organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

8β-Acet­­oxy-14α-benzo­yl­oxy-N-methyl-13β,15α-dihy­dr­oxy-1α,6α,16β-trimeth­­oxy-4β-(meth­­oxy­meth­yl)aconitane: hypaconitine isolated from `fuzi'

aThe First Affiliated Hospital, Chengdu Medical College, Xindu 610500, People's Republic of China
*Correspondence e-mail: dr.gaof@gmail.com

(Received 20 September 2010; accepted 6 October 2010; online 9 October 2010)

The title compound, C33H45NO10, has an aconitine carbon skeleton with four six-membered rings and two five-membered rings. The five-membered rings adopt envelope configurations and the six-membered N-containing heterocyclic ring displays a chair conformation. Two intra­molecular O—H⋯O hydrogen bonds occur.

Related literature

The title compound is an aconitine-type C19-diterpenoid alkaloid, which is isolated from the roots of Aconitum carmichaeli Debx., known as fuzi. For reviews of diterpenoid alkaloids, see Wang et al. (2009[Wang, F.-P., Chen, Q.-H. & Liang, X.-T. (2009). The Alkaloids: Chemistry and Biology, Vol. 67, edited by G. A. Cordell, pp. 1-78. New York: Elsevier.], 2010[Wang, F.-P., Chen, Q.-H. & Liu, X.-Y. (2010). Nat. Prod. Rep. 27, 529-570.]); Wang & Chen (2010[Wang, F.-P. & Chen, Q.-H. (2010). The Alkaloids: Chemistry and Biology, Vol. 69, edited by G. A. Cordell, pp. 1-577. New York: Elsevier.]). For the chemical structure of the title compound established from NMR and MS data, see: Pelletier et al. (1984[Pelletier, S. W., Mody, N. V., Joshi, B. S. & Schramm, L. C. (1984). The Alkaloids: Chemistry and Perspectives, Vol. 2, edited by S. W. Pelletier, pp. 206-264. New York: Wiley.]). For the crystal structures of related C19-diterpenoid alkaloids, see: Gao et al. (2010[Gao, F., Zhu, S.-A. & Xiong, S.-J. (2010). Acta Cryst. E66, o1342.]); Tashkhodjaev & Sultankhodjaev (2009[Tashkhodjaev, B. & Sultankhodjaev, M. N. (2009). Acta Cryst. E65, o1543-o1544.]); He et al. (2008[He, D.-H., Zhu, Y.-C. & Hu, A.-X. (2008). Acta Cryst. E64, o1033-o1034.]). For the absolute configuration of aconitine-type diterpenoid alkaloids, see: Pelletier & Djarmati (1976[Pelletier, S. W. & Djarmati, Z. (1976). J. Am. Chem. Soc. 98, 2626-2636.]); Tsuda & Marion (1963[Tsuda, Y. & Marion, L. (1963). Can. J. Chem. 41, 1485-1489.]); Zhapova et al. (1986[Zhapova, T., Modonova, L. D. & Semenov, A. A. (1986). Chem. Nat. Compd, 21, 7678-679.]).

[Scheme 1]

Experimental

Crystal data
  • C33H45NO10

  • Mr = 615.70

  • Orthorhombic, P 21 21 21

  • a = 12.457 (2) Å

  • b = 15.689 (3) Å

  • c = 15.771 (3) Å

  • V = 3082.3 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 113 K

  • 0.32 × 0.29 × 0.21 mm

Data collection
  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]) Tmin = 0.969, Tmax = 0.980

  • 28410 measured reflections

  • 4094 independent reflections

  • 3805 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.083

  • S = 1.02

  • 4094 reflections

  • 406 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O8—H8⋯O5 0.84 2.11 2.7887 (19) 137
O10—H10O⋯O9 0.84 2.05 2.5620 (19) 118

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP03 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As a famous Chinese traditional herbal, the plant Aconitum carmichaeli Debx. known as fuzi, has been therapeutically used to the treatment of rheumatic pain, rheumatoid arthritis and some other inflammations. The title compound 8β-acetoxy- 14α-benzoyloxy-N-methyl-13β,15α-dihydroxy-1α,6α,16β-trimethoxy-4β-(methoxymethylene)aconitane, hypaconitine, has been isolated previously from A. carmichaeli Debx. (Pelletier et al. 1984), and its structure was established from the NMR and MS data. However, the crystal structure of hypaconitine has not been reported. In view of this, the crystal structure determination of the title compound was carried out and the results are presented here.

The molecular structure of the title compound is shown in Fig. 1. Six-membered ring A (C1/C2/C3/C4/C5/C11) and B (C7/C8/C9/C10/C11/C17) adopt chair conformations; six-membered heterocyclic ring E (C4/C5/C11/C17/N1/C19) adopts the same chair conformation; the five-membered rings C (C9/C10/C12/C13/C14) and F (C5/C6/C7/C17/C11) display an envelope conformation. While the six-membered ring D (C8/C9/C14/C13/C16/C15) adopt boat conformations. The crystal structure contains intermolecular O—H···O hydrogen bond between the hydroxy group and carbonyl O atom. The absolute configuration of the title compound can not be confirmed by the MoKa diffraction data. But it could be determined throngh the comparion of the similar natural products for their unique and same configuration (He et al., 2008).

