organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

10-Methyl-9-[2-(propan-2-yl)phen­oxy­carbonyl]­acridinium tri­fluoro­methane­sulfonate

aFaculty of Chemistry, University of Gdańsk, J. Sobieskiego 18, 80-952 Gdańsk, Poland
*Correspondence e-mail: bla@chem.univ.gda.pl

(Received 30 September 2010; accepted 4 October 2010; online 9 October 2010)

In the crystal of the title compound, C24H22NO2+·CF3SO3, adjacent cations and anions are connected through C—H⋯O, C—H⋯F and S–O⋯π inter­actions, while neighboring cations via ππ inter­actions [centroid–centroid distance = 3.962 (2) Å]. The acridine and benzene ring systems are oriented at a dihedral angle of 14.6 (1)°. The carboxyl group is twisted at an angle of 87.6 (1)° relative to the acridine skeleton. The mean planes of adjacent acridine units are parallel or inclined at an angle of 13.4 (1)° in the crystal structure.

Related literature

For background to the chemiluminogenic properties of 9-phen­oxy­carbonyl-10-methyl­acridinium trifluoro­meth­ane­sulfonates, see: Natrajan et al. (2010[Natrajan, A., Sharpe, D., Costello, J. & Jiang, Q. (2010). Anal. Biochem. 406, 204-213.]); Brown et al. (2009[Brown, R. C., Li, Z., Rutter, A. J., Mu, X., Weeks, O. H., Smith, K. & Weeks, I. (2009). Org. Biomol. Chem. 7, 386-394.]); King et al. (2007[King, D. W., Cooper, W. J., Rusak, S. A., Peake, B. M., Kiddle, J. J., O'Sullivan, D. W., Melamed, M. L., Morgan, C. R. & Theberge, S. M. (2007). Anal. Chem. 79, 4169-4176.]); Rak et al. (1999[Rak, J., Skurski, P. & Błażejowski, J. (1999). J. Org. Chem. 64, 3002-3008.]); Roda et al. (2003[Roda, A., Guardigli, M., Michelini, E., Mirasoli, M. & Pasini, P. (2003). Anal. Chem. 75, 462-470.]); Zomer & Jacquemijns (2001[Zomer, G. & Jacquemijns, M. (2001). Chemiluminescence in Analytical Chemistry, edited by A. M. Garcia-Campana & W. R. G. Baeyens, pp. 529-549. New York: Marcel Dekker.]). For related structures, see: Sikorski et al. (2006[Sikorski, A., Krzymiński, K., Białońska, A., Lis, T. & Błażejowski, J. (2006). Acta Cryst. E62, o822-o824.], 2007[Sikorski, A., Krzymiński, K., Malecha, P., Lis, T. & Błażejowski, J. (2007). Acta Cryst. E63, o4484-o4485.]); Trzybiński et al. (2010[Trzybiński, D., Krzymiński, K., Sikorski, A., Malecha, P. & Błażejowski, J. (2010). Acta Cryst. E66, o826-o827.]). For inter­molecular inter­actions, see: Bianchi et al. (2004[Bianchi, R., Forni, A. & Pilati, T. (2004). Acta Cryst. B60, 559-568.]); Dorn et al. (2005[Dorn, T., Janiak, C. & Abu-Shandi, K. (2005). CrystEngComm, 7, 633-641.]); Hunter et al. (2001[Hunter, C. A., Lawson, K. R., Perkins, J. & Urch, C. J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 651-669.]); Lyssenko & Anti­pin (2004[Lyssenko, K. A. & Antipin, M. Y. (2004). Russ. Chem. Bull. Int. Ed. 53, 10-17.]); Novoa et al. (2006[Novoa, J. J., Mota, F. & D'Oria, E. (2006). Hydrogen Bonding - New Insights, edited by S. Grabowski, pp. 193-244. The Netherlands: Springer.]). For the synthesis, see: Sato (1996[Sato, N. (1996). Tetrahedron Lett. 37, 8519-8522.]); Trzybiński et al. (2010[Trzybiński, D., Krzymiński, K., Sikorski, A., Malecha, P. & Błażejowski, J. (2010). Acta Cryst. E66, o826-o827.]).

[Scheme 1]

Experimental

Crystal data
  • C24H22NO2+·CF3SO3

  • Mr = 505.51

  • Monoclinic, P 21 /c

  • a = 14.4346 (7) Å

  • b = 12.9677 (5) Å

  • c = 13.0862 (5) Å

  • β = 107.160 (5)°

  • V = 2340.47 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 295 K

  • 0.32 × 0.20 × 0.05 mm

Data collection
  • Oxford Diffraction Gemini R Ultra Ruby CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.955, Tmax = 1.000

  • 17556 measured reflections

  • 4169 independent reflections

  • 2436 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.116

  • S = 0.93

  • 4169 reflections

  • 319 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O29i 0.93 2.48 3.363 (3) 159
C27—H27C⋯F35i 0.96 2.51 3.250 (4) 134
Symmetry code: (i) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Table 2
S–O⋯π inter­actions (Å,°)

Cg2 is the centroids of the C1–C4/C11/C12 ring.

X I J IJ XJ XIJ
S28 O31 Cg2ii 3.208 (2) 4.128 (2) 120.3 (2)
Symmetry code: (ii) -x+2, -y+1, -z+1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

9-(Phenoxycarbonyl)-10-methylacridinium salts have long been known as chemiluminescent indicators or the chemiluminogenic fragments of chemiluminescent labels widely used in assays of biologically and environmentally important entities such as antigens, antibodies, enzymes or DNA fragments (Zomer & Jacquemijns, 2001; Roda et al., 2003; King et al., 2007; Brown et al., 2009; Natrajan et al., 2010). The cations of these salts are oxidized with H2O2 in alkaline media, a reaction that produces light. The latter process is accompanied by the removal of the phenoxycarbonyl fragment and the conversion of the remaining part of the molecules to electronically excited, light-emitting 10-methyl-9-acridinone (Rak et al., 1999). The efficiency of chemiluminescence – crucial for analytical applications – is affected by the structure of the phenyl fragment (Zomer & Jacquemijns, 2001; Natrajan et al., 2010). In the search for efficient chemiluminogens we synthesized 9-(phenoxycarbonyl)-10-methylacridinium derivatives alkyl substituted in the ortho position of the phenyl fragment. Here we present the structure of 9-(2-i-propylphenoxycarbonyl)-10-methylacridinium trifluoromethanesulfonate.

In the cation of the title compound (Fig. 1), the bond lengths and angles characterizing the geometry of the acridinium moiety are typical of acridine-based derivatives (Sikorski et al., 2006; Sikorski et al., 2007; Trzybiński et al., 2010). With respective average deviations from planarity of 0.0127 (3) Å and 0.0030 (3) Å, the acridine and benzene ring systems are oriented at a dihedral angle of 14.6 (1)°. The carboxyl group is twisted at an angle of 87.6 (1)° relative to the acridine skeleton. The mean planes of the adjacent acridine moieties are parallel (remain at an angle 0.0 (1)°) or inclined at an angle of 87.6 (1)° in the lattice. In the series of 9-phenoxycarbonyl-10-methylacridinium trifluoromethanesulfonates substituted in the ortho position of the phenyl fragment with Me (Sikorski et al., 2006), Et (Trzybiński et al., 2010), i-Pr (this work) and t-Bu (Sikorski et al., 2007), the dihedral angle between acridine and the benzene ring, and that between the carboxyl group and the acridine skeleton, increase in the order 2-Et < 2-i-Pr < 2-Me < 2-t-Bu, and 2-t-Bu < 2-Et < 2-i-Pr < 2-Me, respectively. This implies that increasing size of the alkyl substituent in the ortho position does not systematically influence the mutual arrangement of the above mentioned fragments of the molecules.

In the crystal structure, each anion is connected to the adjacent cations through C–H···O (Table 1, Fig. 2), C–H···F (Table 1, Fig. 2) and S–O···π (Table 2, Fig. 2) interactions. Neighboring cations contact each other via ππ (Table 3, Fig. 2) interactions. The C–H···O (Novoa et al. 2006) and C–H··· F (Bianchi et al., 2004; Lyssenko & Antipin, 2004) interactions are of the hydrogen bond type. The S–O···π (Dorn et al., 2005) and the ππ (Hunter et al., 2001) interactions should be of an attractive nature. The crystal structure is stabilized by a network of these short-range specific interactions and by long-range electrostatic interactions between ions.

Related literature top

For general background to the chemiluminogenic properties of 9-phenoxycarbonyl-10-methylacridinium trifluoromethanesulfonates, see: Natrajan et al. (2010); Brown et al. (2009); King et al. (2007); Rak et al. (1999); Roda et al. (2003); Zomer & Jacquemijns (2001). For related structures, see: Sikorski et al. (2006, 2007); Trzybiński et al. (2010). For intermolecular interactions, see: Bianchi et al. (2004); Dorn et al. (2005); Hunter et al. (2001); Lyssenko & Antipin (2004); Novoa et al. (2006). For the synthesis, see: Sato (1996); Trzybiński et al. (2010).

Experimental top

9-(Chlorocarbonyl)acridine, obtained by treating acridine-9-carboxylic acid with a tenfold molar excess of thionyl chloride, was first esterified with 2-i-propylphenol in anhydrous dichloromethane in the presence of N,N-diethylethanamine and a catalytic amount of N,N-dimethyl-4-pyridinamine (room temperature, 15h) (Sato, 1996) to obtain 2-i-propylphenylacridine-9-carboxylate (purified chromatographically (SiO2, cyclohexane/ethyl acetate, 1/1 v/v)). The latter compound was then quaternarized with a fivefold molar excess of methyl trifluoromethanesulfonate dissolved in anhydrous dichloromethane (Trzybiński et al., 2010). The crude 9-(i-propylphenoxycarbonyl)-10-methylacridinium trifluoromethanesulfonate was dissolved in a small amount of ethanol, filtered and precipitated with 20 v/v excess of diethyl ether. Yellow crystals suitable for X-ray investigations were grown from absolute ethanol solution (m.p. 464–466 K).

Refinement top

H atoms were positioned geometrically, with C—H = 0.93 Å and 0.96 Å for the aromatic and alkyl H atoms, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C), where x = 1.2 for the aromatic and x = 1.5 for the alkyl H atoms.

Structure description top

9-(Phenoxycarbonyl)-10-methylacridinium salts have long been known as chemiluminescent indicators or the chemiluminogenic fragments of chemiluminescent labels widely used in assays of biologically and environmentally important entities such as antigens, antibodies, enzymes or DNA fragments (Zomer & Jacquemijns, 2001; Roda et al., 2003; King et al., 2007; Brown et al., 2009; Natrajan et al., 2010). The cations of these salts are oxidized with H2O2 in alkaline media, a reaction that produces light. The latter process is accompanied by the removal of the phenoxycarbonyl fragment and the conversion of the remaining part of the molecules to electronically excited, light-emitting 10-methyl-9-acridinone (Rak et al., 1999). The efficiency of chemiluminescence – crucial for analytical applications – is affected by the structure of the phenyl fragment (Zomer & Jacquemijns, 2001; Natrajan et al., 2010). In the search for efficient chemiluminogens we synthesized 9-(phenoxycarbonyl)-10-methylacridinium derivatives alkyl substituted in the ortho position of the phenyl fragment. Here we present the structure of 9-(2-i-propylphenoxycarbonyl)-10-methylacridinium trifluoromethanesulfonate.

In the cation of the title compound (Fig. 1), the bond lengths and angles characterizing the geometry of the acridinium moiety are typical of acridine-based derivatives (Sikorski et al., 2006; Sikorski et al., 2007; Trzybiński et al., 2010). With respective average deviations from planarity of 0.0127 (3) Å and 0.0030 (3) Å, the acridine and benzene ring systems are oriented at a dihedral angle of 14.6 (1)°. The carboxyl group is twisted at an angle of 87.6 (1)° relative to the acridine skeleton. The mean planes of the adjacent acridine moieties are parallel (remain at an angle 0.0 (1)°) or inclined at an angle of 87.6 (1)° in the lattice. In the series of 9-phenoxycarbonyl-10-methylacridinium trifluoromethanesulfonates substituted in the ortho position of the phenyl fragment with Me (Sikorski et al., 2006), Et (Trzybiński et al., 2010), i-Pr (this work) and t-Bu (Sikorski et al., 2007), the dihedral angle between acridine and the benzene ring, and that between the carboxyl group and the acridine skeleton, increase in the order 2-Et < 2-i-Pr < 2-Me < 2-t-Bu, and 2-t-Bu < 2-Et < 2-i-Pr < 2-Me, respectively. This implies that increasing size of the alkyl substituent in the ortho position does not systematically influence the mutual arrangement of the above mentioned fragments of the molecules.

In the crystal structure, each anion is connected to the adjacent cations through C–H···O (Table 1, Fig. 2), C–H···F (Table 1, Fig. 2) and S–O···π (Table 2, Fig. 2) interactions. Neighboring cations contact each other via ππ (Table 3, Fig. 2) interactions. The C–H···O (Novoa et al. 2006) and C–H··· F (Bianchi et al., 2004; Lyssenko & Antipin, 2004) interactions are of the hydrogen bond type. The S–O···π (Dorn et al., 2005) and the ππ (Hunter et al., 2001) interactions should be of an attractive nature. The crystal structure is stabilized by a network of these short-range specific interactions and by long-range electrostatic interactions between ions.

For general background to the chemiluminogenic properties of 9-phenoxycarbonyl-10-methylacridinium trifluoromethanesulfonates, see: Natrajan et al. (2010); Brown et al. (2009); King et al. (2007); Rak et al. (1999); Roda et al. (2003); Zomer & Jacquemijns (2001). For related structures, see: Sikorski et al. (2006, 2007); Trzybiński et al. (2010). For intermolecular interactions, see: Bianchi et al. (2004); Dorn et al. (2005); Hunter et al. (2001); Lyssenko & Antipin (2004); Novoa et al. (2006). For the synthesis, see: Sato (1996); Trzybiński et al. (2010).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 25% probability level and H atoms are shown as small spheres of arbitrary radius. Cg1, Cg2, and Cg3 denote the ring centroids.
[Figure 2] Fig. 2. The arrangement of the ions in the crystal structure. The C–H···O and C–H···F interactions are represented by dashed lines, the S–O···π and ππ contacts by dotted lines. H atoms not involved in interactions have been omitted. [Symmetry codes: (i) –x + 2, y + 1/2, –z + 1/2; (ii) –x + 2, –y + 1, –z + 1; (iii) –x + 1, –y + 2, –z + 1.]
10-Methyl-9-[2-(propan-2-yl)phenoxycarbonyl]acridinium trifluoromethanesulfonate top
Crystal data top
C24H22NO2+·CF3SO3F(000) = 1048
Mr = 505.51Dx = 1.435 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5919 reflections
a = 14.4346 (7) Åθ = 3.0–29.2°
b = 12.9677 (5) ŵ = 0.20 mm1
c = 13.0862 (5) ÅT = 295 K
β = 107.160 (5)°Prism, yellow
V = 2340.47 (17) Å30.32 × 0.20 × 0.05 mm
Z = 4
Data collection top
Oxford Diffraction Gemini R Ultra Ruby CCD
diffractometer
4169 independent reflections
Radiation source: Enhanced (Mo) X-ray Source2436 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
Detector resolution: 10.4002 pixels mm-1θmax = 25.1°, θmin = 3.0°
ω scansh = 1715
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
k = 1515
Tmin = 0.955, Tmax = 1.000l = 1514
17556 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 0.93 w = 1/[σ2(Fo2) + (0.0687P)2]
where P = (Fo2 + 2Fc2)/3
4169 reflections(Δ/σ)max = 0.002
319 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C24H22NO2+·CF3SO3V = 2340.47 (17) Å3
Mr = 505.51Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.4346 (7) ŵ = 0.20 mm1
b = 12.9677 (5) ÅT = 295 K
c = 13.0862 (5) Å0.32 × 0.20 × 0.05 mm
β = 107.160 (5)°
Data collection top
Oxford Diffraction Gemini R Ultra Ruby CCD
diffractometer
4169 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
2436 reflections with I > 2σ(I)
Tmin = 0.955, Tmax = 1.000Rint = 0.043
17556 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 0.93Δρmax = 0.34 e Å3
4169 reflectionsΔρmin = 0.26 e Å3
319 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.79663 (19)0.93471 (19)0.23882 (19)0.0538 (6)
H10.75850.96530.27660.065*
C20.83868 (19)0.9943 (2)0.1808 (2)0.0597 (7)
H20.82951.06530.17830.072*
C30.89659 (19)0.9483 (2)0.12396 (19)0.0611 (7)
H30.92500.98990.08360.073*
C40.91234 (18)0.8453 (2)0.12618 (18)0.0543 (7)
H40.95160.81730.08830.065*
C50.85827 (19)0.50582 (19)0.25407 (18)0.0529 (6)
H50.89670.47610.21620.064*
C60.8169 (2)0.4459 (2)0.3131 (2)0.0630 (7)
H60.82700.37500.31460.076*
C70.7591 (2)0.4880 (2)0.3722 (2)0.0615 (7)
H70.73190.44520.41270.074*
C80.74323 (19)0.58985 (19)0.37013 (18)0.0511 (6)
H80.70520.61730.40980.061*
C90.76717 (16)0.76264 (17)0.30277 (17)0.0416 (6)
N100.88297 (13)0.67612 (15)0.18987 (14)0.0445 (5)
C110.80948 (17)0.82595 (17)0.24349 (17)0.0429 (6)
C120.86933 (16)0.78034 (18)0.18595 (17)0.0429 (6)
C130.78353 (16)0.65678 (17)0.30837 (16)0.0415 (6)
C140.84322 (17)0.61298 (17)0.24995 (17)0.0433 (6)
C150.70287 (18)0.80997 (17)0.3623 (2)0.0450 (6)
O160.61194 (12)0.81571 (14)0.29809 (12)0.0569 (5)
O170.72938 (13)0.83794 (15)0.45268 (14)0.0667 (5)
C180.54272 (18)0.8721 (2)0.33483 (17)0.0516 (6)
C190.48032 (18)0.8207 (2)0.37892 (18)0.0529 (7)
C200.4108 (2)0.8824 (2)0.4042 (2)0.0648 (8)
H200.36660.85140.43380.078*
C210.4053 (2)0.9861 (3)0.3872 (2)0.0688 (8)
H210.35821.02450.40570.083*
C220.4685 (2)1.0341 (2)0.3430 (2)0.0718 (8)
H220.46481.10490.33130.086*
C230.5384 (2)0.9758 (2)0.3157 (2)0.0652 (8)
H230.58171.00700.28490.078*
C240.4878 (2)0.7061 (2)0.4025 (2)0.0665 (8)
H240.52640.67550.35990.080*
C250.5415 (3)0.6867 (3)0.5193 (3)0.1123 (14)
H25A0.60380.71970.53700.168*
H25B0.55000.61380.53150.168*
H25C0.50470.71430.56320.168*
C260.3890 (3)0.6532 (3)0.3699 (3)0.1142 (14)
H26A0.35660.66720.29590.171*
H26B0.35060.67890.41300.171*
H26C0.39760.58010.38030.171*
C270.9445 (2)0.6310 (2)0.1287 (2)0.0645 (7)
H27A0.93420.66770.06250.097*
H27B0.92770.55970.11390.097*
H27C1.01140.63620.16980.097*
S280.91241 (5)0.22174 (5)0.57658 (5)0.0556 (2)
O290.94541 (16)0.30956 (14)0.53324 (15)0.0809 (6)
O300.87168 (17)0.23980 (15)0.66093 (15)0.0838 (7)
O310.97784 (15)0.13502 (16)0.59437 (16)0.0819 (6)
C320.8122 (2)0.1755 (2)0.4689 (2)0.0603 (7)
F330.73755 (14)0.24221 (15)0.44537 (15)0.0955 (6)
F340.77668 (13)0.08743 (12)0.49175 (13)0.0840 (5)
F350.83430 (13)0.16316 (15)0.37865 (11)0.0895 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0500 (17)0.0489 (16)0.0643 (15)0.0028 (13)0.0195 (14)0.0015 (12)
C20.0544 (18)0.0509 (16)0.0716 (17)0.0002 (13)0.0151 (15)0.0075 (14)
C30.0533 (19)0.069 (2)0.0583 (16)0.0096 (14)0.0130 (14)0.0150 (14)
C40.0429 (16)0.0720 (19)0.0499 (14)0.0010 (13)0.0166 (12)0.0044 (13)
C50.0505 (17)0.0518 (16)0.0532 (14)0.0114 (13)0.0101 (13)0.0025 (12)
C60.073 (2)0.0457 (16)0.0642 (16)0.0109 (14)0.0110 (15)0.0028 (13)
C70.073 (2)0.0538 (17)0.0577 (15)0.0001 (15)0.0192 (15)0.0078 (13)
C80.0516 (17)0.0532 (16)0.0500 (13)0.0041 (12)0.0175 (12)0.0016 (12)
C90.0353 (15)0.0456 (14)0.0421 (12)0.0012 (11)0.0088 (11)0.0043 (10)
N100.0327 (12)0.0512 (13)0.0496 (11)0.0048 (9)0.0122 (10)0.0056 (9)
C110.0354 (14)0.0459 (14)0.0451 (12)0.0009 (11)0.0079 (11)0.0033 (10)
C120.0313 (14)0.0520 (16)0.0419 (12)0.0005 (11)0.0057 (11)0.0020 (11)
C130.0350 (14)0.0469 (14)0.0400 (12)0.0022 (11)0.0072 (11)0.0027 (10)
C140.0352 (15)0.0474 (15)0.0433 (12)0.0038 (11)0.0053 (11)0.0011 (10)
C150.0448 (17)0.0431 (14)0.0491 (14)0.0012 (11)0.0168 (13)0.0002 (11)
O160.0371 (11)0.0851 (13)0.0496 (9)0.0067 (9)0.0144 (9)0.0141 (8)
O170.0565 (12)0.0881 (14)0.0508 (10)0.0133 (10)0.0083 (9)0.0208 (9)
C180.0415 (16)0.0713 (18)0.0416 (13)0.0115 (13)0.0117 (12)0.0051 (12)
C190.0424 (16)0.0733 (18)0.0438 (13)0.0045 (13)0.0141 (12)0.0088 (12)
C200.0462 (19)0.088 (2)0.0656 (16)0.0073 (16)0.0254 (14)0.0050 (15)
C210.053 (2)0.092 (2)0.0599 (17)0.0258 (17)0.0146 (15)0.0015 (16)
C220.073 (2)0.075 (2)0.0639 (17)0.0230 (17)0.0137 (16)0.0102 (14)
C230.062 (2)0.081 (2)0.0571 (16)0.0124 (16)0.0234 (15)0.0095 (14)
C240.062 (2)0.0676 (19)0.0780 (19)0.0062 (15)0.0340 (16)0.0155 (15)
C250.169 (4)0.072 (2)0.092 (2)0.007 (2)0.032 (3)0.0148 (18)
C260.084 (3)0.097 (3)0.177 (4)0.025 (2)0.062 (3)0.056 (3)
C270.0563 (19)0.0703 (18)0.0781 (17)0.0122 (14)0.0374 (15)0.0050 (14)
S280.0708 (5)0.0511 (4)0.0508 (4)0.0092 (4)0.0269 (3)0.0037 (3)
O290.1012 (17)0.0671 (12)0.0837 (13)0.0311 (11)0.0416 (13)0.0000 (10)
O300.128 (2)0.0756 (13)0.0675 (11)0.0128 (12)0.0596 (13)0.0138 (9)
O310.0703 (15)0.0821 (14)0.0873 (13)0.0193 (12)0.0142 (11)0.0035 (11)
C320.061 (2)0.0637 (18)0.0655 (17)0.0012 (15)0.0326 (16)0.0020 (13)
F330.0703 (13)0.1043 (14)0.1154 (14)0.0249 (11)0.0328 (11)0.0228 (11)
F340.0793 (13)0.0644 (11)0.1129 (13)0.0209 (9)0.0354 (11)0.0061 (9)
F350.0815 (13)0.1338 (16)0.0590 (9)0.0108 (11)0.0300 (9)0.0252 (9)
Geometric parameters (Å, º) top
C1—C21.347 (3)C18—C191.377 (3)
C1—C111.422 (3)C19—C201.397 (3)
C1—H10.9300C19—C241.515 (4)
C2—C31.405 (3)C20—C211.362 (4)
C2—H20.9300C20—H200.9300
C3—C41.354 (4)C21—C221.365 (4)
C3—H30.9300C21—H210.9300
C4—C121.412 (3)C22—C231.389 (4)
C4—H40.9300C22—H220.9300
C5—C61.353 (3)C23—H230.9300
C5—C141.405 (3)C24—C251.516 (4)
C5—H50.9300C24—C261.527 (4)
C6—C71.405 (4)C24—H240.9800
C6—H60.9300C25—H25A0.9600
C7—C81.340 (3)C25—H25B0.9600
C7—H70.9300C25—H25C0.9600
C8—C131.422 (3)C26—H26A0.9600
C8—H80.9300C26—H26B0.9600
C9—C111.389 (3)C26—H26C0.9600
C9—C131.391 (3)C27—H27A0.9600
C9—C151.507 (3)C27—H27B0.9600
N10—C121.365 (3)C27—H27C0.9600
N10—C141.373 (3)S28—O301.4148 (17)
N10—C271.481 (3)S28—O291.4161 (18)
C11—C121.431 (3)S28—O311.443 (2)
C13—C141.428 (3)S28—C321.799 (3)
C15—O171.188 (3)C32—F351.321 (3)
C15—O161.335 (3)C32—F341.322 (3)
O16—C181.431 (3)C32—F331.344 (3)
C18—C231.366 (4)
C2—C1—C11121.2 (2)C18—C19—C24123.0 (2)
C2—C1—H1119.4C20—C19—C24121.8 (2)
C11—C1—H1119.4C21—C20—C19122.6 (3)
C1—C2—C3119.5 (2)C21—C20—H20118.7
C1—C2—H2120.2C19—C20—H20118.7
C3—C2—H2120.2C20—C21—C22120.3 (3)
C4—C3—C2122.0 (2)C20—C21—H21119.9
C4—C3—H3119.0C22—C21—H21119.9
C2—C3—H3119.0C21—C22—C23119.2 (3)
C3—C4—C12120.1 (2)C21—C22—H22120.4
C3—C4—H4119.9C23—C22—H22120.4
C12—C4—H4119.9C18—C23—C22119.0 (3)
C6—C5—C14120.1 (2)C18—C23—H23120.5
C6—C5—H5120.0C22—C23—H23120.5
C14—C5—H5120.0C19—C24—C25110.7 (2)
C5—C6—C7121.7 (2)C19—C24—C26112.3 (3)
C5—C6—H6119.2C25—C24—C26111.4 (3)
C7—C6—H6119.2C19—C24—H24107.4
C8—C7—C6119.9 (2)C25—C24—H24107.4
C8—C7—H7120.1C26—C24—H24107.4
C6—C7—H7120.1C24—C25—H25A109.5
C7—C8—C13121.1 (2)C24—C25—H25B109.5
C7—C8—H8119.4H25A—C25—H25B109.5
C13—C8—H8119.4C24—C25—H25C109.5
C11—C9—C13121.1 (2)H25A—C25—H25C109.5
C11—C9—C15119.2 (2)H25B—C25—H25C109.5
C13—C9—C15119.70 (19)C24—C26—H26A109.5
C12—N10—C14122.16 (18)C24—C26—H26B109.5
C12—N10—C27118.31 (19)H26A—C26—H26B109.5
C14—N10—C27119.5 (2)C24—C26—H26C109.5
C9—C11—C1122.5 (2)H26A—C26—H26C109.5
C9—C11—C12118.9 (2)H26B—C26—H26C109.5
C1—C11—C12118.6 (2)N10—C27—H27A109.5
N10—C12—C4122.0 (2)N10—C27—H27B109.5
N10—C12—C11119.5 (2)H27A—C27—H27B109.5
C4—C12—C11118.5 (2)N10—C27—H27C109.5
C9—C13—C8122.7 (2)H27A—C27—H27C109.5
C9—C13—C14119.0 (2)H27B—C27—H27C109.5
C8—C13—C14118.3 (2)O30—S28—O29116.47 (12)
N10—C14—C5121.7 (2)O30—S28—O31113.97 (13)
N10—C14—C13119.3 (2)O29—S28—O31114.20 (13)
C5—C14—C13118.9 (2)O30—S28—C32104.08 (13)
O17—C15—O16125.3 (2)O29—S28—C32104.00 (12)
O17—C15—C9124.9 (2)O31—S28—C32101.75 (13)
O16—C15—C9109.79 (19)F35—C32—F34108.1 (2)
C15—O16—C18118.12 (17)F35—C32—F33105.2 (2)
C23—C18—C19123.6 (2)F34—C32—F33105.7 (2)
C23—C18—O16116.1 (2)F35—C32—S28112.96 (19)
C19—C18—O16120.1 (2)F34—C32—S28112.72 (19)
C18—C19—C20115.2 (2)F33—C32—S28111.7 (2)
C11—C1—C2—C30.2 (4)C8—C13—C14—N10179.9 (2)
C1—C2—C3—C40.5 (4)C9—C13—C14—C5178.8 (2)
C2—C3—C4—C120.6 (4)C8—C13—C14—C51.2 (3)
C14—C5—C6—C70.6 (4)C11—C9—C15—O1792.5 (3)
C5—C6—C7—C80.5 (4)C13—C9—C15—O1787.2 (3)
C6—C7—C8—C130.4 (4)C11—C9—C15—O1687.4 (2)
C13—C9—C11—C1178.0 (2)C13—C9—C15—O1692.8 (2)
C15—C9—C11—C11.7 (3)O17—C15—O16—C188.9 (3)
C13—C9—C11—C121.2 (3)C9—C15—O16—C18171.01 (19)
C15—C9—C11—C12179.1 (2)C15—O16—C18—C2386.1 (3)
C2—C1—C11—C9179.9 (2)C15—O16—C18—C1998.8 (3)
C2—C1—C11—C120.7 (4)C23—C18—C19—C200.3 (4)
C14—N10—C12—C4178.4 (2)O16—C18—C19—C20175.1 (2)
C27—N10—C12—C40.4 (3)C23—C18—C19—C24178.2 (2)
C14—N10—C12—C111.9 (3)O16—C18—C19—C247.0 (4)
C27—N10—C12—C11179.4 (2)C18—C19—C20—C210.4 (4)
C3—C4—C12—N10179.7 (2)C24—C19—C20—C21177.5 (3)
C3—C4—C12—C110.1 (3)C19—C20—C21—C220.6 (4)
C9—C11—C12—N100.5 (3)C20—C21—C22—C230.0 (4)
C1—C11—C12—N10179.7 (2)C19—C18—C23—C220.8 (4)
C9—C11—C12—C4179.8 (2)O16—C18—C23—C22175.8 (2)
C1—C11—C12—C40.6 (3)C21—C22—C23—C180.6 (4)
C11—C9—C13—C8178.6 (2)C18—C19—C24—C2597.9 (3)
C15—C9—C13—C81.2 (3)C20—C19—C24—C2579.8 (3)
C11—C9—C13—C141.4 (3)C18—C19—C24—C26137.0 (3)
C15—C9—C13—C14178.9 (2)C20—C19—C24—C2645.3 (3)
C7—C8—C13—C9178.8 (2)O30—S28—C32—F35174.13 (19)
C7—C8—C13—C141.2 (3)O29—S28—C32—F3551.7 (2)
C12—N10—C14—C5179.5 (2)O31—S28—C32—F3567.2 (2)
C27—N10—C14—C50.8 (3)O30—S28—C32—F3463.0 (2)
C12—N10—C14—C131.6 (3)O29—S28—C32—F34174.54 (18)
C27—N10—C14—C13179.6 (2)O31—S28—C32—F3455.6 (2)
C6—C5—C14—N10179.2 (2)O30—S28—C32—F3355.7 (2)
C6—C5—C14—C130.3 (3)O29—S28—C32—F3366.7 (2)
C9—C13—C14—N100.0 (3)O31—S28—C32—F33174.42 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O29i0.932.483.363 (3)159
C27—H27C···F35i0.962.513.250 (4)134
Symmetry code: (i) x+2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC24H22NO2+·CF3SO3
Mr505.51
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)14.4346 (7), 12.9677 (5), 13.0862 (5)
β (°) 107.160 (5)
V3)2340.47 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.32 × 0.20 × 0.05
Data collection
DiffractometerOxford Diffraction Gemini R Ultra Ruby CCD
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2008)
Tmin, Tmax0.955, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
17556, 4169, 2436
Rint0.043
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.116, 0.93
No. of reflections4169
No. of parameters319
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.26

Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O29i0.932.483.363 (3)159
C27—H27C···F35i0.962.513.250 (4)134
Symmetry code: (i) x+2, y+1/2, z+1/2.
S–O···π interactions (Å,°). top
Cg1 and Cg2 are the centroids of the C9/N10/C11–C14 and C1–C4/C11/C12 rings, respectively.
XIJI···JX···JXI···J
S28O29Cg1ii3.703 (2)3.879 (2)86.3 (1)
S28O31Cg1ii3.528 (2)3.879 (2)92.9 (1)
S28O31Cg2ii3.208 (2)4.128 (2)120.3 (2)
Symmetry code: (ii) –x + 2, –y + 1, –z + 1.
ππ interactions (Å,°). top
IJCgI···CgJDihedral angleCgI_PerpCgI_Offset
33iii3.962 (2)03.340 (1)2.131 (1)
Symmetry code: (iii) –x + 1, –y + 2, –z + 1.

Notes: Cg3 is the centroid of the C18–C23 ring. CgI···CgJ is the distance between ring centroids. The dihedral angle is that between the planes of the rings I and J. CgI_Perp is the perpendicular distance of CgI from ring J. CgI_Offset is the distance between CgI and perpendicular projection of CgJ on ring I.
 

Footnotes

to whom correspondence should be addressed

Acknowledgements

This study was financed by the State Funds for Scientific Research (grant No. N204 123 32/3143 – contract No. 3143/H03/2007/32 of the Polish Ministry of Research and Higher Education for the period 2007–2010 – and DS/8820–4-0087–0).

References

First citationBianchi, R., Forni, A. & Pilati, T. (2004). Acta Cryst. B60, 559–568.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBrown, R. C., Li, Z., Rutter, A. J., Mu, X., Weeks, O. H., Smith, K. & Weeks, I. (2009). Org. Biomol. Chem. 7, 386–394.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDorn, T., Janiak, C. & Abu-Shandi, K. (2005). CrystEngComm, 7, 633–641.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHunter, C. A., Lawson, K. R., Perkins, J. & Urch, C. J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 651–669.  Web of Science CrossRef Google Scholar
First citationKing, D. W., Cooper, W. J., Rusak, S. A., Peake, B. M., Kiddle, J. J., O'Sullivan, D. W., Melamed, M. L., Morgan, C. R. & Theberge, S. M. (2007). Anal. Chem. 79, 4169–4176.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLyssenko, K. A. & Antipin, M. Y. (2004). Russ. Chem. Bull. Int. Ed. 53, 10–17.  Web of Science CrossRef CAS Google Scholar
First citationNatrajan, A., Sharpe, D., Costello, J. & Jiang, Q. (2010). Anal. Biochem. 406, 204–213.  Web of Science CrossRef CAS PubMed Google Scholar
First citationNovoa, J. J., Mota, F. & D'Oria, E. (2006). Hydrogen Bonding – New Insights, edited by S. Grabowski, pp. 193–244. The Netherlands: Springer.  Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationRak, J., Skurski, P. & Błażejowski, J. (1999). J. Org. Chem. 64, 3002–3008.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRoda, A., Guardigli, M., Michelini, E., Mirasoli, M. & Pasini, P. (2003). Anal. Chem. 75, 462–470.  Web of Science CrossRef Google Scholar
First citationSato, N. (1996). Tetrahedron Lett. 37, 8519–8522.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSikorski, A., Krzymiński, K., Białońska, A., Lis, T. & Błażejowski, J. (2006). Acta Cryst. E62, o822–o824.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSikorski, A., Krzymiński, K., Malecha, P., Lis, T. & Błażejowski, J. (2007). Acta Cryst. E63, o4484–o4485.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTrzybiński, D., Krzymiński, K., Sikorski, A., Malecha, P. & Błażejowski, J. (2010). Acta Cryst. E66, o826–o827.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZomer, G. & Jacquemijns, M. (2001). Chemiluminescence in Analytical Chemistry, edited by A. M. Garcia-Campana & W. R. G. Baeyens, pp. 529–549. New York: Marcel Dekker.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds