metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(3-Amino­pyrazin-4-ium-2-carboxyl­ate-κ2N1,O)di­aqua­zinc(II) dinitrate

aCollege of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 6 October 2010; accepted 20 October 2010; online 30 October 2010)

The water-coordinated ZnII atom in the title salt, [Zn(C5H5N3O2)2(H2O)2](NO3)2, is N,O-chelated by a zwitterionic amino­pyraziniocarboxyl­ate unit; the metal atom, which lies on a center of inversion, shows an octa­hedral coordination. The nitrate ion inter­acts indirectly, through N—H⋯O hydrogen bonds. In the crystal, adjacent cations and anions are connected by O—H⋯O hydrogen bonds into a three-dimensional network motif. The crystal studied was a non-merohedral twin with two minor components of 15.1 (1) and 8.0 (1)%.

Related literature

For a related structure, see: Tayebee et al. (2008[Tayebee, R., Amini, V. & Khavasi, H. R. (2008). Chin. J. Chem. 26, 500-504.]). For the treatment of non-merohedral twins, see: Spek (2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C5H5N3O2)2(H2O)2](NO3)2

  • Mr = 503.66

  • Monoclinic, P 21 /c

  • a = 13.4676 (14) Å

  • b = 9.7059 (9) Å

  • c = 6.6682 (6) Å

  • β = 96.610 (3)°

  • V = 865.84 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.51 mm−1

  • T = 293 K

  • 0.24 × 0.21 × 0.18 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.580, Tmax = 1.000

  • 8164 measured reflections

  • 1983 independent reflections

  • 1739 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.175

  • S = 1.15

  • 1983 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 1.37 e Å−3

  • Δρmin = −1.66 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1w—H1w1⋯O1i 0.82 2.17 2.895 (5) 148
O1w—H1w2⋯O2ii 0.82 1.99 2.752 (6) 154
N2—H2⋯O3 0.88 1.86 2.703 (6) 161
N3—H31⋯O4 0.88 2.14 2.981 (6) 161
N3—H32⋯O5iii 0.88 2.33 2.994 (7) 133
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

3-Aminopyrazine-2-carboxylic acid forms a number of aqua complexes with divalent transition metals in which the metal atom is N,O-chelated by the monoanion. In an attempt at the solution synthesis of the zinc derivative, the sodium ion used as a reactant is incorporated into the crystal structure (Tayebee et al., 2008). In the present study, the attempt by a hydrothermal route yielded Zn(H2O)2(C5H5N3O2)2 2NO3 (Scheme I, Fig. 1). The water-coordinated zinc atom in the salt is N,O-chelated by a zwitterionic aminopyraziniocarboxylate unit; the metal atom, which lies on a center of inversion, shows octahedral coordination. The nitrate ion interacts indirectly, through N–H···O hydrogen bonds. Adjacent cations and anions are connected by O–H···O hydrogen bonds into a three-dimensional network motif.

Related literature top

For a related structure, see: Tayebee et al. (2008). For the treatment of non-merohedral twins, see: Spek (2003).

Experimental top

Zinc nitrate hexahydrate (0.30 g, 1 mmol), 3-aminopyrazine-2-carboxylic acid (0.28 g, 2 mmol), and sodium hydroxide (0.08 g 2 mmol) were dissolved in a H2O/DMF (12 ml, v/v = 2:1) solution. The mixture was sealed in a 25- ml Teflon-lined stainless steel bomb and held at 443 K for 3 d. The bomb was gradually cooled to room temperature, and yellow crystals were obtained after several days.

Refinement top

Hydrogen atoms were placed in calculated positions (C–H 0.93, N–H 0.88, O–H 0.82 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2–1.5U(C,N,O). The crystal is a non-merohedral twin, with two minor components of 15.1 (1)% and 8.0 (1)%; PLATON (Spek, 2003) was used to separate the diffraction intensities into three domains. The final difference Fourier map had a peak at 0.92 Å from Zn1 and a hole at 0.98 Å from H1w2.

Structure description top

3-Aminopyrazine-2-carboxylic acid forms a number of aqua complexes with divalent transition metals in which the metal atom is N,O-chelated by the monoanion. In an attempt at the solution synthesis of the zinc derivative, the sodium ion used as a reactant is incorporated into the crystal structure (Tayebee et al., 2008). In the present study, the attempt by a hydrothermal route yielded Zn(H2O)2(C5H5N3O2)2 2NO3 (Scheme I, Fig. 1). The water-coordinated zinc atom in the salt is N,O-chelated by a zwitterionic aminopyraziniocarboxylate unit; the metal atom, which lies on a center of inversion, shows octahedral coordination. The nitrate ion interacts indirectly, through N–H···O hydrogen bonds. Adjacent cations and anions are connected by O–H···O hydrogen bonds into a three-dimensional network motif.

For a related structure, see: Tayebee et al. (2008). For the treatment of non-merohedral twins, see: Spek (2003).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Displacement ellipsoid plot of Zn(H2O)2(C5H5N3O2)2 2NO3 at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. Unlabeled atoms are related to labeled atoms by 1 - x, 1 - y, 1 - z.
(3-Aminopyrazin-4-ium-2-carboxylate-κ2N1,O)diaquazinc(II) dinitrate top
Crystal data top
[Zn(C5H5N3O2)2(H2O)2](NO3)2F(000) = 512
Mr = 503.66Dx = 1.932 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7197 reflections
a = 13.4676 (14) Åθ = 3.1–27.5°
b = 9.7059 (9) ŵ = 1.51 mm1
c = 6.6682 (6) ÅT = 293 K
β = 96.610 (3)°Prism, yellow
V = 865.84 (14) Å30.24 × 0.21 × 0.18 mm
Z = 2
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1983 independent reflections
Radiation source: fine-focus sealed tube1739 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
Detector resolution: 10.000 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω scansh = 1717
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1112
Tmin = 0.580, Tmax = 1.000l = 88
8164 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.175H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.0553P)2 + 4.4842P]
where P = (Fo2 + 2Fc2)/3
1983 reflections(Δ/σ)max = 0.001
145 parametersΔρmax = 1.37 e Å3
0 restraintsΔρmin = 1.66 e Å3
Crystal data top
[Zn(C5H5N3O2)2(H2O)2](NO3)2V = 865.84 (14) Å3
Mr = 503.66Z = 2
Monoclinic, P21/cMo Kα radiation
a = 13.4676 (14) ŵ = 1.51 mm1
b = 9.7059 (9) ÅT = 293 K
c = 6.6682 (6) Å0.24 × 0.21 × 0.18 mm
β = 96.610 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1983 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1739 reflections with I > 2σ(I)
Tmin = 0.580, Tmax = 1.000Rint = 0.053
8164 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.175H-atom parameters constrained
S = 1.15Δρmax = 1.37 e Å3
1983 reflectionsΔρmin = 1.66 e Å3
145 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.50000.50000.50000.0239 (3)
O10.5443 (3)0.7058 (4)0.5390 (6)0.0286 (8)
O20.6686 (3)0.8494 (4)0.4874 (6)0.0302 (8)
O31.0229 (3)0.4552 (5)0.2346 (9)0.0472 (12)
O41.0421 (4)0.6731 (5)0.2591 (11)0.0630 (17)
O51.1600 (3)0.5475 (5)0.1631 (8)0.0452 (11)
O1W0.5552 (3)0.4400 (5)0.8042 (6)0.0388 (10)
H1W10.51110.39910.85520.058*
H1W20.57170.50890.87100.058*
N10.6477 (3)0.4895 (4)0.4259 (7)0.0280 (10)
N20.8377 (3)0.5065 (5)0.3357 (8)0.0288 (9)
H20.90010.51000.30910.035*
N30.8428 (3)0.7410 (5)0.3867 (8)0.0331 (11)
H310.90440.74170.35440.040*
H320.81460.81830.41930.040*
N41.0755 (3)0.5598 (5)0.2176 (8)0.0320 (10)
C10.6305 (4)0.7331 (5)0.4932 (8)0.0235 (10)
C20.6923 (4)0.6113 (5)0.4370 (7)0.0221 (9)
C30.7931 (4)0.6243 (5)0.3862 (8)0.0245 (10)
C40.7906 (4)0.3840 (6)0.3245 (10)0.0357 (12)
H40.82310.30570.28490.043*
C50.6951 (4)0.3757 (6)0.3717 (10)0.0358 (13)
H50.66250.29100.36640.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0173 (4)0.0251 (4)0.0306 (5)0.0034 (3)0.0077 (3)0.0000 (3)
O10.0223 (17)0.0259 (17)0.039 (2)0.0009 (14)0.0117 (15)0.0037 (16)
O20.0281 (18)0.0218 (17)0.041 (2)0.0008 (14)0.0031 (16)0.0001 (15)
O30.031 (2)0.026 (2)0.089 (4)0.0043 (18)0.024 (2)0.003 (2)
O40.048 (3)0.025 (2)0.124 (5)0.001 (2)0.045 (3)0.010 (3)
O50.023 (2)0.040 (2)0.075 (3)0.0003 (17)0.020 (2)0.003 (2)
O1W0.042 (2)0.041 (2)0.033 (2)0.0187 (19)0.0033 (18)0.0027 (18)
N10.023 (2)0.024 (2)0.039 (3)0.0002 (16)0.0121 (18)0.0015 (18)
N20.0153 (18)0.037 (2)0.035 (2)0.0016 (17)0.0058 (17)0.0005 (19)
N30.023 (2)0.031 (2)0.046 (3)0.0061 (18)0.011 (2)0.000 (2)
N40.027 (2)0.027 (2)0.043 (3)0.0000 (18)0.0092 (19)0.000 (2)
C10.022 (2)0.025 (2)0.023 (2)0.0004 (18)0.0022 (18)0.0004 (19)
C20.021 (2)0.022 (2)0.023 (2)0.0012 (18)0.0043 (18)0.0022 (18)
C30.020 (2)0.030 (3)0.024 (2)0.0011 (18)0.0035 (18)0.000 (2)
C40.032 (3)0.027 (3)0.049 (3)0.006 (2)0.011 (3)0.003 (3)
C50.036 (3)0.021 (2)0.052 (4)0.001 (2)0.013 (3)0.001 (2)
Geometric parameters (Å, º) top
Zn1—O12.092 (4)N1—C21.324 (6)
Zn1—O1i2.092 (4)N1—C51.346 (7)
Zn1—N1i2.107 (4)N2—C41.345 (7)
Zn1—N12.107 (4)N2—C31.353 (7)
Zn1—O1wi2.158 (4)N2—H20.8800
Zn1—O1w2.158 (4)N3—C31.315 (7)
O1—C11.262 (6)N3—H310.8800
O2—C11.242 (6)N3—H320.8800
O3—N41.250 (6)C1—C21.517 (7)
O4—N41.232 (7)C2—C31.442 (7)
O5—N41.240 (6)C4—C51.362 (8)
O1W—H1W10.8200C4—H40.9300
O1W—H1W20.8200C5—H50.9300
O1—Zn1—O1i180.0C4—N2—H2118.6
O1—Zn1—N1i100.84 (15)C3—N2—H2118.6
O1i—Zn1—N1i79.16 (15)C3—N3—H31120.0
O1—Zn1—N179.16 (15)C3—N3—H32120.0
O1i—Zn1—N1100.84 (15)H31—N3—H32120.0
N1i—Zn1—N1180.0O4—N4—O5121.5 (5)
O1—Zn1—O1Wi85.51 (16)O4—N4—O3118.6 (5)
O1i—Zn1—O1Wi94.49 (16)O5—N4—O3119.9 (5)
N1i—Zn1—O1Wi88.56 (18)O2—C1—O1126.4 (5)
N1—Zn1—O1Wi91.44 (18)O2—C1—C2117.4 (4)
O1—Zn1—O1W94.49 (16)O1—C1—C2116.2 (4)
O1i—Zn1—O1W85.51 (16)N1—C2—C3119.9 (4)
N1i—Zn1—O1W91.44 (18)N1—C2—C1116.8 (4)
N1—Zn1—O1W88.56 (18)C3—C2—C1123.2 (4)
O1Wi—Zn1—O1W180.0N3—C3—N2119.2 (4)
C1—O1—Zn1115.3 (3)N3—C3—C2124.6 (5)
Zn1—O1W—H1W1109.5N2—C3—C2116.2 (5)
Zn1—O1W—H1W2109.5N2—C4—C5119.4 (5)
H1W1—O1W—H1W2109.5N2—C4—H4120.3
C2—N1—C5121.5 (5)C5—C4—H4120.3
C2—N1—Zn1112.2 (3)N1—C5—C4120.2 (5)
C5—N1—Zn1126.3 (4)N1—C5—H5119.9
C4—N2—C3122.8 (4)C4—C5—H5119.9
N1i—Zn1—O1—C1176.2 (4)C5—N1—C2—C1178.1 (5)
N1—Zn1—O1—C13.8 (4)Zn1—N1—C2—C11.6 (6)
O1Wi—Zn1—O1—C188.5 (4)O2—C1—C2—N1174.0 (5)
O1W—Zn1—O1—C191.5 (4)O1—C1—C2—N15.0 (7)
O1—Zn1—N1—C20.9 (4)O2—C1—C2—C32.6 (7)
O1i—Zn1—N1—C2179.1 (4)O1—C1—C2—C3178.3 (5)
O1Wi—Zn1—N1—C284.2 (4)C4—N2—C3—N3177.5 (6)
O1W—Zn1—N1—C295.8 (4)C4—N2—C3—C22.7 (8)
O1—Zn1—N1—C5179.4 (5)N1—C2—C3—N3178.0 (5)
O1i—Zn1—N1—C50.6 (5)C1—C2—C3—N31.4 (8)
O1Wi—Zn1—N1—C595.5 (5)N1—C2—C3—N22.2 (7)
O1W—Zn1—N1—C584.5 (5)C1—C2—C3—N2178.8 (5)
Zn1—O1—C1—O2173.2 (4)C3—N2—C4—C52.2 (10)
Zn1—O1—C1—C25.7 (6)C2—N1—C5—C40.7 (10)
C5—N1—C2—C31.3 (8)Zn1—N1—C5—C4179.0 (5)
Zn1—N1—C2—C3178.4 (4)N2—C4—C5—N11.1 (10)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H1w1···O1ii0.822.172.895 (5)148
O1w—H1w2···O2iii0.821.992.752 (6)154
N2—H2···O30.881.862.703 (6)161
N3—H31···O40.882.142.981 (6)161
N3—H32···O5iv0.882.332.994 (7)133
Symmetry codes: (ii) x+1, y1/2, z+3/2; (iii) x, y+3/2, z+1/2; (iv) x+2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Zn(C5H5N3O2)2(H2O)2](NO3)2
Mr503.66
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)13.4676 (14), 9.7059 (9), 6.6682 (6)
β (°) 96.610 (3)
V3)865.84 (14)
Z2
Radiation typeMo Kα
µ (mm1)1.51
Crystal size (mm)0.24 × 0.21 × 0.18
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.580, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
8164, 1983, 1739
Rint0.053
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.175, 1.15
No. of reflections1983
No. of parameters145
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.37, 1.66

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H1w1···O1i0.822.172.895 (5)148
O1w—H1w2···O2ii0.821.992.752 (6)154
N2—H2···O30.881.862.703 (6)161
N3—H31···O40.882.142.981 (6)161
N3—H32···O5iii0.882.332.994 (7)133
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x, y+3/2, z+1/2; (iii) x+2, y+1/2, z+1/2.
 

Acknowledgements

We thank the Key Project of the Natural Science Foundation of Heilongjiang Province (No. ZD200903), the Innovation Team of the Education Bureau of Heilongjiang Province (No. 2010 t d03), Heilongjiang University and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTayebee, R., Amini, V. & Khavasi, H. R. (2008). Chin. J. Chem. 26, 500–504.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds