organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Bromo-1-(3-chloro­pyridin-2-yl)-N-(4-eth­­oxy­phen­yl)-1H-pyrazole-5-carbox­amide

aSchool of Pharmacy, Tianjin Medical University, Tianjin 300070, People's Republic of China
*Correspondence e-mail: dongweili@tijmu.edu.cn

(Received 17 September 2010; accepted 7 October 2010; online 30 October 2010)

In the title compound, C17H14BrClN4O2, the pyrazole ring is almost coplanar with the benzene ring [dihedral angle = 0.5 (2)°], whereas the pyrazole ring is close to perpendicular to the 3-chloro­pyridine ring [dihedral angle = 73.7 (2)°]. An intra­molecular C—H⋯O hydrogen bond occurs. The dominant inter­action in the crystal packing is an N—H⋯N hydrogen bond, which generates a chain along the c axis. Weak inter­molecular C—H⋯O and C—H⋯N contacts are also observed

Related literature

For details of the synthesis, see: Dong et al. (2009[Dong, W. L., Xu, J. Y., Xiong, L. X., Liu, X. H. & Li, Z. M. (2009). Chin. J. Chem. 27, 579-586.]). For the biological activity of related compounds, see: Gewehr et al. (2007[Gewehr, M., Puhl, M., Dickhaut, J., Bastiaans, H. M. M., Anspaugh, D. D., Kuhn, D. G., Oloumi-Sadeghi, H. & Armes, N. (2007). WO Patent 2007082-841.]); Dong et al. (2008a[Dong, W. L., Liu, X. H., Xu, J. Y. & Li, Z. M. (2008a). J. Chem. Res. (S), pp. 530-533.],b[Dong, W. L., Xu, J. Y., Liu, X. H., Li, Z. M., Li, B. J. & Shi, Y. X. (2008b). Chem. J. Chin. Univ. 29, 1990-1994.]); Liu et al. (2007[Liu, X. H., Chen, P. Q., Wang, B. L., Li, Y. H., Wang, S. H. & Li, Z. M. (2007). Bioorg. Med. Chem. Lett. 17, 3784-3788.]); Liu et al. (2009a[Liu, X. H., Shi, Y. X., Ma, Y., He, G. R., Dong, W. L., Zhang, C. Y., Wang, B. L., Wang, S. H., Li, B. J. & Li, Z. M. (2009a). Chem. Biol. Drug Des. 73, 320-327.],b[Liu, X. H., Shi, Y. X., Ma, Y., Zhang, C. Y., Dong, W. L., Li, P., Wang, B. L., Li, B. J. & Li, Z. M. (2009b). Eur. J. Med. Chem. 44, 2782-2786.],c[Liu, X. H., Zhang, C. Y., Guo, W. C., Li, Y. H., Chen, P. Q., Wang, T., Dong, W. L., Sun, H. W. & Li, Z. M. (2009c). J. Enzym. Inhib. Med. Chem. 24, 545-552.]).

[Scheme 1]

Experimental

Crystal data
  • C17H14BrClN4O2

  • Mr = 421.68

  • Monoclinic, P 21 /c

  • a = 16.821 (3) Å

  • b = 10.195 (2) Å

  • c = 10.064 (2) Å

  • β = 101.09 (3)°

  • V = 1693.7 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.60 mm−1

  • T = 113 K

  • 0.16 × 0.12 × 0.08 mm

Data collection
  • Rigaku Saturn diffractometer

  • Absorption correction: multi-scan (CrystalClear, Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]) Tmin = 0.681, Tmax = 0.819

  • 11217 measured reflections

  • 2967 independent reflections

  • 2459 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.064

  • S = 0.99

  • 2967 reflections

  • 231 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N4i 0.88 (1) 2.21 (1) 3.059 (3) 165 (2)
C2—H2⋯O2 0.93 2.26 2.850 (3) 121
C6—H6⋯N4i 0.93 2.60 3.358 (3) 140
C8—H8A⋯O2ii 0.96 2.45 3.397 (3) 168
C11—H11⋯N4i 0.93 2.55 3.390 (3) 151
C16—H16⋯O2iii 0.93 2.33 3.244 (3) 167
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+2; (iii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Due to the capability of insects to rapidly develop resistance, the discovery of agents that act on new biochemical targets is an important tool for effective pest management. Calcium channels, in particular, the ryanodine receptors (RyR) represent an attractive biological target for insect control and thus offer excellent promise in integrated pest management strategies.

Many pesticide contain amide structures (Liu et al. 2007; Dong et al. 2008a,b; Liu et al. 2009a,b,c). Recently, diamides have attracted considerable attention in the field of agrochemistry, owing to their prominent insecticidal activity (Gewehr et al. 2007), unique modes of action and good environmental profiles.

Thus, a series of novel amides containing N-pyridylpyrazole were synthesized and their insecticidal activities were tested. Here we present the crystal structure of the title compound,(I), which has been determined during a search for relationships between the structure and insecticidal activity of the above derivatives.

The molecular structure of title compound (Fig.1) reveals that the pyrazole ring is coplanar with the benzene ring [dihedral angle 179.5 (2)°] whereas the pyrazole ring is almost perpendicular to 3-chlorpyridine ring [dihedral angle 106.3 (2)°]. In the crystal packing dominating N—H···N interaction and weak C—H···O and C—H···N contacts were observed (Table 1, Fig. 2).

Related literature top

For details of the synthesis, see: Dong et al. (2009). For the biological activity of related compounds, see: Gewehr et al. (2007); Dong et al. (2008a,b); Liu et al. (2007); Liu et al. (2009a,b,c).

Experimental top

Compound (I) was prepared according to the reported procedure of Dong et al.(2009). Colourless single crystals suitable for X-ray diffraction analysis were obtained by recrystallization from ethanol.

Refinement top

H atom of N—H was located in a difference map and refined freely. All C—H atoms were generated by riding model with C—H distance fixed at 0.93(phenyl group), 0.97(methylene group).

Structure description top

Due to the capability of insects to rapidly develop resistance, the discovery of agents that act on new biochemical targets is an important tool for effective pest management. Calcium channels, in particular, the ryanodine receptors (RyR) represent an attractive biological target for insect control and thus offer excellent promise in integrated pest management strategies.

Many pesticide contain amide structures (Liu et al. 2007; Dong et al. 2008a,b; Liu et al. 2009a,b,c). Recently, diamides have attracted considerable attention in the field of agrochemistry, owing to their prominent insecticidal activity (Gewehr et al. 2007), unique modes of action and good environmental profiles.

Thus, a series of novel amides containing N-pyridylpyrazole were synthesized and their insecticidal activities were tested. Here we present the crystal structure of the title compound,(I), which has been determined during a search for relationships between the structure and insecticidal activity of the above derivatives.

The molecular structure of title compound (Fig.1) reveals that the pyrazole ring is coplanar with the benzene ring [dihedral angle 179.5 (2)°] whereas the pyrazole ring is almost perpendicular to 3-chlorpyridine ring [dihedral angle 106.3 (2)°]. In the crystal packing dominating N—H···N interaction and weak C—H···O and C—H···N contacts were observed (Table 1, Fig. 2).

For details of the synthesis, see: Dong et al. (2009). For the biological activity of related compounds, see: Gewehr et al. (2007); Dong et al. (2008a,b); Liu et al. (2007); Liu et al. (2009a,b,c).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2002); cell refinement: CrystalClear (Rigaku/MSC, 2002); data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with intramolecular C—H···O interaction, showing displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of I with hydrogen bonds shown (in dashed lines).
[Figure 3] Fig. 3. The formation of the title compound.
3-Bromo-1-(3-chloropyridin-2-yl)-N-(4-ethoxyphenyl)-1H-pyrazole- 5-carboxamide top
Crystal data top
C17H14BrClN4O2F(000) = 848
Mr = 421.68Dx = 1.654 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4811 reflections
a = 16.821 (3) Åθ = 2.0–27.1°
b = 10.195 (2) ŵ = 2.60 mm1
c = 10.064 (2) ÅT = 113 K
β = 101.09 (3)°Ractangle, colourless
V = 1693.7 (6) Å30.16 × 0.12 × 0.08 mm
Z = 4
Data collection top
Rigaku Saturn
diffractometer
2967 independent reflections
Radiation source: rotating anode2459 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.049
ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(CrystalClear, Rigaku/MSC, 2002)
h = 1420
Tmin = 0.681, Tmax = 0.819k = 1112
11217 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.064H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.0325P)2]
where P = (Fo2 + 2Fc2)/3
2967 reflections(Δ/σ)max = 0.002
231 parametersΔρmax = 0.44 e Å3
1 restraintΔρmin = 0.37 e Å3
Crystal data top
C17H14BrClN4O2V = 1693.7 (6) Å3
Mr = 421.68Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.821 (3) ŵ = 2.60 mm1
b = 10.195 (2) ÅT = 113 K
c = 10.064 (2) Å0.16 × 0.12 × 0.08 mm
β = 101.09 (3)°
Data collection top
Rigaku Saturn
diffractometer
2967 independent reflections
Absorption correction: multi-scan
(CrystalClear, Rigaku/MSC, 2002)
2459 reflections with I > 2σ(I)
Tmin = 0.681, Tmax = 0.819Rint = 0.049
11217 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0291 restraint
wR(F2) = 0.064H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 0.44 e Å3
2967 reflectionsΔρmin = 0.37 e Å3
231 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.023579 (14)0.06344 (2)0.32526 (2)0.02098 (9)
Cl10.07553 (4)0.63129 (7)0.54321 (6)0.02706 (17)
O10.49241 (10)0.39661 (16)1.23908 (18)0.0251 (4)
O20.25436 (9)0.48804 (16)0.66299 (16)0.0182 (4)
N10.26429 (11)0.29027 (19)0.77115 (19)0.0143 (5)
N20.09269 (10)0.31241 (18)0.35049 (19)0.0148 (5)
N30.14508 (10)0.38461 (18)0.44293 (18)0.0125 (4)
N40.21996 (11)0.49665 (19)0.3078 (2)0.0171 (5)
C10.32339 (13)0.3197 (2)0.8882 (2)0.0147 (5)
C20.34708 (16)0.4465 (2)0.9280 (3)0.0292 (7)
H20.32500.51770.87590.035*
C30.40344 (16)0.4662 (3)1.0450 (3)0.0318 (8)
H30.41890.55141.07120.038*
C40.43755 (13)0.3629 (2)1.1245 (2)0.0181 (6)
C50.41491 (13)0.2361 (2)1.0851 (2)0.0162 (6)
H50.43720.16501.13720.019*
C60.35841 (13)0.2165 (2)0.9668 (2)0.0165 (6)
H60.34370.13130.93980.020*
C70.53387 (14)0.2914 (2)1.3173 (2)0.0204 (6)
H7A0.56470.24071.26310.024*
H7B0.49540.23361.34810.024*
C80.58986 (14)0.3521 (3)1.4367 (3)0.0257 (7)
H8A0.62820.40791.40480.039*
H8B0.61820.28411.49250.039*
H8C0.55880.40311.48860.039*
C90.23427 (13)0.3734 (2)0.6695 (2)0.0128 (5)
C100.17324 (13)0.3141 (2)0.5591 (2)0.0133 (5)
C110.13590 (13)0.1945 (2)0.5421 (2)0.0141 (5)
H110.14120.12530.60330.017*
C120.08813 (13)0.1993 (2)0.4129 (2)0.0143 (5)
C130.17110 (13)0.5071 (2)0.3970 (2)0.0144 (5)
C140.14284 (13)0.6260 (2)0.4354 (2)0.0173 (6)
C150.16840 (15)0.7398 (2)0.3811 (3)0.0247 (7)
H150.15100.82140.40560.030*
C160.21971 (15)0.7303 (2)0.2907 (3)0.0257 (7)
H160.23810.80520.25320.031*
C170.24346 (14)0.6071 (3)0.2566 (2)0.0226 (6)
H170.27770.60110.19450.027*
H10.2473 (12)0.2088 (11)0.765 (2)0.013 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02471 (15)0.01863 (15)0.01646 (15)0.00563 (10)0.00392 (10)0.00200 (11)
Cl10.0241 (3)0.0302 (4)0.0266 (4)0.0044 (3)0.0042 (3)0.0100 (3)
O10.0317 (10)0.0178 (10)0.0183 (10)0.0035 (7)0.0142 (8)0.0027 (8)
O20.0232 (9)0.0126 (9)0.0163 (9)0.0023 (7)0.0023 (7)0.0005 (7)
N10.0168 (10)0.0128 (11)0.0113 (11)0.0031 (8)0.0022 (8)0.0001 (9)
N20.0165 (10)0.0159 (11)0.0107 (11)0.0010 (8)0.0011 (8)0.0029 (9)
N30.0162 (10)0.0103 (10)0.0101 (10)0.0011 (8)0.0000 (8)0.0013 (8)
N40.0183 (11)0.0175 (12)0.0133 (11)0.0002 (9)0.0025 (8)0.0013 (9)
C10.0139 (12)0.0157 (13)0.0136 (13)0.0017 (10)0.0000 (10)0.0007 (10)
C20.0378 (16)0.0161 (15)0.0250 (16)0.0011 (11)0.0154 (12)0.0036 (12)
C30.0452 (18)0.0155 (14)0.0260 (16)0.0053 (12)0.0145 (13)0.0015 (12)
C40.0191 (13)0.0200 (14)0.0127 (13)0.0019 (10)0.0034 (10)0.0002 (11)
C50.0185 (13)0.0163 (13)0.0124 (14)0.0016 (10)0.0000 (10)0.0036 (10)
C60.0160 (12)0.0133 (13)0.0191 (15)0.0016 (9)0.0006 (10)0.0003 (10)
C70.0213 (13)0.0219 (14)0.0153 (14)0.0016 (10)0.0031 (11)0.0036 (11)
C80.0240 (14)0.0275 (16)0.0209 (15)0.0052 (11)0.0078 (11)0.0032 (12)
C90.0127 (12)0.0136 (13)0.0121 (13)0.0016 (10)0.0027 (9)0.0021 (10)
C100.0148 (12)0.0129 (13)0.0113 (13)0.0029 (9)0.0004 (10)0.0025 (10)
C110.0173 (13)0.0142 (13)0.0109 (13)0.0000 (10)0.0025 (10)0.0028 (10)
C120.0151 (12)0.0155 (14)0.0124 (13)0.0011 (10)0.0029 (10)0.0013 (10)
C130.0153 (12)0.0144 (13)0.0104 (13)0.0012 (10)0.0050 (10)0.0017 (10)
C140.0180 (13)0.0170 (13)0.0142 (13)0.0026 (10)0.0035 (10)0.0030 (11)
C150.0277 (15)0.0130 (13)0.0275 (17)0.0024 (11)0.0097 (12)0.0010 (12)
C160.0294 (15)0.0179 (15)0.0241 (16)0.0075 (11)0.0090 (12)0.0058 (12)
C170.0225 (14)0.0299 (16)0.0145 (14)0.0085 (11)0.0008 (10)0.0059 (12)
Geometric parameters (Å, º) top
Br1—C121.873 (2)C5—C61.387 (3)
Cl1—C141.713 (3)C5—H50.9300
O1—C41.375 (3)C6—H60.9300
O1—C71.430 (3)C7—C81.510 (3)
O2—C91.222 (3)C7—H7A0.9700
N1—C91.350 (3)C7—H7B0.9700
N1—C11.419 (3)C8—H8A0.9600
N1—H10.877 (9)C8—H8B0.9600
N2—C121.322 (3)C8—H8C0.9600
N2—N31.367 (2)C9—C101.488 (3)
N3—C101.376 (3)C10—C111.367 (3)
N3—C131.429 (3)C11—C121.391 (3)
N4—C171.330 (3)C11—H110.9300
N4—C131.333 (3)C13—C141.384 (3)
C1—C61.379 (3)C14—C151.386 (4)
C1—C21.389 (3)C15—C161.373 (4)
C2—C31.378 (3)C15—H150.9300
C2—H20.9300C16—C171.381 (4)
C3—C41.379 (3)C16—H160.9300
C3—H30.9300C17—H170.9300
C4—C51.384 (3)
C4—O1—C7116.83 (18)C7—C8—H8A109.5
C9—N1—C1126.63 (19)C7—C8—H8B109.5
C9—N1—H1117.9 (14)H8A—C8—H8B109.5
C1—N1—H1115.4 (14)C7—C8—H8C109.5
C12—N2—N3103.58 (17)H8A—C8—H8C109.5
N2—N3—C10111.61 (18)H8B—C8—H8C109.5
N2—N3—C13116.61 (17)O2—C9—N1125.03 (19)
C10—N3—C13130.86 (17)O2—C9—C10120.47 (19)
C17—N4—C13117.5 (2)N1—C9—C10114.5 (2)
C6—C1—C2118.5 (2)C11—C10—N3106.54 (18)
C6—C1—N1118.0 (2)C11—C10—C9133.6 (2)
C2—C1—N1123.5 (2)N3—C10—C9119.8 (2)
C3—C2—C1119.7 (2)C10—C11—C12104.7 (2)
C3—C2—H2120.2C10—C11—H11127.6
C1—C2—H2120.2C12—C11—H11127.6
C2—C3—C4121.7 (2)N2—C12—C11113.5 (2)
C2—C3—H3119.2N2—C12—Br1120.16 (16)
C4—C3—H3119.2C11—C12—Br1126.31 (18)
O1—C4—C3115.6 (2)N4—C13—C14123.2 (2)
O1—C4—C5125.3 (2)N4—C13—N3114.5 (2)
C3—C4—C5119.1 (2)C14—C13—N3122.1 (2)
C4—C5—C6119.0 (2)C13—C14—C15118.3 (2)
C4—C5—H5120.5C13—C14—Cl1120.6 (2)
C6—C5—H5120.5C15—C14—Cl1121.1 (2)
C1—C6—C5122.0 (2)C16—C15—C14119.0 (2)
C1—C6—H6119.0C16—C15—H15120.5
C5—C6—H6119.0C14—C15—H15120.5
O1—C7—C8107.1 (2)C15—C16—C17118.5 (2)
O1—C7—H7A110.3C15—C16—H16120.7
C8—C7—H7A110.3C17—C16—H16120.7
O1—C7—H7B110.3N4—C17—C16123.5 (3)
C8—C7—H7B110.3N4—C17—H17118.2
H7A—C7—H7B108.6C16—C17—H17118.2
C12—N2—N3—C101.4 (3)N1—C9—C10—C115.7 (4)
C12—N2—N3—C13171.6 (2)O2—C9—C10—N36.4 (4)
C9—N1—C1—C6167.1 (2)N1—C9—C10—N3172.7 (2)
C9—N1—C1—C213.5 (4)N3—C10—C11—C121.4 (3)
C6—C1—C2—C31.0 (4)C9—C10—C11—C12177.1 (3)
N1—C1—C2—C3178.3 (3)N3—N2—C12—C110.4 (3)
C1—C2—C3—C40.2 (5)N3—N2—C12—Br1179.10 (15)
C7—O1—C4—C3174.8 (2)C10—C11—C12—N20.6 (3)
C7—O1—C4—C55.3 (4)C10—C11—C12—Br1177.93 (18)
C2—C3—C4—O1179.5 (3)C17—N4—C13—C141.5 (3)
C2—C3—C4—C50.4 (5)C17—N4—C13—N3177.11 (17)
O1—C4—C5—C6179.7 (2)N2—N3—C13—N469.3 (2)
C3—C4—C5—C60.1 (4)C10—N3—C13—N498.6 (3)
C2—C1—C6—C51.4 (4)N2—N3—C13—C14106.3 (2)
N1—C1—C6—C5178.0 (2)C10—N3—C13—C1485.8 (3)
C4—C5—C6—C10.8 (4)N4—C13—C14—C151.8 (3)
C4—O1—C7—C8179.8 (2)N3—C13—C14—C15177.04 (19)
C1—N1—C9—O20.4 (4)N4—C13—C14—Cl1176.20 (16)
C1—N1—C9—C10179.5 (2)N3—C13—C14—Cl10.9 (3)
N2—N3—C10—C111.8 (3)C13—C14—C15—C160.7 (3)
C13—N3—C10—C11170.2 (2)Cl1—C14—C15—C16177.25 (17)
N2—N3—C10—C9176.95 (19)C14—C15—C16—C170.5 (3)
C13—N3—C10—C98.6 (4)C13—N4—C17—C160.2 (3)
O2—C9—C10—C11175.3 (3)C15—C16—C17—N40.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N4i0.88 (1)2.21 (1)3.059 (3)165 (2)
C2—H2···O20.932.262.850 (3)121
C6—H6···N4i0.932.603.358 (3)140
C8—H8A···O2ii0.962.453.397 (3)168
C11—H11···N4i0.932.553.390 (3)151
C16—H16···O2iii0.932.333.244 (3)167
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1, z+2; (iii) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC17H14BrClN4O2
Mr421.68
Crystal system, space groupMonoclinic, P21/c
Temperature (K)113
a, b, c (Å)16.821 (3), 10.195 (2), 10.064 (2)
β (°) 101.09 (3)
V3)1693.7 (6)
Z4
Radiation typeMo Kα
µ (mm1)2.60
Crystal size (mm)0.16 × 0.12 × 0.08
Data collection
DiffractometerRigaku Saturn
Absorption correctionMulti-scan
(CrystalClear, Rigaku/MSC, 2002)
Tmin, Tmax0.681, 0.819
No. of measured, independent and
observed [I > 2σ(I)] reflections
11217, 2967, 2459
Rint0.049
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.064, 0.99
No. of reflections2967
No. of parameters231
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.44, 0.37

Computer programs: CrystalClear (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N4i0.88 (1)2.21 (1)3.059 (3)165 (2)
C2—H2···O20.932.262.850 (3)121
C6—H6···N4i0.932.603.358 (3)140
C8—H8A···O2ii0.962.453.397 (3)168
C11—H11···N4i0.932.553.390 (3)151
C16—H16···O2iii0.932.333.244 (3)167
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1, z+2; (iii) x, y+3/2, z1/2.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 20872069).

References

First citationDong, W. L., Liu, X. H., Xu, J. Y. & Li, Z. M. (2008a). J. Chem. Res. (S), pp. 530–533.  Web of Science CrossRef Google Scholar
First citationDong, W. L., Xu, J. Y., Liu, X. H., Li, Z. M., Li, B. J. & Shi, Y. X. (2008b). Chem. J. Chin. Univ. 29, 1990–1994.  CAS Google Scholar
First citationDong, W. L., Xu, J. Y., Xiong, L. X., Liu, X. H. & Li, Z. M. (2009). Chin. J. Chem. 27, 579–586.  CSD CrossRef CAS Google Scholar
First citationGewehr, M., Puhl, M., Dickhaut, J., Bastiaans, H. M. M., Anspaugh, D. D., Kuhn, D. G., Oloumi-Sadeghi, H. & Armes, N. (2007). WO Patent 2007082-841.  Google Scholar
First citationLiu, X. H., Chen, P. Q., Wang, B. L., Li, Y. H., Wang, S. H. & Li, Z. M. (2007). Bioorg. Med. Chem. Lett. 17, 3784–3788.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLiu, X. H., Shi, Y. X., Ma, Y., He, G. R., Dong, W. L., Zhang, C. Y., Wang, B. L., Wang, S. H., Li, B. J. & Li, Z. M. (2009a). Chem. Biol. Drug Des. 73, 320–327.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLiu, X. H., Shi, Y. X., Ma, Y., Zhang, C. Y., Dong, W. L., Li, P., Wang, B. L., Li, B. J. & Li, Z. M. (2009b). Eur. J. Med. Chem. 44, 2782–2786.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLiu, X. H., Zhang, C. Y., Guo, W. C., Li, Y. H., Chen, P. Q., Wang, T., Dong, W. L., Sun, H. W. & Li, Z. M. (2009c). J. Enzym. Inhib. Med. Chem. 24, 545–552.  Web of Science CrossRef CAS Google Scholar
First citationRigaku/MSC (2002). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds