organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Chloro-2-(6-nitro-1H-benzimidazol-2-yl)phenol N,N-di­methyl­form­amide solvate

aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 13 October 2010; accepted 13 October 2010; online 20 October 2010)

In the title compound, C13H8ClN3O3·C3H7NO, the benzimidazole and benzene rings make a dihedral angle of 0.63 (11)°. An intra­molecular O—H⋯N hydrogen bond generates an S(6) ring motif. The solvent mol­ecule is hydrogen-bonded to the benzimidazole mol­ecule by inter­molecular N—H⋯O and C—H⋯O hydrogen bonds, generating an R12(7) ring motif. In the crystal, the mol­ecules are arranged into parallel layers perpendicular to the c axis and stabilized by weak ππ inter­actions [centroid–centroid distances in the range 3.4036 (18)–3.5878 (16) Å].

Related literature

For general background to and the biological activity of benzimidazole derivatives, see: Trivedi et al. (2006[Trivedi, R., De, S. K. & Gibbs, R. A. (2006). J. Mol. Catal. A, 245, 8-11.]); White et al. (2004[White, A., Curtin, N. J., Eastman, B., Golding, B. T., Hostomsky, Z., Kyle, S., Li, J., Maegley, K., Skalitzky, D., Webber, S., Yu, X. & Griffin, R. J. (2004). Biorg. Med. Chem. Lett. 14, 2433-2437.]); Garuti et al. (2004[Garuti, L., Roberti, M., Pizzirani, D., Pession, A., Leoncini, E., Cenci, V. & Hrelia, S. (2004). Farmaco, 59, 663-668.]). For related structures, see: Eltayeb et al. (2009[Eltayeb, N. E., Teoh, S. G., Fun, H.-K., Jebas, S. R. & Adnan, R. (2009). Acta Cryst. E65, o1374-o1375.]); Yeap et al. (2009[Yeap, C. S., Kargar, H., Kia, R., Jamshidvand, A. & Fun, H.-K. (2009). Acta Cryst. E65, o745-o746.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C13H8ClN3O3·C3H7NO

  • Mr = 362.77

  • Monoclinic, C 2/c

  • a = 15.200 (2) Å

  • b = 18.355 (2) Å

  • c = 13.279 (3) Å

  • β = 119.232 (2)°

  • V = 3233.1 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 100 K

  • 0.45 × 0.12 × 0.05 mm

Data collection
  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.889, Tmax = 0.987

  • 14542 measured reflections

  • 3719 independent reflections

  • 2771 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.201

  • S = 1.07

  • 3719 reflections

  • 228 parameters

  • H-atom parameters constrained

  • Δρmax = 0.78 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H1O3⋯N2 0.75 1.90 2.568 (4) 149
N1—H1N1⋯O4 0.89 1.86 2.736 (4) 167
C13—H13A⋯O4 0.93 2.58 3.472 (5) 161

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Benzimidazole and its derivatives are widely used in biological systems (Trivedi et al., 2006). Some derivatives of benzimidazole are used as inhibitors of the DNA-repair enzyme poly (ADP-ribose) polymerase-1 (PARP-1) (White et al., 2004) and antiproliferative activities (Garuti et al., 2004). In view of the biological importance of aforementioned benzimidazole, the crystal structure determination of the title compound was carried out and the result is presented here.

The asymmetric unit of title compound consists of one benzimidazole molecule and one dimethylformamide solvent (Fig. 1). The geometric parameters are comparable to those related structures (Eltayeb et al., 2009; Yeap et al., 2009). The molecular structure of the benzimidazole is essentially planar with the maximum deviation of 0.071 Å for atom O1. An intramolecular O3—H1O3···N2 hydrogen bond generate S(6) ring motif (Bernstein et al., 1995). The solvent molecule is hydrogen-bonded to the benzimidazole molecule by intermolecular N1—H1N1···O4 and C13—H13A···O4 hydrogen bonds generating R12(7) ring motif. In the crystal packing, the molecules are arranged into parallel layers perpendicular to c axis and stabilized by weak π···π interactions [Cg1···Cg1i of 3.4036 (18) Å, Cg1···Cg1ii of 3.5247 (17) Å and Cg1···Cg2i of 3.5878 (16) Å; (i) -x, y, 1/2 - z; (ii) -x, 1 - y, 1 - z. Cg1 and Cg2 are centroids of N1–C1–C6–N2–C7 and C1–C6 rings, respectively].

Related literature top

For general background to and the biological activity of benzimidazole derivatives, see: Trivedi et al. (2006); White et al. (2004); Garuti et al. (2004). For related structures, see: Eltayeb et al. (2009); Yeap et al. (2009). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

5-Chloro-2-hydroxy benzaldehyde (0.626 g, 4 mmol) was added to the solution of 4-nitrobenzene-1,2-diamine (0.306 g, 2 mmol) in methanol (30 ml). The mixture was refluxed with stirring for 1 h. The resultant solid obtained was then filtered and washed with methanol. Orange plate-shaped single crystals of the title compound suitable for X-ray structure determination was obtained from DMF by slow evaporation at room temperature.

Refinement top

The O– and N-bound hydrogen atoms were located from difference Fourier map and refined using a riding model [Uiso(H) = 1.2Ueq (N) or 1.5Ueq(O)]. The rest of hydrogen atoms were positioned geometrically [C–H = 0.93 & 0.96 Å] and refined using a riding model [Uiso(H) = 1.2 & 1.5Ueq(C)]. A rotating-group model were applied for methyl groups.

Structure description top

Benzimidazole and its derivatives are widely used in biological systems (Trivedi et al., 2006). Some derivatives of benzimidazole are used as inhibitors of the DNA-repair enzyme poly (ADP-ribose) polymerase-1 (PARP-1) (White et al., 2004) and antiproliferative activities (Garuti et al., 2004). In view of the biological importance of aforementioned benzimidazole, the crystal structure determination of the title compound was carried out and the result is presented here.

The asymmetric unit of title compound consists of one benzimidazole molecule and one dimethylformamide solvent (Fig. 1). The geometric parameters are comparable to those related structures (Eltayeb et al., 2009; Yeap et al., 2009). The molecular structure of the benzimidazole is essentially planar with the maximum deviation of 0.071 Å for atom O1. An intramolecular O3—H1O3···N2 hydrogen bond generate S(6) ring motif (Bernstein et al., 1995). The solvent molecule is hydrogen-bonded to the benzimidazole molecule by intermolecular N1—H1N1···O4 and C13—H13A···O4 hydrogen bonds generating R12(7) ring motif. In the crystal packing, the molecules are arranged into parallel layers perpendicular to c axis and stabilized by weak π···π interactions [Cg1···Cg1i of 3.4036 (18) Å, Cg1···Cg1ii of 3.5247 (17) Å and Cg1···Cg2i of 3.5878 (16) Å; (i) -x, y, 1/2 - z; (ii) -x, 1 - y, 1 - z. Cg1 and Cg2 are centroids of N1–C1–C6–N2–C7 and C1–C6 rings, respectively].

For general background to and the biological activity of benzimidazole derivatives, see: Trivedi et al. (2006); White et al. (2004); Garuti et al. (2004). For related structures, see: Eltayeb et al. (2009); Yeap et al. (2009). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound with atom labels and 50% probability ellipsoids for non-H atoms. Intramolecular hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. The crystal packing of title compound viewed down b axis, showing the molecules are arranged into parallel layers.
4-Chloro-2-(6-nitro-1H-benzimidazol-2-yl)phenol N,N-dimethylformamide solvate top
Crystal data top
C13H8ClN3O3·C3H7NOF(000) = 1504
Mr = 362.77Dx = 1.491 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3050 reflections
a = 15.200 (2) Åθ = 2.8–29.6°
b = 18.355 (2) ŵ = 0.27 mm1
c = 13.279 (3) ÅT = 100 K
β = 119.232 (2)°Plate, orange
V = 3233.1 (9) Å30.45 × 0.12 × 0.05 mm
Z = 8
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
3719 independent reflections
Radiation source: fine-focus sealed tube2771 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
φ and ω scansθmax = 27.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1919
Tmin = 0.889, Tmax = 0.987k = 2323
14542 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.201H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0961P)2 + 7.3038P]
where P = (Fo2 + 2Fc2)/3
3719 reflections(Δ/σ)max < 0.001
228 parametersΔρmax = 0.78 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C13H8ClN3O3·C3H7NOV = 3233.1 (9) Å3
Mr = 362.77Z = 8
Monoclinic, C2/cMo Kα radiation
a = 15.200 (2) ŵ = 0.27 mm1
b = 18.355 (2) ÅT = 100 K
c = 13.279 (3) Å0.45 × 0.12 × 0.05 mm
β = 119.232 (2)°
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
3719 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2771 reflections with I > 2σ(I)
Tmin = 0.889, Tmax = 0.987Rint = 0.041
14542 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0650 restraints
wR(F2) = 0.201H-atom parameters constrained
S = 1.07Δρmax = 0.78 e Å3
3719 reflectionsΔρmin = 0.34 e Å3
228 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.29053 (6)0.25697 (4)0.23736 (8)0.0465 (3)
O10.37235 (16)0.53844 (13)0.5412 (2)0.0418 (6)
O20.36636 (17)0.65517 (14)0.5483 (2)0.0444 (6)
O30.28130 (16)0.57579 (11)0.23880 (19)0.0362 (5)
H1O30.22930.59040.25910.054*
N10.00189 (16)0.46895 (13)0.37354 (18)0.0242 (5)
H1N10.00570.42090.37720.029*
N20.08820 (17)0.57321 (12)0.33366 (19)0.0245 (5)
N30.32588 (18)0.59601 (15)0.5240 (2)0.0327 (6)
C10.06745 (19)0.52535 (15)0.4062 (2)0.0227 (5)
C20.1718 (2)0.52401 (16)0.4543 (2)0.0261 (6)
H2A0.20850.48090.47190.031*
C30.21629 (19)0.59173 (15)0.4736 (2)0.0250 (6)
C40.1634 (2)0.65760 (16)0.4484 (2)0.0304 (6)
H4A0.19780.70160.46290.036*
C50.0598 (2)0.65720 (16)0.4018 (2)0.0287 (6)
H5A0.02330.70040.38520.034*
C60.0120 (2)0.59004 (15)0.3807 (2)0.0250 (6)
C70.09359 (19)0.50080 (15)0.3299 (2)0.0228 (5)
C80.18949 (19)0.46199 (14)0.2832 (2)0.0218 (5)
C90.2793 (2)0.50277 (16)0.2409 (2)0.0269 (6)
C100.3707 (2)0.46580 (18)0.2000 (3)0.0342 (7)
H10A0.43030.49230.17190.041*
C110.3743 (2)0.39127 (18)0.2004 (2)0.0339 (7)
H11A0.43550.36740.17500.041*
C120.2861 (2)0.35177 (17)0.2390 (2)0.0301 (6)
C130.1943 (2)0.38598 (15)0.2804 (2)0.0254 (6)
H13A0.13570.35860.30640.030*
O40.0524 (2)0.32533 (15)0.3936 (3)0.0728 (9)
N40.0760 (2)0.20375 (15)0.4053 (2)0.0374 (6)
C140.0997 (3)0.2715 (2)0.3954 (4)0.0526 (9)
H14A0.15750.27870.38920.063*
C150.0141 (3)0.1904 (3)0.4121 (4)0.0611 (11)
H15A0.03170.23340.43940.092*
H15B0.00260.15090.46450.092*
H15C0.06810.17790.33700.092*
C160.1378 (4)0.1427 (2)0.4137 (4)0.0710 (13)
H16A0.19420.15900.40610.106*
H16B0.09890.10850.35340.106*
H16C0.16160.11950.48730.106*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0443 (5)0.0298 (4)0.0618 (5)0.0138 (3)0.0230 (4)0.0003 (3)
O10.0249 (11)0.0443 (14)0.0522 (13)0.0012 (10)0.0157 (10)0.0013 (10)
O20.0298 (12)0.0452 (14)0.0561 (14)0.0158 (10)0.0192 (10)0.0078 (11)
O30.0252 (10)0.0291 (11)0.0515 (13)0.0043 (8)0.0164 (10)0.0016 (9)
N10.0197 (11)0.0250 (12)0.0278 (11)0.0006 (9)0.0116 (9)0.0019 (9)
N20.0230 (11)0.0238 (12)0.0279 (11)0.0039 (9)0.0135 (9)0.0012 (9)
N30.0229 (12)0.0402 (15)0.0341 (12)0.0047 (11)0.0133 (10)0.0033 (10)
C10.0209 (12)0.0270 (14)0.0217 (11)0.0059 (10)0.0115 (10)0.0023 (10)
C20.0226 (13)0.0301 (15)0.0271 (12)0.0008 (11)0.0134 (10)0.0006 (10)
C30.0172 (12)0.0326 (15)0.0248 (12)0.0051 (10)0.0101 (10)0.0024 (10)
C40.0292 (15)0.0276 (15)0.0334 (14)0.0087 (11)0.0145 (11)0.0046 (11)
C50.0273 (14)0.0251 (14)0.0325 (14)0.0016 (11)0.0138 (11)0.0001 (11)
C60.0235 (13)0.0276 (14)0.0235 (12)0.0018 (11)0.0112 (10)0.0020 (10)
C70.0196 (12)0.0290 (14)0.0217 (11)0.0008 (10)0.0114 (10)0.0009 (10)
C80.0187 (12)0.0248 (14)0.0219 (11)0.0025 (10)0.0100 (10)0.0007 (9)
C90.0226 (13)0.0294 (15)0.0281 (13)0.0011 (11)0.0119 (11)0.0008 (10)
C100.0186 (13)0.0455 (19)0.0371 (15)0.0020 (12)0.0124 (12)0.0009 (13)
C110.0227 (14)0.0443 (18)0.0328 (14)0.0118 (12)0.0121 (11)0.0024 (12)
C120.0288 (14)0.0309 (15)0.0299 (13)0.0094 (12)0.0138 (11)0.0005 (11)
C130.0213 (13)0.0276 (14)0.0264 (12)0.0011 (10)0.0110 (10)0.0019 (10)
O40.073 (2)0.0341 (15)0.099 (2)0.0211 (14)0.0322 (18)0.0026 (14)
N40.0405 (15)0.0347 (15)0.0394 (14)0.0003 (11)0.0214 (12)0.0028 (11)
C140.048 (2)0.041 (2)0.066 (2)0.0015 (17)0.0258 (18)0.0046 (17)
C150.048 (2)0.070 (3)0.064 (2)0.001 (2)0.027 (2)0.009 (2)
C160.092 (4)0.051 (3)0.078 (3)0.023 (2)0.049 (3)0.000 (2)
Geometric parameters (Å, º) top
Cl1—C121.741 (3)C8—C131.397 (4)
O1—N31.229 (3)C8—C91.411 (4)
O2—N31.212 (3)C9—C101.396 (4)
O3—C91.341 (3)C10—C111.369 (5)
O3—H1O30.7498C10—H10A0.9300
N1—C71.354 (3)C11—C121.384 (4)
N1—C11.387 (3)C11—H11A0.9300
N1—H1N10.8875C12—C131.376 (4)
N2—C71.331 (4)C13—H13A0.9300
N2—C61.370 (3)O4—C141.216 (5)
N3—C31.463 (3)N4—C141.319 (5)
C1—C21.391 (4)N4—C161.431 (5)
C1—C61.399 (4)N4—C151.437 (5)
C2—C31.378 (4)C14—H14A0.9300
C2—H2A0.9300C15—H15A0.9600
C3—C41.399 (4)C15—H15B0.9600
C4—C51.383 (4)C15—H15C0.9600
C4—H4A0.9300C16—H16A0.9600
C5—C61.388 (4)C16—H16B0.9600
C5—H5A0.9300C16—H16C0.9600
C7—C81.461 (4)
C9—O3—H1O3110.0O3—C9—C8123.1 (2)
C7—N1—C1106.1 (2)C10—C9—C8118.9 (3)
C7—N1—H1N1122.1C11—C10—C9121.2 (3)
C1—N1—H1N1131.8C11—C10—H10A119.4
C7—N2—C6106.1 (2)C9—C10—H10A119.4
O2—N3—O1123.4 (3)C10—C11—C12119.5 (3)
O2—N3—C3119.1 (3)C10—C11—H11A120.3
O1—N3—C3117.5 (2)C12—C11—H11A120.3
N1—C1—C2130.7 (3)C13—C12—C11121.3 (3)
N1—C1—C6106.4 (2)C13—C12—Cl1119.1 (2)
C2—C1—C6122.9 (3)C11—C12—Cl1119.6 (2)
C3—C2—C1114.6 (3)C12—C13—C8119.7 (3)
C3—C2—H2A122.7C12—C13—H13A120.1
C1—C2—H2A122.7C8—C13—H13A120.1
C2—C3—C4124.2 (3)C14—N4—C16123.0 (4)
C2—C3—N3118.6 (3)C14—N4—C15118.9 (3)
C4—C3—N3117.1 (2)C16—N4—C15118.0 (4)
C5—C4—C3119.9 (3)O4—C14—N4125.4 (4)
C5—C4—H4A120.0O4—C14—H14A117.3
C3—C4—H4A120.0N4—C14—H14A117.3
C4—C5—C6117.6 (3)N4—C15—H15A109.5
C4—C5—H5A121.2N4—C15—H15B109.5
C6—C5—H5A121.2H15A—C15—H15B109.5
N2—C6—C5130.4 (3)N4—C15—H15C109.5
N2—C6—C1108.9 (2)H15A—C15—H15C109.5
C5—C6—C1120.8 (2)H15B—C15—H15C109.5
N2—C7—N1112.6 (2)N4—C16—H16A109.5
N2—C7—C8122.2 (2)N4—C16—H16B109.5
N1—C7—C8125.2 (2)H16A—C16—H16B109.5
C13—C8—C9119.4 (2)N4—C16—H16C109.5
C13—C8—C7121.8 (2)H16A—C16—H16C109.5
C9—C8—C7118.8 (2)H16B—C16—H16C109.5
O3—C9—C10118.0 (3)
C7—N1—C1—C2179.0 (3)C6—N2—C7—C8179.2 (2)
C7—N1—C1—C60.6 (3)C1—N1—C7—N20.9 (3)
N1—C1—C2—C3178.8 (2)C1—N1—C7—C8179.1 (2)
C6—C1—C2—C30.8 (4)N2—C7—C8—C13179.5 (2)
C1—C2—C3—C40.2 (4)N1—C7—C8—C130.4 (4)
C1—C2—C3—N3180.0 (2)N2—C7—C8—C90.2 (4)
O2—N3—C3—C2175.2 (3)N1—C7—C8—C9179.8 (2)
O1—N3—C3—C23.6 (4)C13—C8—C9—O3178.9 (2)
O2—N3—C3—C44.6 (4)C7—C8—C9—O31.7 (4)
O1—N3—C3—C4176.6 (2)C13—C8—C9—C101.7 (4)
C2—C3—C4—C50.5 (4)C7—C8—C9—C10177.7 (2)
N3—C3—C4—C5179.3 (2)O3—C9—C10—C11179.4 (3)
C3—C4—C5—C60.7 (4)C8—C9—C10—C110.0 (4)
C7—N2—C6—C5178.3 (3)C9—C10—C11—C121.9 (4)
C7—N2—C6—C10.4 (3)C10—C11—C12—C132.1 (4)
C4—C5—C6—N2178.5 (3)C10—C11—C12—Cl1178.9 (2)
C4—C5—C6—C10.1 (4)C11—C12—C13—C80.4 (4)
N1—C1—C6—N20.1 (3)Cl1—C12—C13—C8179.4 (2)
C2—C1—C6—N2179.5 (2)C9—C8—C13—C121.5 (4)
N1—C1—C6—C5179.0 (2)C7—C8—C13—C12177.9 (2)
C2—C1—C6—C50.6 (4)C16—N4—C14—O4176.2 (4)
C6—N2—C7—N10.8 (3)C15—N4—C14—O41.6 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1O3···N20.751.902.568 (4)149
N1—H1N1···O40.891.862.736 (4)167
C13—H13A···O40.932.583.472 (5)161

Experimental details

Crystal data
Chemical formulaC13H8ClN3O3·C3H7NO
Mr362.77
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)15.200 (2), 18.355 (2), 13.279 (3)
β (°) 119.232 (2)
V3)3233.1 (9)
Z8
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.45 × 0.12 × 0.05
Data collection
DiffractometerBruker APEXII DUO CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.889, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
14542, 3719, 2771
Rint0.041
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.201, 1.07
No. of reflections3719
No. of parameters228
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.78, 0.34

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1O3···N20.751.902.568 (4)149
N1—H1N1···O40.891.862.736 (4)167
C13—H13A···O40.932.583.472 (5)161
 

Footnotes

Thomson Reuters ResearcherID: A-5523-2009.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors thank the Malaysian Government and Universiti Sains Malaysia (USM) for the RU research grant (815002). HKF and CSY also thank USM for the Research University Grant No. 1001/PFIZIK/811160. AMF thanks the Libyan Government for providing a scholarship.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationEltayeb, N. E., Teoh, S. G., Fun, H.-K., Jebas, S. R. & Adnan, R. (2009). Acta Cryst. E65, o1374–o1375.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGaruti, L., Roberti, M., Pizzirani, D., Pession, A., Leoncini, E., Cenci, V. & Hrelia, S. (2004). Farmaco, 59, 663–668.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTrivedi, R., De, S. K. & Gibbs, R. A. (2006). J. Mol. Catal. A, 245, 8–11.  Web of Science CrossRef CAS Google Scholar
First citationWhite, A., Curtin, N. J., Eastman, B., Golding, B. T., Hostomsky, Z., Kyle, S., Li, J., Maegley, K., Skalitzky, D., Webber, S., Yu, X. & Griffin, R. J. (2004). Biorg. Med. Chem. Lett. 14, 2433–2437.  Web of Science CrossRef CAS Google Scholar
First citationYeap, C. S., Kargar, H., Kia, R., Jamshidvand, A. & Fun, H.-K. (2009). Acta Cryst. E65, o745–o746.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds