metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[di­aqua­magnesium(II)]-bis­­(μ-5-ammonio­isophthalato-κ2O1:O3)]

aDepartment of Chemistry, Chung-Yuan Christian University, Chung-Li 320, Taiwan
*Correspondence e-mail: chiaher@cycu.edu.tw

(Received 3 October 2010; accepted 8 October 2010; online 23 October 2010)

In the title compound, [Mg(C8H6NO4)2(H2O)2]n, the MgII ion lies on a twofold roatation axis and is coordinated in a slightly distorted octa­hedral environment. Pairs of bridging ammonium­isophthalate ligands connect symmetry-related MgII ions, forming chains along [010]. In the crystal, inter­molecular O—H⋯O and N—H⋯O hydrogen bonds link these chains into a three-dimensional network. The centroids of pairs of symmetry-related benzene rings within a chain are separated by 3.5707 (12) Å.

Related literature

For general background to metal coordination polymers, see: Kitagawa et al. (2004[Kitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334-2375.]). For related structures, see: Zeng et al. (2007[Zeng, R.-H., Fang, Z.-Q., Sun, F., Jiang, L.-S. & Tang, Y.-W. (2007). Acta Cryst. E63, m1813-m1814.]); Kongshaug & Fjellvåg (2006[Kongshaug, K. O. & Fjellvåg, H. (2006). Inorg. Chem. 45, 2424-2429.]).

[Scheme 1]

Experimental

Crystal data
  • [Mg(C8H6NO4)2(H2O)2]

  • Mr = 420.62

  • Monoclinic, P 2/n

  • a = 6.9987 (2) Å

  • b = 9.9434 (3) Å

  • c = 11.3809 (3) Å

  • β = 94.730 (2)°

  • V = 789.31 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 295 K

  • 0.10 × 0.08 × 0.08 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.982, Tmax = 0.986

  • 6693 measured reflections

  • 1963 independent reflections

  • 1228 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.136

  • S = 1.00

  • 1963 reflections

  • 132 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O3i 0.85 2.04 2.883 (2) 175
N1—H1A⋯O1ii 0.89 1.85 2.726 (2) 166
N1—H1B⋯O2iii 0.89 2.19 2.919 (3) 138
N1—H1B⋯O4iv 0.89 2.26 3.009 (3) 142
N1—H1C⋯O3v 0.89 2.00 2.869 (2) 165
Symmetry codes: (i) -x, -y+2, -z+1; (ii) [x+{\script{1\over 2}}, -y+2, z+{\script{1\over 2}}]; (iii) -x, -y+2, -z+2; (iv) -x, -y+3, -z+2; (v) [x+{\script{1\over 2}}, -y+3, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The synthesis of metal coordination polymers has been an intense research area due to their interesting topologies and potential applications (Kitagawa, et al., 2004). The crystal structures of 5-aminoisophthalic acid complexes with sodium (Zeng, et al., 2007) and zinc (Kongshaug, et al., 2006) have already been reported. In our continuous investigation in this area we report herein the structure of a new Mg coordination polymer based on the 5-amineisophthalato ligand.

The asymmetric unit of the title compound consists of half a an MgII ion, one 5-ammoniumisophthalato ligand and one coordinated water molecule. The MgII ion lies on a twofold roatation axis and is coordinated in a slightly distorted octahedral coordination environment (see Fig. 1). Pairs of bridging ammoniumisophthalato ligands connect symmetry related MgII ions to form one-dimensional chains along [010]. In the crystal structure, intermolecular O-H···O and N-H···O hydrogen bonds link these chains into a three-dimensional network (Fig. 2). The centroids of pairs of symmetry related benzene rings within a chain are separated by 3.5707 (12)Å.

Related literature top

For general background to metal coordination polymers, see: Kitagawa et al. (2004). For related structures, see: Zeng et al. (2007); Kongshaug & Fjellvåg (2006).

Experimental top

Solvothermal reactions were carried out at 423 K for 2 d in a Teflon-lined acid digestion bomb with an internal volume of 23 ml followed by slow cooling at 6 K/h to room temperature. A single-phase product consisting of transparent brown crystals of was obtained from a mixture of 5-aminoisophthalic acid (C8H7NO4, 0.0724 g, 0.4 mmol), Mg(NO3)2.6H2O (0.1026 g, 0.4 mmol), and DMF (5.0 ml) and H2O (1.0 ml).

Refinement top

H atoms were constrained to ideal geometries, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C); O—H = 0.85 Å and Uiso(H) = 1.5Ueq(N); N—H = 0.89 Å and Uiso(H) = 1.5Ueq(N). The aqua H atoms are clearly visible in difference Fourier maps and this clarifies that one of the H atoms does not have an acceptor.

Structure description top

The synthesis of metal coordination polymers has been an intense research area due to their interesting topologies and potential applications (Kitagawa, et al., 2004). The crystal structures of 5-aminoisophthalic acid complexes with sodium (Zeng, et al., 2007) and zinc (Kongshaug, et al., 2006) have already been reported. In our continuous investigation in this area we report herein the structure of a new Mg coordination polymer based on the 5-amineisophthalato ligand.

The asymmetric unit of the title compound consists of half a an MgII ion, one 5-ammoniumisophthalato ligand and one coordinated water molecule. The MgII ion lies on a twofold roatation axis and is coordinated in a slightly distorted octahedral coordination environment (see Fig. 1). Pairs of bridging ammoniumisophthalato ligands connect symmetry related MgII ions to form one-dimensional chains along [010]. In the crystal structure, intermolecular O-H···O and N-H···O hydrogen bonds link these chains into a three-dimensional network (Fig. 2). The centroids of pairs of symmetry related benzene rings within a chain are separated by 3.5707 (12)Å.

For general background to metal coordination polymers, see: Kitagawa et al. (2004). For related structures, see: Zeng et al. (2007); Kongshaug & Fjellvåg (2006).

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Part of the one-dimensional chain title compound with labelling and displacement ellipsoids drawn at the 50% probability level. Symmetry codes: (i) -x + 1/2, y, -z + 3/2; (ii) x, y - 1, z; (iii) -x + 1/2, y - 1, -z + 3/2.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound with view along the crystallographic a axis with hydrogen bonds shown as dashed lines.
catena-Poly[[diaquamagnesium(II)]-bis(µ-5-ammonioisophthalato- κ2O1:O3)] top
Crystal data top
[Mg(C8H6NO4)2(H2O)2]F(000) = 436
Mr = 420.62Dx = 1.770 Mg m3
Monoclinic, P2/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yacCell parameters from 1773 reflections
a = 6.9987 (2) Åθ = 2.7–28.1°
b = 9.9434 (3) ŵ = 0.18 mm1
c = 11.3809 (3) ÅT = 295 K
β = 94.730 (2)°Columnar, colourless
V = 789.31 (4) Å30.10 × 0.08 × 0.08 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
1963 independent reflections
Radiation source: fine-focus sealed tube1228 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
Detector resolution: 8.3333 pixels mm-1θmax = 28.3°, θmin = 2.1°
φ and ω scansh = 99
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
k = 1312
Tmin = 0.982, Tmax = 0.986l = 1515
6693 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0686P)2]
where P = (Fo2 + 2Fc2)/3
1963 reflections(Δ/σ)max < 0.001
132 parametersΔρmax = 0.36 e Å3
2 restraintsΔρmin = 0.29 e Å3
Crystal data top
[Mg(C8H6NO4)2(H2O)2]V = 789.31 (4) Å3
Mr = 420.62Z = 2
Monoclinic, P2/nMo Kα radiation
a = 6.9987 (2) ŵ = 0.18 mm1
b = 9.9434 (3) ÅT = 295 K
c = 11.3809 (3) Å0.10 × 0.08 × 0.08 mm
β = 94.730 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
1963 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
1228 reflections with I > 2σ(I)
Tmin = 0.982, Tmax = 0.986Rint = 0.047
6693 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0492 restraints
wR(F2) = 0.136H-atom parameters constrained
S = 1.00Δρmax = 0.36 e Å3
1963 reflectionsΔρmin = 0.29 e Å3
132 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mg10.25000.72884 (11)0.75000.0186 (3)
O10.0895 (3)0.97847 (17)0.64235 (14)0.0356 (5)
O20.0658 (2)0.87721 (15)0.79595 (13)0.0242 (4)
O30.1076 (3)1.47494 (16)0.61801 (14)0.0294 (5)
O40.0357 (2)1.59288 (15)0.76552 (13)0.0240 (4)
C10.0008 (4)0.9804 (2)0.74109 (19)0.0192 (5)
C20.0340 (3)1.1145 (2)0.80116 (18)0.0165 (5)
C30.1175 (3)1.1241 (2)0.91552 (18)0.0175 (5)
H3A0.15141.04690.95850.021*
C40.1497 (3)1.2498 (2)0.96473 (18)0.0164 (5)
C50.1056 (3)1.3660 (2)0.90294 (18)0.0173 (5)
H5A0.13081.44950.93760.021*
C60.0226 (3)1.3570 (2)0.78786 (18)0.0169 (5)
C70.0154 (3)1.2315 (2)0.73840 (19)0.0177 (5)
H7A0.07461.22530.66240.021*
C80.0199 (3)1.4837 (2)0.71758 (18)0.0186 (5)
O1W0.1775 (3)0.72574 (17)0.56326 (14)0.0317 (5)
H1WA0.15470.67070.50720.048*
H1WB0.19060.80030.52660.048*
N10.2340 (3)1.26019 (18)1.08656 (15)0.0203 (5)
H1A0.30921.18941.10340.030*
H1B0.14091.26221.13530.030*
H1C0.30311.33521.09490.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mg10.0252 (7)0.0106 (5)0.0192 (5)0.0000.0031 (5)0.000
O10.0543 (14)0.0189 (10)0.0303 (10)0.0015 (9)0.0166 (9)0.0080 (7)
O20.0343 (11)0.0106 (8)0.0274 (9)0.0030 (7)0.0011 (8)0.0002 (6)
O30.0446 (13)0.0171 (9)0.0245 (8)0.0021 (8)0.0098 (8)0.0042 (7)
O40.0346 (11)0.0114 (8)0.0253 (8)0.0057 (7)0.0013 (8)0.0006 (6)
C10.0233 (14)0.0113 (11)0.0227 (11)0.0023 (10)0.0008 (10)0.0037 (9)
C20.0190 (13)0.0094 (11)0.0209 (11)0.0001 (9)0.0009 (10)0.0015 (8)
C30.0241 (14)0.0109 (11)0.0173 (10)0.0005 (9)0.0009 (10)0.0018 (8)
C40.0171 (12)0.0174 (12)0.0142 (10)0.0007 (9)0.0014 (9)0.0010 (8)
C50.0228 (14)0.0115 (11)0.0175 (10)0.0007 (9)0.0004 (10)0.0031 (8)
C60.0183 (13)0.0114 (11)0.0206 (11)0.0009 (9)0.0010 (10)0.0021 (8)
C70.0209 (13)0.0146 (11)0.0167 (10)0.0012 (10)0.0044 (9)0.0002 (8)
C80.0236 (14)0.0137 (12)0.0183 (11)0.0018 (10)0.0001 (10)0.0032 (8)
O1W0.0477 (13)0.0250 (10)0.0211 (8)0.0054 (9)0.0047 (8)0.0004 (7)
N10.0260 (12)0.0177 (10)0.0162 (9)0.0003 (8)0.0043 (8)0.0009 (7)
Geometric parameters (Å, º) top
Mg1—O4i2.0375 (17)C3—C41.380 (3)
Mg1—O4ii2.0375 (17)C3—H3A0.9300
Mg1—O22.0550 (17)C4—C51.375 (3)
Mg1—O2iii2.0550 (17)C4—N11.465 (3)
Mg1—O1W2.1441 (16)C5—C61.391 (3)
Mg1—O1Wiii2.1441 (16)C5—H5A0.9300
O1—C11.238 (3)C6—C71.386 (3)
O2—C11.270 (3)C6—C81.509 (3)
O3—C81.246 (3)C7—H7A0.9300
O4—C81.262 (3)O1W—H1WA0.8459
O4—Mg1iv2.0374 (17)O1W—H1WB0.8589
C1—C21.508 (3)N1—H1A0.8900
C2—C31.385 (3)N1—H1B0.8900
C2—C71.394 (3)N1—H1C0.8900
O4i—Mg1—O4ii96.86 (11)C2—C3—H3A120.5
O4i—Mg1—O288.43 (7)C5—C4—C3122.1 (2)
O4ii—Mg1—O2168.54 (7)C5—C4—N1118.73 (19)
O4i—Mg1—O2iii168.54 (7)C3—C4—N1119.18 (19)
O4ii—Mg1—O2iii88.43 (7)C4—C5—C6119.1 (2)
O2—Mg1—O2iii88.24 (10)C4—C5—H5A120.4
O4i—Mg1—O1W87.75 (7)C6—C5—H5A120.4
O4ii—Mg1—O1W91.16 (7)C7—C6—C5119.4 (2)
O2—Mg1—O1W99.23 (7)C7—C6—C8120.9 (2)
O2iii—Mg1—O1W81.96 (7)C5—C6—C8119.6 (2)
O4i—Mg1—O1Wiii91.16 (7)C6—C7—C2120.8 (2)
O4ii—Mg1—O1Wiii87.75 (7)C6—C7—H7A119.6
O2—Mg1—O1Wiii81.96 (7)C2—C7—H7A119.6
O2iii—Mg1—O1Wiii99.23 (7)O3—C8—O4124.4 (2)
O1W—Mg1—O1Wiii178.35 (11)O3—C8—C6119.0 (2)
C1—O2—Mg1131.89 (15)O4—C8—C6116.66 (19)
C8—O4—Mg1iv137.42 (15)Mg1—O1W—H1WA140.5
O1—C1—O2124.7 (2)Mg1—O1W—H1WB116.3
O1—C1—C2118.4 (2)H1WA—O1W—H1WB102.3
O2—C1—C2116.89 (19)C4—N1—H1A109.5
C3—C2—C7119.4 (2)C4—N1—H1B109.5
C3—C2—C1121.77 (19)H1A—N1—H1B109.5
C7—C2—C1118.78 (19)C4—N1—H1C109.5
C4—C3—C2119.06 (19)H1A—N1—H1C109.5
C4—C3—H3A120.5H1B—N1—H1C109.5
Symmetry codes: (i) x, y1, z; (ii) x+1/2, y1, z+3/2; (iii) x+1/2, y, z+3/2; (iv) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O3v0.852.042.883 (2)175
N1—H1A···O1vi0.891.852.726 (2)166
N1—H1B···O2vii0.892.192.919 (3)138
N1—H1B···O4viii0.892.263.009 (3)142
N1—H1C···O3ix0.892.002.869 (2)165
Symmetry codes: (v) x, y+2, z+1; (vi) x+1/2, y+2, z+1/2; (vii) x, y+2, z+2; (viii) x, y+3, z+2; (ix) x+1/2, y+3, z+1/2.

Experimental details

Crystal data
Chemical formula[Mg(C8H6NO4)2(H2O)2]
Mr420.62
Crystal system, space groupMonoclinic, P2/n
Temperature (K)295
a, b, c (Å)6.9987 (2), 9.9434 (3), 11.3809 (3)
β (°) 94.730 (2)
V3)789.31 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.10 × 0.08 × 0.08
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.982, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
6693, 1963, 1228
Rint0.047
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.136, 1.00
No. of reflections1963
No. of parameters132
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.29

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2010), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O3i0.852.042.883 (2)175.1
N1—H1A···O1ii0.891.852.726 (2)166.3
N1—H1B···O2iii0.892.192.919 (3)138.3
N1—H1B···O4iv0.892.263.009 (3)141.7
N1—H1C···O3v0.892.002.869 (2)165.3
Symmetry codes: (i) x, y+2, z+1; (ii) x+1/2, y+2, z+1/2; (iii) x, y+2, z+2; (iv) x, y+3, z+2; (v) x+1/2, y+3, z+1/2.
 

Acknowledgements

This research was supported by National Science Council, Taiwan (NSC99–2113-M-033–005-MY2).

References

First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA  Google Scholar
First citationBruker (2010). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334–2375.  Web of Science CrossRef CAS Google Scholar
First citationKongshaug, K. O. & Fjellvåg, H. (2006). Inorg. Chem. 45, 2424–2429.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZeng, R.-H., Fang, Z.-Q., Sun, F., Jiang, L.-S. & Tang, Y.-W. (2007). Acta Cryst. E63, m1813–m1814.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds