supporting information


Acta Cryst. (2010). E66, o3036    [ doi:10.1107/S1600536810043825 ]

3,3-Dinitro­azetidinium 2-hy­droxy­benzoate

R. Gao, B. Yan, T. Mai, Y. Hu and Y.-L. Guan

Abstract top

In the title gem-dinitro­azetidinium 2-hy­droxy­benzoate salt, C3H6N3O4+·C7H5O3-, the azetidine ring is virtually planar, with a mean deviation from the plane of 0.0242 Å. The dihedral angle between the two nitro groups is 87.5 (1)°.

Comment top

Dinitro- and trinitro-derivatives of azetidine are of interest because they contain strained ring systems. This makes them good candidates for energetic materials (propellants or explosives). Azetidine-based explosives, such as 1,3,3-trinitroazetidine (TNAZ) (Archibald et al., 1990) demonstrate excellent performance partly because of the high strain associated with the four-membered ring. As one of the important derivates of TNAZ, 3,3-dinitroazetidine (DNAZ) (Hiskey et al., 1992;)can prepare a variety of solid energetic materials with high oxygen-balance (Ma, Yan, Li, Guan et al., 2009; Gao et al., 2009; Ma, Yan, Li, Song & Hu, 2009; Ma, Yan, Song et al., 2009; Yan et al., 2009; Yan et al., 2010; Ma et al., 2010). This paper reports synthesis and crystal structure of the title DNAZ salt.

Related literature top

For related literature on 1,3,3-trinitroazetidine and compounds prepared from its derivative 3,3-dinitroazetidine, see: Archibald et al. (1990); Gao et al. (2009); Hiskey et al. (1992); Ma, Yan, Li, Guan et al. (2009); Ma, Yan, Li, Song & Hu (2009); Ma, Yan, Song et al. (2009); Ma et al. (2010); Yan et al. (2009, 2010).

Experimental top

A solution of DNAZ (0.30 g, 2.04 mmol), salicylic acid (0.28 ml, 2.04 mmol) in trichloromethane (15.0 ml) was stirred for 2 h. The reaction mixture was concentrated in vacuo, then a white solid began to precipitate. The solid product was washed with ethanol and purified by recrystallization from trichloromethane to give the pure colorless compound in 90.5% yield. The title compound (43 mg,0.15 mmol) was dissolved in chloroform (15 ml). Colorless crystals were isolated after several days. Elemental analysis calculated for C10H11N3O7: C 42.11, N 14.73, H 3.89%; found: C 47.44, N 14.80, H 3.89%. IR (KBr, cm-1): 3060.25, 1647.33, 1579.29, 1298.39, 1485.78, 1454.23, 706.64.

Refinement top

H atoms were placed at calculated idealized positions and refined using a riding model, with C—H distances in the range 0.93–0.97 Å, N—H distances 0.90 Å and O—H distances 0.82 Å.

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are drawn as spheres of arbitrary radius.
3,3-Dinitroazetidinium 2-hydroxybenzoate top
Crystal data top
C3H6N3O4+·C7H5O3F(000) = 592
Mr = 285.22Dx = 1.509 Mg m3
Monoclinic, P21/nMelting point: 379.4 K
Hall symbol: -P2ynMo Kα radiation, λ = 0.71073 Å
a = 11.174 (3) ÅCell parameters from 1275 reflections
b = 7.013 (2) Åθ = 2.5–21.9°
c = 16.661 (5) ŵ = 0.13 mm1
β = 105.960 (5)°T = 296 K
V = 1255.3 (6) Å3Block, colorless
Z = 40.36 × 0.26 × 0.19 mm
Data collection top
Bruker APEX CCD area-detector
diffractometer
2222 independent reflections
Radiation source: fine-focus sealed tube1504 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
phi and ω scansθmax = 25.1°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
h = 1213
Tmin = 0.955, Tmax = 0.976k = 88
6012 measured reflectionsl = 1819
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.128 w = 1/[σ2(Fo2) + (0.0797P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max = 0.002
2222 reflectionsΔρmax = 0.34 e Å3
183 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.008 (2)
Crystal data top
C3H6N3O4+·C7H5O3V = 1255.3 (6) Å3
Mr = 285.22Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.174 (3) ŵ = 0.13 mm1
b = 7.013 (2) ÅT = 296 K
c = 16.661 (5) Å0.36 × 0.26 × 0.19 mm
β = 105.960 (5)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
2222 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
1504 reflections with I > 2σ(I)
Tmin = 0.955, Tmax = 0.976Rint = 0.027
6012 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.128H-atom parameters constrained
S = 0.99Δρmax = 0.34 e Å3
2222 reflectionsΔρmin = 0.17 e Å3
183 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O70.58576 (13)0.7941 (2)0.06388 (8)0.0563 (4)
O60.46538 (12)0.5959 (2)0.10843 (9)0.0629 (4)
O50.53637 (13)0.2679 (2)0.15624 (10)0.0619 (4)
H50.48780.35660.14050.093*
C40.67334 (16)0.4982 (3)0.12215 (10)0.0380 (5)
N10.36966 (14)0.9772 (2)0.05657 (9)0.0447 (4)
H1D0.36601.08930.02970.054*
H1C0.44170.91690.05930.054*
C50.65122 (17)0.3202 (3)0.15274 (11)0.0407 (5)
N30.10748 (16)0.9419 (3)0.10825 (12)0.0580 (5)
C100.56810 (18)0.6383 (3)0.09534 (11)0.0439 (5)
C30.34209 (17)0.9937 (3)0.13919 (11)0.0471 (5)
H3B0.31811.12110.15140.056*
H3A0.40750.94370.18540.056*
C20.23289 (16)0.8586 (3)0.10855 (11)0.0412 (5)
C60.7486 (2)0.1923 (3)0.18100 (11)0.0511 (5)
H60.73400.07220.20000.061*
C10.25748 (18)0.8552 (3)0.02338 (11)0.0479 (5)
H1A0.27650.72930.00610.057*
H1B0.19280.91600.02010.057*
C90.79343 (18)0.5449 (3)0.12150 (12)0.0501 (5)
H90.80890.66300.10100.060*
N20.24179 (17)0.6717 (3)0.15310 (13)0.0585 (5)
O40.08623 (14)1.0972 (3)0.07553 (11)0.0771 (5)
C70.8681 (2)0.2457 (4)0.18067 (12)0.0595 (6)
H70.93400.16200.20110.071*
O30.03912 (17)0.8537 (3)0.13847 (15)0.0995 (7)
C80.89002 (19)0.4198 (4)0.15066 (13)0.0594 (6)
H80.97030.45340.15000.071*
O10.19839 (17)0.5345 (3)0.11130 (12)0.0861 (6)
O20.29006 (19)0.6747 (3)0.22818 (11)0.0891 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O70.0650 (10)0.0485 (9)0.0622 (9)0.0038 (7)0.0288 (7)0.0121 (7)
O60.0415 (8)0.0663 (11)0.0854 (11)0.0040 (7)0.0248 (7)0.0167 (8)
O50.0492 (9)0.0573 (10)0.0826 (11)0.0109 (7)0.0237 (8)0.0107 (8)
C40.0390 (10)0.0420 (11)0.0340 (9)0.0047 (8)0.0115 (7)0.0025 (8)
N10.0432 (9)0.0451 (10)0.0531 (9)0.0044 (7)0.0256 (7)0.0105 (7)
C50.0418 (11)0.0429 (11)0.0363 (9)0.0046 (9)0.0087 (8)0.0011 (8)
N30.0432 (10)0.0605 (13)0.0751 (12)0.0041 (9)0.0245 (9)0.0147 (10)
C100.0500 (12)0.0425 (12)0.0400 (10)0.0027 (9)0.0140 (9)0.0011 (9)
C30.0407 (11)0.0577 (13)0.0467 (10)0.0116 (9)0.0185 (8)0.0046 (9)
C20.0330 (9)0.0492 (12)0.0447 (10)0.0038 (8)0.0162 (8)0.0006 (9)
C60.0633 (14)0.0489 (12)0.0395 (10)0.0057 (10)0.0116 (9)0.0042 (9)
C10.0484 (11)0.0557 (13)0.0401 (10)0.0045 (10)0.0131 (8)0.0021 (9)
C90.0450 (11)0.0535 (13)0.0546 (12)0.0094 (10)0.0183 (9)0.0029 (10)
N20.0551 (11)0.0572 (13)0.0725 (13)0.0050 (9)0.0333 (10)0.0088 (10)
O40.0646 (11)0.0716 (12)0.0967 (13)0.0169 (9)0.0250 (9)0.0032 (10)
C70.0537 (14)0.0751 (17)0.0443 (11)0.0211 (12)0.0041 (10)0.0059 (11)
O30.0672 (11)0.0869 (14)0.173 (2)0.0139 (10)0.0806 (13)0.0085 (13)
C80.0367 (11)0.0786 (17)0.0633 (13)0.0060 (11)0.0147 (10)0.0108 (12)
O10.0896 (13)0.0543 (11)0.1241 (16)0.0227 (9)0.0458 (11)0.0050 (10)
O20.1054 (14)0.1075 (15)0.0614 (11)0.0001 (11)0.0347 (10)0.0311 (10)
Geometric parameters (Å, º) top
O7—C101.251 (2)C3—H3B0.9700
O6—C101.261 (2)C3—H3A0.9700
O5—C51.351 (2)C2—N21.496 (3)
O5—H50.8200C2—C11.518 (3)
C4—C91.384 (3)C6—C71.388 (3)
C4—C51.396 (2)C6—H60.9300
C4—C101.503 (3)C1—H1A0.9700
N1—C11.493 (2)C1—H1B0.9700
N1—C31.495 (2)C9—C81.372 (3)
N1—H1D0.9000C9—H90.9300
N1—H1C0.9000N2—O11.208 (2)
C5—C61.389 (3)N2—O21.219 (2)
N3—O31.196 (2)C7—C81.367 (3)
N3—O41.212 (2)C7—H70.9300
N3—C21.517 (2)C8—H80.9300
C3—C21.518 (3)
C5—O5—H5109.5N2—C2—C1116.46 (16)
C9—C4—C5118.95 (17)N3—C2—C1114.04 (15)
C9—C4—C10121.59 (17)N2—C2—C3116.25 (16)
C5—C4—C10119.37 (16)N3—C2—C3114.66 (16)
C1—N1—C391.18 (13)C1—C2—C389.36 (14)
C1—N1—H1D113.4C7—C6—C5119.3 (2)
C3—N1—H1D113.4C7—C6—H6120.3
C1—N1—H1C113.4C5—C6—H6120.3
C3—N1—H1C113.4N1—C1—C289.66 (13)
H1D—N1—H1C110.7N1—C1—H1A113.7
O5—C5—C6118.36 (17)C2—C1—H1A113.7
O5—C5—C4121.62 (16)N1—C1—H1B113.7
C6—C5—C4120.02 (17)C2—C1—H1B113.7
O3—N3—O4125.8 (2)H1A—C1—H1B110.9
O3—N3—C2119.7 (2)C8—C9—C4121.03 (19)
O4—N3—C2114.47 (17)C8—C9—H9119.5
O7—C10—O6122.29 (18)C4—C9—H9119.5
O7—C10—C4119.66 (17)O1—N2—O2126.9 (2)
O6—C10—C4118.00 (17)O1—N2—C2116.75 (19)
N1—C3—C289.56 (14)O2—N2—C2116.36 (19)
N1—C3—H3B113.7C8—C7—C6120.8 (2)
C2—C3—H3B113.7C8—C7—H7119.6
N1—C3—H3A113.7C6—C7—H7119.6
C2—C3—H3A113.7C7—C8—C9119.87 (19)
H3B—C3—H3A111.0C7—C8—H8120.1
N2—C2—N3105.92 (15)C9—C8—H8120.1
C9—C4—C5—O5178.87 (17)O5—C5—C6—C7177.77 (16)
C10—C4—C5—O52.3 (2)C4—C5—C6—C71.8 (3)
C9—C4—C5—C60.7 (3)C3—N1—C1—C23.71 (15)
C10—C4—C5—C6177.31 (16)N2—C2—C1—N1115.59 (16)
C9—C4—C10—O77.2 (3)N3—C2—C1—N1120.51 (16)
C5—C4—C10—O7176.32 (16)C3—C2—C1—N13.65 (14)
C9—C4—C10—O6170.31 (17)C5—C4—C9—C80.3 (3)
C5—C4—C10—O66.2 (2)C10—C4—C9—C8176.18 (17)
C1—N1—C3—C23.71 (14)N3—C2—N2—O187.1 (2)
O3—N3—C2—N21.8 (2)C1—C2—N2—O140.8 (2)
O4—N3—C2—N2178.59 (17)C3—C2—N2—O1144.22 (18)
O3—N3—C2—C1127.6 (2)N3—C2—N2—O291.5 (2)
O4—N3—C2—C152.0 (2)C1—C2—N2—O2140.53 (18)
O3—N3—C2—C3131.4 (2)C3—C2—N2—O237.1 (2)
O4—N3—C2—C349.0 (2)C5—C6—C7—C81.9 (3)
N1—C3—C2—N2115.79 (17)C6—C7—C8—C90.9 (3)
N1—C3—C2—N3119.95 (17)C4—C9—C8—C70.2 (3)
N1—C3—C2—C13.65 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O60.902.382.922 (2)118
N1—H1C···O70.901.812.708 (2)179
N1—H1D···O7i0.901.962.720 (2)141
Symmetry code: (i) x+1, y+2, z.

Experimental details

Crystal data
Chemical formulaC3H6N3O4+·C7H5O3
Mr285.22
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)11.174 (3), 7.013 (2), 16.661 (5)
β (°) 105.960 (5)
V3)1255.3 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.36 × 0.26 × 0.19
Data collection
DiffractometerBruker APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2000)
Tmin, Tmax0.955, 0.976
No. of measured, independent and
observed [I > 2σ(I)] reflections
6012, 2222, 1504
Rint0.027
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.128, 0.99
No. of reflections2222
No. of parameters183
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.17

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O60.902.382.922 (2)118.3
N1—H1C···O70.901.812.708 (2)179.4
N1—H1D···O7i0.901.962.720 (2)140.7
Symmetry code: (i) x+1, y+2, z.
 
Acknowledgements top

We thank the National Natural Science Foundation of China (grant No. 21073141), the Natural Science Foundation of Shaanxi Province (grant No. 2009JQ2002) and NWU Graduate Experimental Research Funds (grant No. 09YSY23) for generously supporting this study.