Related literature top

The title compound, a famous Chinese traditional herbal medicine, is an aconitine-type C19-diterpenoid alkaloid, which is isolated from the roots of Aconitum carmichaeli Debx., known as fuzi. For reviews of diterpenoid alkaloids, see Wang et al. (2009, 2010); Wang & Chen (2010). For the chemical structure of the title compound established from NMR and MS data, see: Pelletier et al. (1984). For the crystal structures of related C19-diterpenoid alkaloids, see: Gao et al. (2010); Tashkhodjaev & Sultankhodjaev (2009); He et al. (2008). For the absolute configuration of aconitine-type diterpenoid alkaloids, see: Pelletier & Djarmati (1976); Tsuda & Marion (1963); Zhapova et al. (1986).

Experimental top

The title compound was isolated from the roots of Aconitum carmichaeli Debx. according to the literature procedure of Gao et al. (2010) and crystals of X-ray quality were grown from acetone at room temperature by slow evaporation.

Refinement top

Hydroxy H atoms were located in a difference Fourier map and refined as riding in their as-found relative positions with Uiso(H) = 1.5Ueq(O). Other H atoms were located geometrically with C—H = 0.93–0.98 Å, and refined using a riding model with Uiso(H) = 1.5Ueq(C) for methyl and 1.2Ueq(C) for the others. The absolute configuration has not been determined from the X-ray analysis, owing to the absence of strong anomalous scattering, and Friedel's pairs were merged. Bond distance restraints for three bonds were applied. The absolute configuration was assigned on the basis of the related literature (Pelletier & Djarmati, 1976; Tsuda & Marion, 1963; Zhapova et al., 1986).

Structure description top

As a famous Chinese traditional herbal, the plant Aconitum carmichaeli Debx. known as fuzi, has been therapeutically used to the treatment of rheumatic pain, rheumatoid arthritis and some other inflammations. The title compound 8β-acetoxy- 14α-benzoyloxy-N-methyl-13β,15α-dihydroxy-1α,6α,16β-trimethoxy-4β-(methoxymethylene)aconitane, hypaconitine, has been isolated previously from A. carmichaeli Debx. (Pelletier et al. 1984), and its structure was established from the NMR and MS data. However, the crystal structure of hypaconitine has not been reported. In view of this, the crystal structure determination of the title compound was carried out and the results are presented here.

The molecular structure of the title compound is shown in Fig. 1. Six-membered ring A (C1/C2/C3/C4/C5/C11) and B (C7/C8/C9/C10/C11/C17) adopt chair conformations; six-membered heterocyclic ring E (C4/C5/C11/C17/N1/C19) adopts the same chair conformation; the five-membered rings C (C9/C10/C12/C13/C14) and F (C5/C6/C7/C17/C11) display an envelope conformation. While the six-membered ring D (C8/C9/C14/C13/C16/C15) adopt boat conformations. The crystal structure contains intermolecular O—H···O hydrogen bond between the hydroxy group and carbonyl O atom. The absolute configuration of the title compound can not be confirmed by the MoKa diffraction data. But it could be determined throngh the comparion of the similar natural products for their unique and same configuration (He et al., 2008).

The title compound, a famous Chinese traditional herbal medicine, is an aconitine-type C19-diterpenoid alkaloid, which is isolated from the roots of Aconitum carmichaeli Debx., known as fuzi. For reviews of diterpenoid alkaloids, see Wang et al. (2009, 2010); Wang & Chen (2010). For the chemical structure of the title compound established from NMR and MS data, see: Pelletier et al. (1984). For the crystal structures of related C19-diterpenoid alkaloids, see: Gao et al. (2010); Tashkhodjaev & Sultankhodjaev (2009); He et al. (2008). For the absolute configuration of aconitine-type diterpenoid alkaloids, see: Pelletier & Djarmati (1976); Tsuda & Marion (1963); Zhapova et al. (1986).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP03 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Perspective view of the title compound.
[Figure 2] Fig. 2. View of the packing of the title compoun
8β-Acetoxy-14α-benzoyloxy-N-methyl-13β,15α-dihydroxy- 1α,6α,16β-trimethoxy-4β-(methoxymethyl)aconitane top
Crystal data top
C33H45NO10F(000) = 1320
Mr = 615.70Dx = 1.327 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 11109 reflections
a = 12.457 (2) Åθ = 1.3–27.9°
b = 15.689 (3) ŵ = 0.10 mm1
c = 15.771 (3) ÅT = 113 K
V = 3082.3 (10) Å3Block, colourless
Z = 40.32 × 0.29 × 0.21 mm
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
4094 independent reflections
Radiation source: rotating anode3805 reflections with I > 2σ(I)
Multiplayer monochromatorRint = 0.040
Detector resolution: 14.63 pixels mm-1θmax = 27.9°, θmin = 1.8°
ω and φ scansh = 1612
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
k = 2020
Tmin = 0.969, Tmax = 0.980l = 2020
28410 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0542P)2]
where P = (Fo2 + 2Fc2)/3
4094 reflections(Δ/σ)max < 0.001
406 parametersΔρmax = 0.25 e Å3
3 restraintsΔρmin = 0.21 e Å3
Crystal data top
C33H45NO10V = 3082.3 (10) Å3
Mr = 615.70Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 12.457 (2) ŵ = 0.10 mm1
b = 15.689 (3) ÅT = 113 K
c = 15.771 (3) Å0.32 × 0.29 × 0.21 mm
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
4094 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
3805 reflections with I > 2σ(I)
Tmin = 0.969, Tmax = 0.980Rint = 0.040
28410 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0353 restraints
wR(F2) = 0.083H-atom parameters constrained
S = 1.02Δρmax = 0.25 e Å3
4094 reflectionsΔρmin = 0.21 e Å3
406 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O11.23858 (11)0.89466 (8)0.31289 (9)0.0302 (3)
O21.07598 (11)0.84457 (8)0.13939 (9)0.0302 (3)
O30.91073 (10)0.62972 (8)0.42341 (8)0.0256 (3)
O40.79646 (10)0.87205 (8)0.12467 (8)0.0224 (3)
O50.80028 (12)0.78668 (9)0.00869 (8)0.0314 (3)
O60.66939 (11)1.02025 (8)0.23958 (11)0.0381 (4)
O70.60560 (10)0.88599 (8)0.23532 (8)0.0245 (3)
O80.74141 (11)0.66278 (8)0.12664 (9)0.0278 (3)
H80.76490.67490.07820.042*
O90.52663 (10)0.71641 (9)0.22035 (8)0.0286 (3)
O100.55459 (10)0.76257 (9)0.37461 (9)0.0302 (3)
H10O0.50110.75620.34280.045*
N11.03362 (12)0.64061 (9)0.23693 (10)0.0228 (3)
C10.98310 (14)0.69978 (11)0.41053 (11)0.0216 (4)
H10.97350.74010.45910.026*
C21.09733 (14)0.66559 (12)0.41484 (12)0.0252 (4)
H2A1.11540.65190.47440.030*
H2B1.10230.61240.38140.030*
C31.17712 (15)0.72968 (12)0.38090 (12)0.0254 (4)
H3A1.24930.70330.37980.030*
H3B1.18000.77920.41980.030*
C41.14877 (14)0.76100 (12)0.29144 (11)0.0226 (4)
C51.04062 (14)0.80980 (11)0.29511 (11)0.0213 (4)
H51.04660.86120.33230.026*
C60.99822 (14)0.83478 (12)0.20478 (11)0.0222 (4)
H60.95740.88940.20990.027*
C70.91787 (14)0.76308 (11)0.18088 (11)0.0208 (4)
H70.93260.74090.12260.025*
C80.80427 (15)0.80051 (11)0.18664 (11)0.0206 (4)
C90.79423 (14)0.84829 (11)0.27182 (11)0.0210 (4)
H90.82950.90540.26790.025*
C100.84333 (14)0.79591 (11)0.34650 (11)0.0217 (4)
H100.85810.83720.39340.026*
C110.95087 (14)0.74792 (11)0.32833 (11)0.0197 (4)
C120.74725 (14)0.73924 (12)0.37588 (12)0.0258 (4)
H12A0.76300.67830.36530.031*
H12B0.73390.74710.43730.031*
C130.64957 (14)0.76738 (12)0.32456 (11)0.0238 (4)
C140.67831 (14)0.85795 (12)0.30017 (11)0.0231 (4)
H140.67380.89630.35070.028*
C150.70879 (14)0.73879 (11)0.16864 (11)0.0224 (4)
H150.66050.76940.12820.027*
C160.63726 (15)0.71180 (12)0.24422 (12)0.0240 (4)
H160.65460.65140.25930.029*
C170.93745 (14)0.69281 (11)0.24888 (11)0.0209 (4)
H170.87260.65560.25440.025*
C181.24163 (15)0.81852 (12)0.26341 (13)0.0267 (4)
H18A1.31090.78890.27190.032*
H18B1.23440.83250.20250.032*
C191.13661 (15)0.68636 (12)0.22852 (12)0.0254 (4)
H19A1.14290.70870.17000.031*
H19B1.19610.64560.23760.031*
C201.02178 (17)0.57792 (12)0.16930 (13)0.0306 (4)
H20A0.95390.54720.17650.046*
H20B1.08160.53740.17160.046*
H20C1.02190.60700.11430.046*
C210.89680 (16)0.60786 (13)0.50979 (12)0.0308 (4)
H21A0.96560.58930.53360.046*
H21B0.84440.56150.51440.046*
H21C0.87070.65760.54120.046*
C221.32008 (17)0.95307 (13)0.29058 (14)0.0355 (5)
H22A1.39050.92710.30070.053*
H22B1.31301.00470.32510.053*
H22C1.31330.96790.23050.053*
C231.0854 (9)0.9162 (7)0.0954 (9)0.058 (3)*0.333 (16)
H23A1.01890.92670.06390.087*0.333 (16)
H23B1.14540.91090.05550.087*0.333 (16)
H23C1.09900.96370.13420.087*0.333 (16)
C23'1.0983 (3)0.9342 (2)0.1242 (3)0.0289 (12)*0.667 (16)
H23D1.14980.93960.07750.043*0.667 (16)
H23E1.12860.95980.17560.043*0.667 (16)
H23F1.03150.96360.10920.043*0.667 (16)
C240.79618 (15)0.85677 (13)0.04047 (12)0.0267 (4)
C250.78886 (19)0.93861 (14)0.00785 (14)0.0385 (5)
H25A0.78310.92630.06860.058*
H25B0.85340.97280.00260.058*
H25C0.72540.97040.01070.058*
C260.49317 (17)0.65471 (14)0.15989 (14)0.0386 (5)
H26A0.52800.66620.10540.058*
H26B0.41510.65770.15300.058*
H26C0.51340.59770.17960.058*
C270.61137 (15)0.96722 (11)0.20869 (13)0.0255 (4)
C280.53567 (14)0.98128 (12)0.13698 (12)0.0254 (4)
C290.47300 (16)0.91484 (13)0.10516 (12)0.0292 (4)
H290.47880.85930.12870.035*
C300.40216 (18)0.93033 (14)0.03905 (14)0.0370 (5)
H300.35940.88530.01730.044*
C310.39364 (18)1.01139 (15)0.00471 (13)0.0383 (5)
H310.34561.02160.04090.046*
C320.45470 (18)1.07705 (15)0.03665 (15)0.0415 (5)
H320.44831.13270.01340.050*
C330.52578 (16)1.06205 (13)0.10295 (15)0.0353 (5)
H330.56771.10750.12490.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0263 (7)0.0297 (7)0.0346 (8)0.0064 (6)0.0061 (6)0.0036 (6)
O20.0296 (7)0.0332 (7)0.0277 (7)0.0010 (6)0.0076 (6)0.0077 (6)
O30.0288 (7)0.0261 (6)0.0218 (6)0.0049 (5)0.0031 (5)0.0017 (5)
O40.0232 (6)0.0241 (6)0.0198 (6)0.0034 (5)0.0013 (5)0.0009 (5)
O50.0372 (8)0.0343 (8)0.0226 (7)0.0021 (6)0.0010 (6)0.0028 (6)
O60.0319 (8)0.0268 (7)0.0556 (10)0.0007 (6)0.0138 (7)0.0073 (7)
O70.0217 (6)0.0249 (6)0.0269 (7)0.0033 (5)0.0036 (5)0.0022 (5)
O80.0304 (7)0.0277 (6)0.0254 (7)0.0018 (6)0.0020 (6)0.0085 (6)
O90.0212 (6)0.0337 (7)0.0311 (7)0.0025 (6)0.0012 (5)0.0059 (6)
O100.0196 (6)0.0444 (8)0.0267 (7)0.0003 (6)0.0049 (5)0.0018 (6)
N10.0244 (8)0.0211 (7)0.0228 (7)0.0049 (6)0.0007 (6)0.0037 (6)
C10.0235 (9)0.0219 (9)0.0192 (8)0.0019 (7)0.0013 (7)0.0019 (7)
C20.0254 (9)0.0281 (9)0.0221 (9)0.0027 (8)0.0041 (7)0.0021 (8)
C30.0208 (9)0.0307 (10)0.0248 (9)0.0026 (8)0.0024 (7)0.0013 (8)
C40.0200 (8)0.0257 (9)0.0222 (9)0.0028 (7)0.0009 (7)0.0005 (8)
C50.0194 (8)0.0232 (9)0.0213 (8)0.0017 (7)0.0001 (7)0.0026 (7)
C60.0200 (8)0.0254 (9)0.0212 (8)0.0023 (7)0.0014 (7)0.0015 (7)
C70.0229 (9)0.0215 (8)0.0181 (8)0.0025 (7)0.0005 (7)0.0007 (7)
C80.0229 (9)0.0224 (9)0.0165 (8)0.0018 (7)0.0002 (7)0.0013 (7)
C90.0183 (8)0.0231 (9)0.0216 (8)0.0018 (7)0.0012 (7)0.0037 (7)
C100.0217 (9)0.0257 (9)0.0176 (8)0.0014 (7)0.0006 (7)0.0024 (7)
C110.0191 (8)0.0218 (9)0.0183 (8)0.0015 (7)0.0008 (6)0.0014 (7)
C120.0236 (9)0.0337 (10)0.0200 (9)0.0020 (8)0.0027 (7)0.0001 (8)
C130.0201 (9)0.0297 (9)0.0217 (8)0.0019 (8)0.0042 (7)0.0035 (8)
C140.0200 (8)0.0291 (9)0.0201 (8)0.0033 (7)0.0013 (7)0.0048 (8)
C150.0229 (9)0.0231 (9)0.0213 (8)0.0026 (7)0.0001 (7)0.0035 (7)
C160.0222 (9)0.0261 (9)0.0238 (9)0.0014 (7)0.0000 (7)0.0000 (8)
C170.0207 (9)0.0224 (9)0.0195 (8)0.0014 (7)0.0003 (7)0.0008 (7)
C180.0196 (9)0.0321 (10)0.0286 (10)0.0033 (8)0.0010 (7)0.0005 (8)
C190.0225 (9)0.0285 (10)0.0254 (9)0.0068 (7)0.0019 (7)0.0025 (8)
C200.0350 (11)0.0281 (10)0.0288 (10)0.0074 (9)0.0028 (8)0.0078 (8)
C210.0326 (10)0.0352 (11)0.0248 (10)0.0043 (9)0.0039 (8)0.0032 (8)
C220.0319 (11)0.0380 (11)0.0365 (11)0.0081 (9)0.0043 (9)0.0028 (9)
C240.0231 (9)0.0355 (11)0.0214 (9)0.0013 (8)0.0002 (7)0.0009 (8)
C250.0496 (13)0.0383 (12)0.0275 (11)0.0059 (10)0.0004 (10)0.0052 (9)
C260.0293 (11)0.0447 (13)0.0417 (12)0.0089 (10)0.0035 (9)0.0124 (10)
C270.0208 (9)0.0228 (9)0.0330 (10)0.0038 (8)0.0018 (8)0.0047 (8)
C280.0206 (9)0.0280 (10)0.0275 (9)0.0045 (7)0.0021 (7)0.0023 (8)
C290.0308 (10)0.0298 (10)0.0269 (10)0.0006 (9)0.0001 (8)0.0024 (8)
C300.0366 (12)0.0436 (12)0.0307 (11)0.0028 (10)0.0063 (9)0.0100 (10)
C310.0372 (12)0.0546 (14)0.0232 (10)0.0161 (11)0.0019 (9)0.0016 (10)
C320.0402 (13)0.0408 (13)0.0436 (13)0.0111 (11)0.0004 (10)0.0114 (11)
C330.0302 (11)0.0290 (10)0.0467 (13)0.0015 (9)0.0034 (9)0.0036 (9)
Geometric parameters (Å, º) top
O1—C221.412 (2)C11—C171.531 (2)
O1—C181.427 (2)C12—C131.527 (3)
O2—C231.326 (9)C12—H12A0.9900
O2—C61.423 (2)C12—H12B0.9900
O2—C23'1.453 (4)C13—C141.515 (3)
O3—C211.416 (2)C13—C161.546 (3)
O3—C11.436 (2)C14—H141.0000
O4—C241.349 (2)C15—C161.547 (2)
O4—C81.491 (2)C15—H151.0000
O5—C241.210 (2)C16—H161.0000
O6—C271.205 (2)C17—H171.0000
O7—C271.344 (2)C18—H18A0.9900
O7—C141.435 (2)C18—H18B0.9900
O8—C151.423 (2)C19—H19A0.9900
O8—H80.8400C19—H19B0.9900
O9—C261.421 (2)C20—H20A0.9800
O9—C161.430 (2)C20—H20B0.9800
O10—C131.424 (2)C20—H20C0.9800
O10—H10O0.8400C21—H21A0.9800
N1—C201.458 (2)C21—H21B0.9800
N1—C171.463 (2)C21—H21C0.9800
N1—C191.476 (2)C22—H22A0.9800
C1—C21.522 (2)C22—H22B0.9800
C1—C111.553 (2)C22—H22C0.9800
C1—H11.0000C23—H23A0.9800
C2—C31.512 (3)C23—H23B0.9800
C2—H2A0.9900C23—H23C0.9800
C2—H2B0.9900C23'—H23D0.9800
C3—C41.535 (2)C23'—H23E0.9800
C3—H3A0.9900C23'—H23F0.9800
C3—H3B0.9900C24—C251.496 (3)
C4—C181.532 (3)C25—H25A0.9800
C4—C191.542 (2)C25—H25B0.9800
C4—C51.551 (2)C25—H25C0.9800
C5—C61.569 (2)C26—H26A0.9800
C5—C111.571 (2)C26—H26B0.9800
C5—H51.0000C26—H26C0.9800
C6—C71.552 (2)C27—C281.489 (3)
C6—H61.0000C28—C331.382 (3)
C7—C81.535 (2)C28—C291.396 (3)
C7—C171.557 (2)C29—C301.387 (3)
C7—H71.0000C29—H290.9500
C8—C91.543 (2)C30—C311.386 (3)
C8—C151.560 (2)C30—H300.9500
C9—C141.519 (2)C31—C321.376 (3)
C9—C101.561 (2)C31—H310.9500
C9—H91.0000C32—C331.390 (3)
C10—C121.561 (3)C32—H320.9500
C10—C111.563 (2)C33—H330.9500
C10—H101.0000
C22—O1—C18112.81 (15)C13—C14—H14110.4
C23—O2—C6122.1 (5)C9—C14—H14110.4
C23—O2—C23'22.6 (6)O8—C15—C16107.08 (14)
C6—O2—C23'110.7 (2)O8—C15—C8112.77 (14)
C21—O3—C1113.49 (14)C16—C15—C8117.95 (14)
C24—O4—C8120.76 (14)O8—C15—H15106.1
C27—O7—C14118.66 (15)C16—C15—H15106.1
C15—O8—H8109.5C8—C15—H15106.1
C26—O9—C16115.13 (15)O9—C16—C13106.42 (14)
C13—O10—H10O109.5O9—C16—C15109.77 (15)
C20—N1—C17112.88 (14)C13—C16—C15114.84 (14)
C20—N1—C19110.50 (15)O9—C16—H16108.5
C17—N1—C19116.81 (13)C13—C16—H16108.5
O3—C1—C2108.10 (14)C15—C16—H16108.5
O3—C1—C11109.14 (13)N1—C17—C11109.39 (14)
C2—C1—C11116.76 (15)N1—C17—C7115.83 (14)
O3—C1—H1107.5C11—C17—C7100.41 (13)
C2—C1—H1107.5N1—C17—H17110.3
C11—C1—H1107.5C11—C17—H17110.3
C3—C2—C1111.37 (15)C7—C17—H17110.3
C3—C2—H2A109.4O1—C18—C4108.36 (15)
C1—C2—H2A109.4O1—C18—H18A110.0
C3—C2—H2B109.4C4—C18—H18A110.0
C1—C2—H2B109.4O1—C18—H18B110.0
H2A—C2—H2B108.0C4—C18—H18B110.0
C2—C3—C4112.77 (15)H18A—C18—H18B108.4
C2—C3—H3A109.0N1—C19—C4113.38 (14)
C4—C3—H3A109.0N1—C19—H19A108.9
C2—C3—H3B109.0C4—C19—H19A108.9
C4—C3—H3B109.0N1—C19—H19B108.9
H3A—C3—H3B107.8C4—C19—H19B108.9
C18—C4—C3106.26 (14)H19A—C19—H19B107.7
C18—C4—C19109.61 (15)N1—C20—H20A109.5
C3—C4—C19111.77 (15)N1—C20—H20B109.5
C18—C4—C5112.08 (14)H20A—C20—H20B109.5
C3—C4—C5108.89 (14)N1—C20—H20C109.5
C19—C4—C5108.27 (14)H20A—C20—H20C109.5
C4—C5—C6112.45 (14)H20B—C20—H20C109.5
C4—C5—C11109.01 (14)O3—C21—H21A109.5
C6—C5—C11102.57 (13)O3—C21—H21B109.5
C4—C5—H5110.8H21A—C21—H21B109.5
C6—C5—H5110.8O3—C21—H21C109.5
C11—C5—H5110.8H21A—C21—H21C109.5
O2—C6—C7109.96 (14)H21B—C21—H21C109.5
O2—C6—C5117.11 (14)O1—C22—H22A109.5
C7—C6—C5104.86 (14)O1—C22—H22B109.5
O2—C6—H6108.2H22A—C22—H22B109.5
C7—C6—H6108.2O1—C22—H22C109.5
C5—C6—H6108.2H22A—C22—H22C109.5
C8—C7—C6107.64 (14)H22B—C22—H22C109.5
C8—C7—C17112.00 (14)O2—C23—H23A109.5
C6—C7—C17104.17 (14)O2—C23—H23B109.5
C8—C7—H7110.9O2—C23—H23C109.5
C6—C7—H7110.9O2—C23'—H23D109.5
C17—C7—H7110.9O2—C23'—H23E109.5
O4—C8—C7108.02 (13)H23D—C23'—H23E109.5
O4—C8—C9101.52 (13)O2—C23'—H23F109.5
C7—C8—C9108.18 (14)H23D—C23'—H23F109.5
O4—C8—C15107.34 (13)H23E—C23'—H23F109.5
C7—C8—C15117.05 (14)O5—C24—O4124.69 (18)
C9—C8—C15113.46 (14)O5—C24—C25124.88 (18)
C14—C9—C8112.43 (14)O4—C24—C25110.43 (17)
C14—C9—C10101.71 (14)C24—C25—H25A109.5
C8—C9—C10111.67 (14)C24—C25—H25B109.5
C14—C9—H9110.3H25A—C25—H25B109.5
C8—C9—H9110.3C24—C25—H25C109.5
C10—C9—H9110.3H25A—C25—H25C109.5
C9—C10—C12102.90 (14)H25B—C25—H25C109.5
C9—C10—C11116.81 (14)O9—C26—H26A109.5
C12—C10—C11115.92 (14)O9—C26—H26B109.5
C9—C10—H10106.8H26A—C26—H26B109.5
C12—C10—H10106.8O9—C26—H26C109.5
C11—C10—H10106.8H26A—C26—H26C109.5
C17—C11—C1115.88 (14)H26B—C26—H26C109.5
C17—C11—C10109.17 (14)O6—C27—O7124.10 (18)
C1—C11—C10107.62 (14)O6—C27—C28125.78 (18)
C17—C11—C598.85 (13)O7—C27—C28110.12 (15)
C1—C11—C5113.26 (14)C33—C28—C29119.70 (18)
C10—C11—C5111.93 (14)C33—C28—C27119.17 (18)
C13—C12—C10106.80 (15)C29—C28—C27121.11 (17)
C13—C12—H12A110.4C30—C29—C28119.68 (19)
C10—C12—H12A110.4C30—C29—H29120.2
C13—C12—H12B110.4C28—C29—H29120.2
C10—C12—H12B110.4C31—C30—C29120.2 (2)
H12A—C12—H12B108.6C31—C30—H30119.9
O10—C13—C14112.75 (15)C29—C30—H30119.9
O10—C13—C12110.67 (15)C32—C31—C30120.1 (2)
C14—C13—C12102.56 (15)C32—C31—H31120.0
O10—C13—C16110.00 (15)C30—C31—H31120.0
C14—C13—C16110.15 (15)C31—C32—C33120.0 (2)
C12—C13—C16110.52 (15)C31—C32—H32120.0
O7—C14—C13108.62 (15)C33—C32—H32120.0
O7—C14—C9114.88 (15)C28—C33—C32120.3 (2)
C13—C14—C9101.87 (14)C28—C33—H33119.9
O7—C14—H14110.4C32—C33—H33119.9
C21—O3—C1—C280.91 (18)C27—O7—C14—C971.7 (2)
C21—O3—C1—C11151.14 (15)O10—C13—C14—O774.30 (18)
O3—C1—C2—C3165.95 (14)C12—C13—C14—O7166.65 (14)
C11—C1—C2—C342.5 (2)C16—C13—C14—O748.99 (18)
C1—C2—C3—C453.6 (2)O10—C13—C14—C9164.07 (14)
C2—C3—C4—C18175.02 (15)C12—C13—C14—C945.02 (16)
C2—C3—C4—C1955.48 (19)C16—C13—C14—C972.64 (17)
C2—C3—C4—C564.08 (19)C8—C9—C14—O746.2 (2)
C18—C4—C5—C669.60 (19)C10—C9—C14—O7165.74 (14)
C3—C4—C5—C6173.13 (15)C8—C9—C14—C1371.04 (17)
C19—C4—C5—C651.42 (18)C10—C9—C14—C1348.54 (16)
C18—C4—C5—C11177.36 (14)O4—C8—C15—O8105.06 (16)
C3—C4—C5—C1160.09 (18)C7—C8—C15—O816.5 (2)
C19—C4—C5—C1161.63 (18)C9—C8—C15—O8143.62 (15)
C23—O2—C6—C7117.1 (8)O4—C8—C15—C16129.25 (15)
C23'—O2—C6—C7139.0 (2)C7—C8—C15—C16109.20 (17)
C23—O2—C6—C5123.4 (8)C9—C8—C15—C1617.9 (2)
C23'—O2—C6—C5101.5 (3)C26—O9—C16—C13166.15 (16)
C4—C5—C6—O226.0 (2)C26—O9—C16—C1569.0 (2)
C11—C5—C6—O2142.99 (15)O10—C13—C16—O933.85 (19)
C4—C5—C6—C796.14 (16)C14—C13—C16—O991.03 (17)
C11—C5—C6—C720.81 (16)C12—C13—C16—O9156.36 (15)
O2—C6—C7—C8125.94 (15)O10—C13—C16—C15155.52 (15)
C5—C6—C7—C8107.33 (15)C14—C13—C16—C1530.6 (2)
O2—C6—C7—C17115.01 (15)C12—C13—C16—C1581.97 (19)
C5—C6—C7—C1711.72 (17)O8—C15—C16—O996.10 (17)
C24—O4—C8—C769.82 (19)C8—C15—C16—O9135.47 (16)
C24—O4—C8—C9176.53 (15)O8—C15—C16—C13144.07 (15)
C24—O4—C8—C1557.24 (19)C8—C15—C16—C1315.6 (2)
C6—C7—C8—O461.11 (17)C20—N1—C17—C11172.24 (15)
C17—C7—C8—O4175.03 (13)C19—N1—C17—C1158.04 (19)
C6—C7—C8—C948.02 (17)C20—N1—C17—C775.23 (19)
C17—C7—C8—C965.90 (18)C19—N1—C17—C754.5 (2)
C6—C7—C8—C15177.69 (14)C1—C11—C17—N152.12 (19)
C17—C7—C8—C1563.77 (19)C10—C11—C17—N1173.77 (14)
O4—C8—C9—C1488.71 (16)C5—C11—C17—N169.21 (15)
C7—C8—C9—C14157.77 (15)C1—C11—C17—C7174.41 (14)
C15—C8—C9—C1426.1 (2)C10—C11—C17—C763.93 (16)
O4—C8—C9—C10157.70 (14)C5—C11—C17—C753.09 (15)
C7—C8—C9—C1044.17 (18)C8—C7—C17—N1167.06 (14)
C15—C8—C9—C1087.46 (18)C6—C7—C17—N176.90 (17)
C14—C9—C10—C1232.56 (16)C8—C7—C17—C1175.30 (16)
C8—C9—C10—C1287.55 (16)C6—C7—C17—C1140.75 (16)
C14—C9—C10—C11160.74 (15)C22—O1—C18—C4178.75 (16)
C8—C9—C10—C1140.6 (2)C3—C4—C18—O169.66 (18)
O3—C1—C11—C1751.58 (19)C19—C4—C18—O1169.40 (14)
C2—C1—C11—C1771.3 (2)C5—C4—C18—O149.16 (19)
O3—C1—C11—C1070.91 (17)C20—N1—C19—C4173.11 (15)
C2—C1—C11—C10166.17 (15)C17—N1—C19—C442.3 (2)
O3—C1—C11—C5164.83 (14)C18—C4—C19—N1165.02 (15)
C2—C1—C11—C541.9 (2)C3—C4—C19—N177.44 (18)
C9—C10—C11—C1752.69 (19)C5—C4—C19—N142.49 (19)
C12—C10—C11—C1768.88 (19)C8—O4—C24—O51.2 (3)
C9—C10—C11—C1179.23 (14)C8—O4—C24—C25179.41 (16)
C12—C10—C11—C157.65 (19)C14—O7—C27—O65.0 (3)
C9—C10—C11—C555.70 (19)C14—O7—C27—C28175.49 (14)
C12—C10—C11—C5177.28 (14)O6—C27—C28—C332.5 (3)
C4—C5—C11—C1773.55 (16)O7—C27—C28—C33177.03 (18)
C6—C5—C11—C1745.83 (15)O6—C27—C28—C29179.06 (19)
C4—C5—C11—C149.66 (18)O7—C27—C28—C291.4 (2)
C6—C5—C11—C1169.05 (14)C33—C28—C29—C300.7 (3)
C4—C5—C11—C10171.55 (13)C27—C28—C29—C30179.11 (18)
C6—C5—C11—C1069.06 (16)C28—C29—C30—C310.0 (3)
C9—C10—C12—C135.33 (18)C29—C30—C31—C320.6 (3)
C11—C10—C12—C13134.06 (15)C30—C31—C32—C330.6 (3)
C10—C12—C13—O10144.52 (15)C29—C28—C33—C320.7 (3)
C10—C12—C13—C1424.02 (18)C27—C28—C33—C32179.21 (19)
C10—C12—C13—C1693.37 (17)C31—C32—C33—C280.1 (3)
C27—O7—C14—C13175.00 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H8···O50.842.112.7887 (19)137
O10—H10O···O90.842.052.5620 (19)118

Experimental details

Crystal data
Chemical formulaC33H45NO10
Mr615.70
Crystal system, space groupOrthorhombic, P212121
Temperature (K)113
a, b, c (Å)12.457 (2), 15.689 (3), 15.771 (3)
V3)3082.3 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.32 × 0.29 × 0.21
Data collection
DiffractometerRigaku Saturn CCD area-detector
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.969, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
28410, 4094, 3805
Rint0.040
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.083, 1.02
No. of reflections4094
No. of parameters406
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.21

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP03 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H8···O50.842.112.7887 (19)137.0
O10—H10O···O90.842.052.5620 (19)118.4
 

Acknowledgements

This project was supported by the Education Department of Sichuan Province of China (No. 09ZB048) and the Scientific Research Fund of Chengdu Medical College, China (No. CYZ07–010). We thank Professor Zhi-Hua Mao of the Analytical & Testing Center of Sichuan University for technical support.

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGao, F., Zhu, S.-A. & Xiong, S.-J. (2010). Acta Cryst. E66, o1342.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHe, D.-H., Zhu, Y.-C. & Hu, A.-X. (2008). Acta Cryst. E64, o1033–o1034.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPelletier, S. W. & Djarmati, Z. (1976). J. Am. Chem. Soc. 98, 2626–2636.  CrossRef CAS Web of Science Google Scholar
First citationPelletier, S. W., Mody, N. V., Joshi, B. S. & Schramm, L. C. (1984). The Alkaloids: Chemistry and Perspectives, Vol. 2, edited by S. W. Pelletier, pp. 206–264. New York: Wiley.  Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTashkhodjaev, B. & Sultankhodjaev, M. N. (2009). Acta Cryst. E65, o1543–o1544.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTsuda, Y. & Marion, L. (1963). Can. J. Chem. 41, 1485–1489.  CrossRef CAS Web of Science Google Scholar
First citationWang, F.-P. & Chen, Q.-H. (2010). The Alkaloids: Chemistry and Biology, Vol. 69, edited by G. A. Cordell, pp. 1–577. New York: Elsevier.  Google Scholar
First citationWang, F.-P., Chen, Q.-H. & Liang, X.-T. (2009). The Alkaloids: Chemistry and Biology, Vol. 67, edited by G. A. Cordell, pp. 1–78. New York: Elsevier.  Google Scholar
First citationWang, F.-P., Chen, Q.-H. & Liu, X.-Y. (2010). Nat. Prod. Rep. 27, 529–570.  Web of Science CrossRef CAS PubMed Google Scholar
First citationZhapova, T., Modonova, L. D. & Semenov, A. A. (1986). Chem. Nat. Compd, 21, 7678–679.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds