H···π interactions (Table 1).

Related literature top

For applications of heteroarenes, see: Ritleng et al. (2002). For their pharmaceutical properties and related reactions, see: Sundberg et al. (1996); Ferrer et al. (2007); Nair et al. (2004; Sakai et al. (2006, 2008); Cheng et al. (2007); For standard bond lengths, see: Allen et al. (1987). For bond distances and angles in related structures, see: NizamMohideen et al. (2010a,b).

Experimental top

A mixture of diphenylacetylene (2.4 mmol), 2-Phenyl indole (2 mmol), indium tribromide (0.2 mmol) in toluene (4 ml) was stirred at 383° K temperature for 2.5 h. After completion of the reaction as indicated by TLC, the reaction mixture was diluted with water and extracted with ethyl acetate. The combined organic layers were dried over anhydrous Na2SO4, concentrated in vacuo and purified by column chromatography on silica gel (Merck, 100 - 200 mesh) to afford the desired product after crystallization.

Refinement top

H1N was located by a difference fourier map and refined isotropically. All other H atoms were positioned geometrically, with C—H = 0.93 and N—H = 0.89Å constrained to ride on their parent atoms, with Uiso(H) = xUeq(C, N), where x = 1.5 for methyl H and x = 1.2 for all H atoms.

Structure description top

The indole ring system exists ubiquitously in natural products, and exhibits biological and pharmaceutical properties (Sundberg, 1996). Ferrer and co-workers reported a systematic investigation on the gold-catalyzed intra- and intermolecular addition of indoles to alkynes (Ferrer et al., 2007). Cheng and co-workers investigated the reaction of indoles with alkynyl alcohols employing platinum as a catalyst (Cheng et al., 2007). Development of heteroarene functionalization has attracted much attention of their wide range of applications such as fluorescent dyes, synthetic analogues of natural products, and pharmaceuticals (Ritleng et al., 2002). There has been considerable interest in the catalytic use of indium(III) halides in organic synthesis (Nair et al., 2004), due to their unique properties such as non-toxicity, stability in air, and water tolerance (Sakai et al., 2006). Indium(III) bromide is known to catalyze intramolecular cyclization of 2-alkynylanilines (Sakai et al., 2008). In continuation of our work in this area, the title compound, C28H21N, (I) has been prepared and its crystal structure is reported.

In the title compound the pyrrole ring is planar, the maximum deviation from the least squares plane being -0.009 (1)Å for atom N1. The dihedral angle formed by the least squares planes of the pyrrole ring and the four benzene rings is 1.5 (2)° (C3—C8), 42.4 (2)° (C9—C14), 65.4 (2)° (C17—C22) and 79.7 (1)° (C23—C28), respectively. The dihedral angle between the phenyl rings C9—C14 and C23—C28 is 88.5 (2)°. The dihedral angle between benzene rings C3—C8 and C17—C22 is 66.7 (7)° and between rings C17—C22 and C23—C28 is 87.0 (2)°. All bond lengths and angles are within normal ranges (Allen et al., 1987) and comparable with those in a previously reported structure (NizamMohideen et al., 2010a,b). The molecular packing is stabilized by an intra and intermolecular C—H···π interactions (Table 1).

For applications of heteroarenes, see: Ritleng et al. (2002). For their pharmaceutical properties and related reactions, see: Sundberg et al. (1996); Ferrer et al. (2007); Nair et al. (2004; Sakai et al. (2006, 2008); Cheng et al. (2007); For standard bond lengths, see: Allen et al. (1987). For bond distances and angles in related structures, see: NizamMohideen et al. (2010a,b).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: 'SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009)'.

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme and 50% probability displacement ellipsoids. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. C—H···π interactions (dashed lines) in the title compound. Cg denotes the ring centroid. [Symmetry codes: (i) x,y,z; (ii) x,1/2-y,-1/2+z]
3-(1,2-Diphenylethenyl)-2-phenyl-1H-indole top
Crystal data top
C28H21NF(000) = 784
Mr = 371.46Dx = 1.208 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1461 reflections
a = 11.4227 (6) Åθ = 2.5–18.8°
b = 8.6998 (5) ŵ = 0.07 mm1
c = 20.6203 (13) ÅT = 298 K
β = 94.413 (4)°Block, colourless
V = 2043.1 (2) Å30.32 × 0.28 × 0.22 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer'
4674 independent reflections
Radiation source: fine-focus sealed tube1701 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
ω and φ scansθmax = 28.4°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1513
Tmin = 0.978, Tmax = 0.985k = 1110
14625 measured reflectionsl = 2727
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.070Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.221H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0923P)2]
where P = (Fo2 + 2Fc2)/3
4674 reflections(Δ/σ)max < 0.001
266 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.14 e Å3
Crystal data top
C28H21NV = 2043.1 (2) Å3
Mr = 371.46Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.4227 (6) ŵ = 0.07 mm1
b = 8.6998 (5) ÅT = 298 K
c = 20.6203 (13) Å0.32 × 0.28 × 0.22 mm
β = 94.413 (4)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer'
4674 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
1701 reflections with I > 2σ(I)
Tmin = 0.978, Tmax = 0.985Rint = 0.057
14625 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0700 restraints
wR(F2) = 0.221H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.30 e Å3
4674 reflectionsΔρmin = 0.14 e Å3
266 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6739 (3)0.0471 (4)0.09769 (15)0.0597 (9)
C20.7394 (3)0.1773 (4)0.11004 (14)0.0567 (8)
C30.6655 (3)0.2848 (4)0.14155 (14)0.0553 (8)
C40.6798 (3)0.4337 (4)0.16344 (16)0.0663 (9)
H40.75070.48420.15950.080*
C50.5896 (3)0.5078 (4)0.19108 (15)0.0716 (10)
H50.60000.60820.20590.086*
C60.4831 (3)0.4337 (5)0.19703 (17)0.0770 (11)
H60.42300.48420.21630.092*
C70.4662 (3)0.2860 (5)0.17452 (17)0.0755 (11)
H70.39510.23560.17770.091*
C80.5580 (3)0.2157 (4)0.14725 (16)0.0606 (9)
C90.7056 (3)0.1003 (4)0.06783 (15)0.0594 (9)
C100.6325 (3)0.1789 (5)0.02351 (19)0.0823 (11)
H100.55890.13830.01110.099*
C110.6650 (4)0.3161 (5)0.0031 (2)0.0910 (12)
H110.61360.36840.03250.109*
C120.7729 (5)0.3737 (5)0.0142 (2)0.0926 (13)
H120.79630.46490.00450.111*
C130.8484 (3)0.3000 (5)0.0588 (2)0.0807 (11)
H130.92140.34260.07120.097*
C140.8157 (3)0.1631 (4)0.08506 (17)0.0687 (10)
H140.86750.11190.11460.082*
C150.8582 (3)0.2075 (4)0.09030 (17)0.0633 (9)
C160.8850 (3)0.1954 (4)0.02908 (16)0.0647 (9)
H160.96490.19980.02330.078*
C170.8091 (3)0.1761 (4)0.03113 (15)0.0558 (8)
C180.6996 (3)0.2448 (4)0.04003 (16)0.0598 (9)
H180.66740.29210.00510.072*
C190.6376 (3)0.2438 (4)0.1002 (2)0.0757 (10)
H190.56480.29180.10590.091*
C200.6835 (4)0.1720 (5)0.15140 (19)0.0947 (13)
H200.64190.17270.19200.114*
C210.7894 (4)0.0995 (5)0.1438 (2)0.0995 (13)
H210.81890.04840.17870.119*
C220.8522 (3)0.1024 (4)0.08424 (19)0.0801 (11)
H220.92490.05410.07930.096*
C230.9520 (3)0.2436 (4)0.14166 (17)0.0627 (9)
C241.0480 (3)0.3370 (5)0.1295 (2)0.0875 (12)
H241.05140.38050.08850.105*
C251.1354 (3)0.3657 (5)0.1754 (2)0.1007 (14)
H251.19770.42870.16620.121*
C261.1321 (4)0.3016 (6)0.2357 (2)0.1003 (14)
H261.19420.31740.26690.120*
C271.0389 (4)0.2150 (5)0.2505 (2)0.0953 (13)
H271.03620.17390.29200.114*
C280.9482 (3)0.1884 (4)0.20368 (19)0.0793 (11)
H280.88340.13200.21440.095*
N10.5641 (3)0.0706 (4)0.11907 (15)0.0738 (9)
H1N0.506 (3)0.001 (5)0.1187 (18)0.107 (15)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.051 (2)0.076 (3)0.053 (2)0.0087 (17)0.0059 (15)0.0111 (17)
C20.061 (2)0.065 (2)0.0440 (19)0.0007 (18)0.0009 (15)0.0004 (16)
C30.0518 (19)0.070 (2)0.0433 (19)0.0028 (17)0.0002 (14)0.0064 (17)
C40.067 (2)0.072 (3)0.060 (2)0.0061 (19)0.0086 (17)0.0030 (19)
C50.081 (3)0.073 (2)0.061 (2)0.008 (2)0.0041 (19)0.0043 (19)
C60.064 (2)0.106 (3)0.062 (2)0.025 (2)0.0081 (18)0.001 (2)
C70.053 (2)0.104 (3)0.070 (3)0.004 (2)0.0087 (17)0.016 (2)
C80.059 (2)0.063 (2)0.059 (2)0.0065 (18)0.0016 (16)0.0055 (18)
C90.065 (2)0.061 (2)0.053 (2)0.0056 (18)0.0043 (17)0.0070 (17)
C100.076 (3)0.085 (3)0.083 (3)0.013 (2)0.010 (2)0.004 (2)
C110.112 (4)0.076 (3)0.083 (3)0.020 (3)0.008 (3)0.017 (2)
C120.124 (4)0.072 (3)0.086 (3)0.013 (3)0.036 (3)0.011 (2)
C130.084 (3)0.071 (3)0.089 (3)0.000 (2)0.020 (2)0.009 (2)
C140.076 (3)0.064 (2)0.067 (2)0.0036 (19)0.0091 (19)0.0002 (19)
C150.058 (2)0.074 (2)0.058 (2)0.0023 (16)0.0013 (17)0.0049 (18)
C160.060 (2)0.073 (2)0.061 (2)0.0035 (17)0.0036 (18)0.0031 (18)
C170.0472 (19)0.068 (2)0.051 (2)0.0121 (16)0.0044 (15)0.0015 (17)
C180.066 (2)0.060 (2)0.052 (2)0.0105 (17)0.0013 (17)0.0002 (16)
C190.079 (2)0.072 (3)0.073 (3)0.0073 (19)0.012 (2)0.010 (2)
C200.115 (4)0.113 (3)0.052 (3)0.021 (3)0.011 (2)0.007 (2)
C210.100 (3)0.136 (4)0.063 (3)0.016 (3)0.008 (2)0.032 (3)
C220.065 (2)0.100 (3)0.076 (3)0.000 (2)0.009 (2)0.022 (2)
C230.053 (2)0.071 (2)0.062 (2)0.0034 (17)0.0091 (17)0.0047 (18)
C240.063 (2)0.128 (4)0.071 (3)0.006 (2)0.002 (2)0.018 (2)
C250.058 (3)0.152 (4)0.091 (3)0.008 (2)0.002 (2)0.023 (3)
C260.062 (3)0.146 (4)0.089 (4)0.014 (3)0.016 (2)0.030 (3)
C270.091 (3)0.129 (4)0.063 (3)0.005 (3)0.011 (2)0.012 (2)
C280.076 (3)0.092 (3)0.067 (3)0.004 (2)0.013 (2)0.000 (2)
N10.060 (2)0.083 (2)0.078 (2)0.0147 (18)0.0016 (16)0.0084 (18)
Geometric parameters (Å, º) top
C1—C21.370 (4)C15—C161.326 (4)
C1—N11.376 (4)C15—C231.481 (5)
C1—C91.479 (4)C16—C171.468 (4)
C2—C31.446 (4)C16—H160.9300
C2—C151.470 (4)C17—C181.386 (4)
C3—C41.377 (4)C17—C221.391 (4)
C3—C81.380 (4)C18—C191.381 (5)
C4—C51.376 (4)C18—H180.9300
C4—H40.9300C19—C201.365 (5)
C5—C61.392 (5)C19—H190.9300
C5—H50.9300C20—C211.362 (5)
C6—C71.374 (5)C20—H200.9300
C6—H60.9300C21—C221.375 (5)
C7—C81.372 (4)C21—H210.9300
C7—H70.9300C22—H220.9300
C8—N11.393 (4)C23—C281.370 (5)
C9—C101.372 (5)C23—C241.404 (5)
C9—C141.392 (4)C24—C251.345 (5)
C10—C111.377 (5)C24—H240.9300
C10—H100.9300C25—C261.365 (6)
C11—C121.352 (5)C25—H250.9300
C11—H110.9300C26—C271.358 (5)
C12—C131.371 (5)C26—H260.9300
C12—H120.9300C27—C281.380 (5)
C13—C141.372 (5)C27—H270.9300
C13—H130.9300C28—H280.9300
C14—H140.9300N1—H1N0.89 (4)
C2—C1—N1108.4 (3)C2—C15—C23118.2 (3)
C2—C1—C9130.3 (3)C15—C16—C17130.5 (3)
N1—C1—C9121.4 (3)C15—C16—H16114.8
C1—C2—C3106.8 (3)C17—C16—H16114.8
C1—C2—C15126.7 (3)C18—C17—C22117.7 (3)
C3—C2—C15126.3 (3)C18—C17—C16122.1 (3)
C4—C3—C8117.8 (3)C22—C17—C16119.8 (3)
C4—C3—C2134.2 (3)C19—C18—C17120.8 (3)
C8—C3—C2108.0 (3)C19—C18—H18119.6
C5—C4—C3120.2 (3)C17—C18—H18119.6
C5—C4—H4119.9C20—C19—C18119.8 (4)
C3—C4—H4119.9C20—C19—H19120.1
C4—C5—C6120.5 (3)C18—C19—H19120.1
C4—C5—H5119.8C21—C20—C19120.9 (4)
C6—C5—H5119.8C21—C20—H20119.5
C7—C6—C5120.3 (3)C19—C20—H20119.5
C7—C6—H6119.9C20—C21—C22119.4 (4)
C5—C6—H6119.9C20—C21—H21120.3
C8—C7—C6117.6 (3)C22—C21—H21120.3
C8—C7—H7121.2C21—C22—C17121.3 (4)
C6—C7—H7121.2C21—C22—H22119.3
C7—C8—C3123.6 (3)C17—C22—H22119.3
C7—C8—N1129.8 (3)C28—C23—C24116.8 (3)
C3—C8—N1106.6 (3)C28—C23—C15121.4 (3)
C10—C9—C14117.7 (3)C24—C23—C15121.8 (3)
C10—C9—C1123.6 (3)C25—C24—C23122.0 (4)
C14—C9—C1118.6 (3)C25—C24—H24119.0
C9—C10—C11121.9 (4)C23—C24—H24119.0
C9—C10—H10119.0C24—C25—C26119.6 (4)
C11—C10—H10119.0C24—C25—H25120.2
C12—C11—C10119.0 (4)C26—C25—H25120.2
C12—C11—H11120.5C27—C26—C25120.5 (4)
C10—C11—H11120.5C27—C26—H26119.7
C11—C12—C13121.1 (4)C25—C26—H26119.7
C11—C12—H12119.4C26—C27—C28119.7 (4)
C13—C12—H12119.4C26—C27—H27120.2
C12—C13—C14119.6 (4)C28—C27—H27120.2
C12—C13—H13120.2C23—C28—C27121.3 (4)
C14—C13—H13120.2C23—C28—H28119.4
C13—C14—C9120.5 (4)C27—C28—H28119.4
C13—C14—H14119.7C1—N1—C8110.1 (3)
C9—C14—H14119.7C1—N1—H1N126 (2)
C16—C15—C2122.4 (3)C8—N1—H1N124 (2)
C16—C15—C23119.4 (3)
N1—C1—C2—C30.9 (3)C3—C2—C15—C16120.7 (4)
C9—C1—C2—C3178.4 (3)C1—C2—C15—C23122.5 (3)
N1—C1—C2—C15174.5 (3)C3—C2—C15—C2363.0 (4)
C9—C1—C2—C156.2 (5)C2—C15—C16—C1710.5 (6)
C1—C2—C3—C4177.6 (3)C23—C15—C16—C17173.2 (3)
C15—C2—C3—C42.2 (6)C15—C16—C17—C1835.3 (5)
C1—C2—C3—C80.1 (3)C15—C16—C17—C22152.4 (4)
C15—C2—C3—C8175.5 (3)C22—C17—C18—C192.0 (4)
C8—C3—C4—C51.2 (4)C16—C17—C18—C19170.4 (3)
C2—C3—C4—C5178.8 (3)C17—C18—C19—C201.2 (5)
C3—C4—C5—C60.2 (5)C18—C19—C20—C210.8 (6)
C4—C5—C6—C70.9 (5)C19—C20—C21—C221.8 (6)
C5—C6—C7—C80.9 (5)C20—C21—C22—C170.9 (6)
C6—C7—C8—C30.2 (5)C18—C17—C22—C211.0 (5)
C6—C7—C8—N1177.8 (3)C16—C17—C22—C21171.6 (3)
C4—C3—C8—C71.3 (5)C16—C15—C23—C28148.1 (3)
C2—C3—C8—C7179.4 (3)C2—C15—C23—C2828.3 (5)
C4—C3—C8—N1177.1 (3)C16—C15—C23—C2432.6 (5)
C2—C3—C8—N11.0 (3)C2—C15—C23—C24150.9 (3)
C2—C1—C9—C10138.1 (4)C28—C23—C24—C253.1 (5)
N1—C1—C9—C1042.6 (5)C15—C23—C24—C25177.6 (3)
C2—C1—C9—C1441.5 (5)C23—C24—C25—C260.5 (6)
N1—C1—C9—C14137.8 (3)C24—C25—C26—C273.0 (7)
C14—C9—C10—C110.6 (5)C25—C26—C27—C281.7 (6)
C1—C9—C10—C11179.8 (3)C24—C23—C28—C274.4 (5)
C9—C10—C11—C121.1 (6)C15—C23—C28—C27176.3 (3)
C10—C11—C12—C131.8 (6)C26—C27—C28—C232.1 (6)
C11—C12—C13—C142.0 (6)C2—C1—N1—C81.6 (4)
C12—C13—C14—C91.4 (5)C9—C1—N1—C8177.8 (3)
C10—C9—C14—C130.7 (5)C7—C8—N1—C1179.9 (3)
C1—C9—C14—C13179.6 (3)C3—C8—N1—C11.6 (4)
C1—C2—C15—C1653.8 (5)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the N1/C1/C2/C3/C8 and C3–C8 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C18—H18···Cg10.932.923.562 (2)127
C20—H20···Cg2i0.932.923.825 (2)164
Symmetry code: (i) x, y1/2, z3/2.

Experimental details

Crystal data
Chemical formulaC28H21N
Mr371.46
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)11.4227 (6), 8.6998 (5), 20.6203 (13)
β (°) 94.413 (4)
V3)2043.1 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.32 × 0.28 × 0.22
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer'
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.978, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
14625, 4674, 1701
Rint0.057
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.070, 0.221, 1.01
No. of reflections4674
No. of parameters266
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.14

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009), 'SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009)'.

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the N1/C1/C2/C3/C8 and C3–C8 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C18—H18···Cg10.932.923.562 (2)127
C20—H20···Cg2i0.932.923.825 (2)164
Symmetry code: (i) x, y1/2, z3/2.
 

Acknowledgements

MNM and PAM thank the Management of the New College (Autonomous), Chennai, India, for providing the necessary facilities.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCheng, C. H., Bhuvaneswari, S. & Jeganmohan, M. (2007). Chem. Eur. J. pp. 8285–8293.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFerrer, C., Amijs, C. H. M. & Echavarren, A. M. (2007). Chem. Eur. J. pp. 1358–1373.  Web of Science CSD CrossRef Google Scholar
First citationNair, V., Ros, S., Jayan, C. N. & Pillai, B. S. (2004). Tetrahedron 60, 1959–1982.  Web of Science CrossRef CAS Google Scholar
First citationNizamMohideen, M., Bhaskar, G. & Perumal, P. T. (2010a). Acta Cryst. E66, o2506.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNizamMohideen, M., Bhaskar, G. & Perumal, P. T. (2010b). Acta Cryst. E66, o2514.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRitleng, V., Sirlin, C. & Pfeffer, M. (2002). Chem. Rev. 102, 1731–1769.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSakai, N., Annaka, K., Fujita, A., Sato, A. & Konakahara, T. (2008). J. Org. Chem. 73, 4160–4165.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSakai, N., Annaka, K. & Konakahara, T. (2006). Tetrahedron Lett. 47, 631–634.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSundberg, R. J. (1996). Indoles. London: Academic Press.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds