metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[2-({3-[(3-Amino­prop­yl)amino]­prop­yl}imino­meth­yl)phenolato-κ4O,N,N′′,N′′′]bromidocopper(II)

aDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: rbutcher99@yahoo.com

(Received 13 October 2010; accepted 21 October 2010; online 30 October 2010)

In the title compound, [Cu(C13H20N3O)Br], the Cu(II) atom is coordinated by three N atoms and one O atom from the deprotonated ligand derived from the Schiff base condensation of 3,3-imino­bis­(propyl­amine) and salicyl­aldehyde. The three N and the O atoms occupy equatorial positions, while the Br atom occupies an axial position. The amine H atoms form inter­molecular hydrogen bonds with the Br and O atoms of adjoining mol­ecules

Related literature

For asymmetry parameters, see: Addison et al. (1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]). For the preparation of the ligand, see: Pajunen et al. (2000[Pajunen, A., Cámara, F., Dominques-Vera, J. M. & Colacio, E. (2000). Acta Cryst. C56, e49-e50.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C13H20N3O)Br]

  • Mr = 377.77

  • Orthorhombic, P b c a

  • a = 12.3272 (2) Å

  • b = 11.34425 (19) Å

  • c = 20.5729 (4) Å

  • V = 2876.98 (9) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 5.36 mm−1

  • T = 173 K

  • 0.44 × 0.23 × 0.07 mm

Data collection
  • Oxford Diffraction Xcalibur Ruby Gemini diffractometer

  • Absorption correction: analytical [CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); based on Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])] Tmin = 0.211, Tmax = 0.697

  • 8196 measured reflections

  • 3021 independent reflections

  • 2939 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.096

  • S = 1.09

  • 3021 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 1.19 e Å−3

  • Δρmin = −0.77 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cu—O1 1.943 (2)
Cu—N1 1.998 (3)
Cu—N3 2.029 (3)
Cu—N2 2.061 (3)
Cu—Br 2.8555 (5)
O1—Cu—N1 90.84 (10)
O1—Cu—N3 82.43 (10)
N1—Cu—N3 167.76 (11)
O1—Cu—N2 165.04 (11)
N1—Cu—N2 95.97 (11)
N3—Cu—N2 88.36 (11)
O1—Cu—Br 99.26 (7)
N1—Cu—Br 98.38 (8)
N3—Cu—Br 92.81 (8)
N2—Cu—Br 92.92 (8)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2B⋯Bri 0.91 2.62 3.472 (3) 157
N3—H3B⋯O1ii 0.90 2.16 2.938 (3) 144
N3—H3C⋯Brii 0.90 2.65 3.488 (3) 156
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (ii) -x+1, -y+1, -z+1.

Data collection: CrysAlis PRO (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The stucture of the title compound, (I), is shown below. Dimensions are available in the archived CIF.

The reported structure is related to a previously published structure that contains a mononuclear copper(II) complex of a Schiff base resulting from the condensation of an imidazole-aldehyde with 3,3-iminobispropylamine (Pajunen et al., 2000). In this paper we report the synthesis of a new copper(II) complex containing a phenolato ligand in place of the imidazole. As in the latter case, while the reaction was carried out with an amine:salicylaldehyde ratio of 1:2, the resulting Schiff base ligand was the condensation product of one salicylaldehyde molecule and one amine molecule thus the ligand contains one imino and two amine N's. One difference between the copper complexes of the two ligands is that the copper(II) complex of the imidazole ligand is a cation with methanol as one of the ligands and an uncoordinated perchlorate anion while the title compound contains coordinated Br- and is thus neutral.

In the title compound C13H20BrCuN3O, the Cu is penta-coordinated with the phenolic O and N atoms forming a plane and with an axial bromide anion and the Cu 0.205 (1) Å out of the basal plane. Thus the overall geometry is square pyramidal [τ = 0.045 (Addison et al., 1984)]. The bond distance between Cu(II) and the phenolic O is 1.943 (2) Å which is shorter than the Cu—N distances involving the amine N's, i.e., Cu N1 1.998 (3); Cu N3 2.029 (3); Cu N2 2.061 (3) Å. The apical Cu—Br distance is 2.8555 (5) Å.

The amine protons form intermolecular hydrogen bonds with the Br and O atoms of adjoining molecules.

Related literature top

For asymmetry parameters, see: Addison et al. (1984). For the preparation of the ligand, see: Pajunen et al. (2000).

Experimental top

The synthesis of the 3,3'-iminobis(propylamine)salicylaldimine was accomplished by the reaction of a solution of (5 g, 37.34 mmol) 3,3-iminobispropylamine in 20 ml methanol with a solution of (9.13 g, 74.68 mmol) salicylaldehyde in 40 ml methanol. The reaction mixture was refluxed for 24 h and then evaporated under reduced pressure to give a brownish yellow oily liquid.

The complex was synthesized by mixing a solution of 3,3'-iminobis(propylamine)salicylaldehyde (0.25 g, 0.74 mmol) in 10 ml methanol to a solution of (0.21 g, 1.48 mmol) CuBr in 10 ml methanol. The mixture was stirred for 24 h at room temperature. At the end of the reaction, the reaction mixture was evaporated under reduced pressure to afford greenish solids. The solids were dissolved in DMF and filtered. The filtrate solution of the complex was layered with diethyl ether for slow solvent diffusion crystallization method. Crystals suitable for X-ray diffraction were obtained.

Refinement top

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with a C—H distances of 0.93 and 0.97 Å [Uiso(H) = 1.2Ueq(C)]. The H atoms attached to N were idealized with an primary and secondary N–H distances of 0.90 and 0.91 Å, respectively.

Structure description top

The stucture of the title compound, (I), is shown below. Dimensions are available in the archived CIF.

The reported structure is related to a previously published structure that contains a mononuclear copper(II) complex of a Schiff base resulting from the condensation of an imidazole-aldehyde with 3,3-iminobispropylamine (Pajunen et al., 2000). In this paper we report the synthesis of a new copper(II) complex containing a phenolato ligand in place of the imidazole. As in the latter case, while the reaction was carried out with an amine:salicylaldehyde ratio of 1:2, the resulting Schiff base ligand was the condensation product of one salicylaldehyde molecule and one amine molecule thus the ligand contains one imino and two amine N's. One difference between the copper complexes of the two ligands is that the copper(II) complex of the imidazole ligand is a cation with methanol as one of the ligands and an uncoordinated perchlorate anion while the title compound contains coordinated Br- and is thus neutral.

In the title compound C13H20BrCuN3O, the Cu is penta-coordinated with the phenolic O and N atoms forming a plane and with an axial bromide anion and the Cu 0.205 (1) Å out of the basal plane. Thus the overall geometry is square pyramidal [τ = 0.045 (Addison et al., 1984)]. The bond distance between Cu(II) and the phenolic O is 1.943 (2) Å which is shorter than the Cu—N distances involving the amine N's, i.e., Cu N1 1.998 (3); Cu N3 2.029 (3); Cu N2 2.061 (3) Å. The apical Cu—Br distance is 2.8555 (5) Å.

The amine protons form intermolecular hydrogen bonds with the Br and O atoms of adjoining molecules.

For asymmetry parameters, see: Addison et al. (1984). For the preparation of the ligand, see: Pajunen et al. (2000).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis PRO (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound, C13H20BrCuN3O, showing atom numbering scheme.
[Figure 2] Fig. 2. The molecular packing for C13H20BrCuN3O, viewed down the c axis showing the intermolecular N—H···O and N—H···Br interactions as dashed lines.
[2-({3-[(3-Aminopropyl)amino]propyl}iminomethyl)phenolato- κ4O,N,N'',N''']bromidocopper(II) top
Crystal data top
[Cu(C13H20N3O)Br]F(000) = 1528
Mr = 377.77Dx = 1.744 Mg m3
Orthorhombic, PbcaCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ac 2abCell parameters from 6661 reflections
a = 12.3272 (2) Åθ = 4.2–77.1°
b = 11.34425 (19) ŵ = 5.36 mm1
c = 20.5729 (4) ÅT = 173 K
V = 2876.98 (9) Å3Plate, blue
Z = 80.44 × 0.23 × 0.07 mm
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
3021 independent reflections
Radiation source: fine-focus sealed tube2939 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 10.5081 pixels mm-1θmax = 77.5°, θmin = 5.7°
ω scansh = 1415
Absorption correction: analytical
[CrysAlis RED (Oxford Diffraction, 2007); based on expressions derived by Clark & Reid (1995)]
k = 148
Tmin = 0.211, Tmax = 0.697l = 2515
8196 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0427P)2 + 9.8873P]
where P = (Fo2 + 2Fc2)/3
3021 reflections(Δ/σ)max = 0.002
172 parametersΔρmax = 1.19 e Å3
0 restraintsΔρmin = 0.77 e Å3
Crystal data top
[Cu(C13H20N3O)Br]V = 2876.98 (9) Å3
Mr = 377.77Z = 8
Orthorhombic, PbcaCu Kα radiation
a = 12.3272 (2) ŵ = 5.36 mm1
b = 11.34425 (19) ÅT = 173 K
c = 20.5729 (4) Å0.44 × 0.23 × 0.07 mm
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
3021 independent reflections
Absorption correction: analytical
[CrysAlis RED (Oxford Diffraction, 2007); based on expressions derived by Clark & Reid (1995)]
2939 reflections with I > 2σ(I)
Tmin = 0.211, Tmax = 0.697Rint = 0.024
8196 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.096H-atom parameters constrained
S = 1.09Δρmax = 1.19 e Å3
3021 reflectionsΔρmin = 0.77 e Å3
172 parameters
Special details top

Experimental. Absorption correction: CrysAlis RED (Oxford Diffraction, 2007). Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by Clark & Reid. [Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897]

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu0.32735 (4)0.48683 (4)0.57075 (2)0.01378 (13)
Br0.39440 (3)0.72635 (3)0.556355 (16)0.02033 (12)
O10.46552 (18)0.4169 (2)0.59480 (10)0.0186 (4)
N10.2822 (2)0.4932 (2)0.66398 (12)0.0161 (5)
N20.1756 (2)0.5198 (3)0.53280 (14)0.0229 (6)
H2B0.14100.44900.53050.027*
N30.3774 (2)0.4431 (2)0.47993 (12)0.0171 (5)
H3B0.40190.50890.46040.021*
H3C0.43390.39340.48360.021*
C10.4937 (2)0.3662 (3)0.64894 (14)0.0149 (6)
C20.5933 (3)0.3039 (3)0.65136 (15)0.0173 (6)
H2A0.63670.30000.61440.021*
C30.6269 (3)0.2487 (3)0.70795 (17)0.0202 (6)
H3A0.69270.20870.70840.024*
C40.5638 (3)0.2521 (3)0.76433 (15)0.0224 (7)
H4A0.58660.21420.80200.027*
C50.4670 (3)0.3130 (3)0.76273 (15)0.0204 (6)
H5A0.42450.31590.80010.025*
C60.4306 (3)0.3708 (3)0.70627 (15)0.0166 (6)
C70.3314 (3)0.4381 (3)0.71007 (15)0.0181 (6)
H7A0.29900.44210.75080.022*
C80.1888 (3)0.5655 (3)0.68384 (17)0.0251 (7)
H8A0.20990.64790.68330.030*
H8B0.16910.54530.72810.030*
C90.0905 (3)0.5495 (3)0.64062 (16)0.0197 (6)
H9A0.07380.46610.63760.024*
H9B0.02880.58840.66060.024*
C100.1058 (3)0.5980 (3)0.57295 (18)0.0276 (8)
H10A0.03550.60640.55220.033*
H10B0.13860.67550.57560.033*
C110.1810 (3)0.5657 (3)0.46581 (17)0.0253 (7)
H11A0.23390.62900.46440.030*
H11B0.11100.59910.45460.030*
C120.2108 (3)0.4752 (3)0.41555 (16)0.0227 (7)
H12A0.23650.51560.37700.027*
H12B0.14600.43180.40360.027*
C130.2965 (3)0.3883 (3)0.43705 (15)0.0213 (6)
H13A0.26210.32350.45980.026*
H13B0.33280.35650.39910.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.0140 (2)0.0144 (2)0.0130 (2)0.00279 (16)0.00072 (16)0.00046 (15)
Br0.0271 (2)0.01531 (18)0.01858 (18)0.00442 (12)0.00268 (12)0.00103 (11)
O10.0161 (10)0.0234 (11)0.0162 (10)0.0068 (9)0.0011 (8)0.0063 (8)
N10.0150 (12)0.0182 (12)0.0151 (12)0.0019 (10)0.0023 (10)0.0021 (9)
N20.0202 (14)0.0256 (14)0.0228 (14)0.0046 (11)0.0023 (11)0.0012 (11)
N30.0168 (12)0.0193 (13)0.0151 (12)0.0006 (10)0.0021 (10)0.0015 (10)
C10.0166 (14)0.0123 (13)0.0159 (13)0.0015 (11)0.0025 (11)0.0003 (10)
C20.0187 (15)0.0150 (14)0.0183 (14)0.0009 (12)0.0012 (11)0.0004 (12)
C30.0204 (15)0.0158 (13)0.0243 (16)0.0038 (12)0.0088 (13)0.0003 (12)
C40.0300 (18)0.0215 (14)0.0155 (15)0.0035 (14)0.0086 (13)0.0015 (12)
C50.0265 (16)0.0212 (15)0.0135 (14)0.0010 (13)0.0008 (12)0.0014 (11)
C60.0166 (14)0.0163 (14)0.0168 (13)0.0021 (11)0.0032 (11)0.0020 (11)
C70.0194 (15)0.0215 (15)0.0135 (13)0.0010 (12)0.0027 (11)0.0025 (11)
C80.0217 (16)0.0308 (17)0.0228 (16)0.0092 (14)0.0010 (13)0.0071 (14)
C90.0148 (14)0.0206 (15)0.0238 (15)0.0016 (12)0.0020 (12)0.0021 (12)
C100.0206 (17)0.0331 (19)0.0292 (18)0.0112 (14)0.0036 (13)0.0079 (15)
C110.0262 (17)0.0233 (16)0.0262 (17)0.0038 (14)0.0072 (14)0.0013 (14)
C120.0211 (16)0.0259 (17)0.0211 (15)0.0044 (13)0.0072 (13)0.0032 (13)
C130.0214 (15)0.0247 (16)0.0180 (14)0.0010 (13)0.0007 (12)0.0054 (12)
Geometric parameters (Å, º) top
Cu—O11.943 (2)C4—H4A0.9300
Cu—N11.998 (3)C5—C61.407 (4)
Cu—N32.029 (3)C5—H5A0.9300
Cu—N22.061 (3)C6—C71.444 (4)
Cu—Br2.8555 (5)C7—H7A0.9300
O1—C11.301 (4)C8—C91.514 (5)
N1—C71.288 (4)C8—H8A0.9700
N1—C81.472 (4)C8—H8B0.9700
N2—C111.475 (4)C9—C101.508 (5)
N2—C101.487 (4)C9—H9A0.9700
N2—H2B0.9100C9—H9B0.9700
N3—C131.469 (4)C10—H10A0.9700
N3—H3B0.9000C10—H10B0.9700
N3—H3C0.9000C11—C121.503 (5)
C1—C61.414 (4)C11—H11A0.9700
C1—C21.418 (4)C11—H11B0.9700
C2—C31.385 (4)C12—C131.511 (5)
C2—H2A0.9300C12—H12A0.9700
C3—C41.397 (5)C12—H12B0.9700
C3—H3A0.9300C13—H13A0.9700
C4—C51.379 (5)C13—H13B0.9700
O1—Cu—N190.84 (10)C5—C6—C7118.1 (3)
O1—Cu—N382.43 (10)C1—C6—C7122.0 (3)
N1—Cu—N3167.76 (11)N1—C7—C6128.0 (3)
O1—Cu—N2165.04 (11)N1—C7—H7A116.0
N1—Cu—N295.97 (11)C6—C7—H7A116.0
N3—Cu—N288.36 (11)N1—C8—C9113.4 (3)
O1—Cu—Br99.26 (7)N1—C8—H8A108.9
N1—Cu—Br98.38 (8)C9—C8—H8A108.9
N3—Cu—Br92.81 (8)N1—C8—H8B108.9
N2—Cu—Br92.92 (8)C9—C8—H8B108.9
C1—O1—Cu129.3 (2)H8A—C8—H8B107.7
C7—N1—C8115.8 (3)C10—C9—C8113.5 (3)
C7—N1—Cu123.9 (2)C10—C9—H9A108.9
C8—N1—Cu120.3 (2)C8—C9—H9A108.9
C11—N2—C10109.5 (3)C10—C9—H9B108.9
C11—N2—Cu112.1 (2)C8—C9—H9B108.9
C10—N2—Cu115.0 (2)H9A—C9—H9B107.7
C11—N2—H2B106.5N2—C10—C9111.6 (3)
C10—N2—H2B106.5N2—C10—H10A109.3
Cu—N2—H2B106.5C9—C10—H10A109.3
C13—N3—Cu116.8 (2)N2—C10—H10B109.3
C13—N3—H3B108.1C9—C10—H10B109.3
Cu—N3—H3B108.1H10A—C10—H10B108.0
C13—N3—H3C108.1N2—C11—C12114.3 (3)
Cu—N3—H3C108.1N2—C11—H11A108.7
H3B—N3—H3C107.3C12—C11—H11A108.7
O1—C1—C6123.4 (3)N2—C11—H11B108.7
O1—C1—C2118.8 (3)C12—C11—H11B108.7
C6—C1—C2117.7 (3)H11A—C11—H11B107.6
C3—C2—C1120.9 (3)C11—C12—C13114.5 (3)
C3—C2—H2A119.6C11—C12—H12A108.6
C1—C2—H2A119.6C13—C12—H12A108.6
C2—C3—C4121.3 (3)C11—C12—H12B108.6
C2—C3—H3A119.3C13—C12—H12B108.6
C4—C3—H3A119.3H12A—C12—H12B107.6
C5—C4—C3118.4 (3)N3—C13—C12112.0 (3)
C5—C4—H4A120.8N3—C13—H13A109.2
C3—C4—H4A120.8C12—C13—H13A109.2
C4—C5—C6121.9 (3)N3—C13—H13B109.2
C4—C5—H5A119.0C12—C13—H13B109.2
C6—C5—H5A119.0H13A—C13—H13B107.9
C5—C6—C1119.8 (3)
N1—Cu—O1—C117.0 (3)O1—C1—C2—C3179.8 (3)
N3—Cu—O1—C1152.8 (3)C6—C1—C2—C30.5 (4)
N2—Cu—O1—C1100.3 (5)C1—C2—C3—C40.3 (5)
Br—Cu—O1—C1115.6 (2)C2—C3—C4—C50.6 (5)
O1—Cu—N1—C713.5 (3)C3—C4—C5—C60.2 (5)
N3—Cu—N1—C742.8 (6)C4—C5—C6—C10.6 (5)
N2—Cu—N1—C7153.1 (3)C4—C5—C6—C7176.5 (3)
Br—Cu—N1—C7113.0 (3)O1—C1—C6—C5179.8 (3)
O1—Cu—N1—C8165.4 (2)C2—C1—C6—C50.9 (4)
N3—Cu—N1—C8138.2 (5)O1—C1—C6—C73.3 (5)
N2—Cu—N1—C827.9 (3)C2—C1—C6—C7176.0 (3)
Br—Cu—N1—C865.9 (2)C8—N1—C7—C6173.4 (3)
O1—Cu—N2—C1184.8 (5)Cu—N1—C7—C65.6 (5)
N1—Cu—N2—C11158.5 (2)C5—C6—C7—N1177.0 (3)
N3—Cu—N2—C1133.0 (2)C1—C6—C7—N16.0 (5)
Br—Cu—N2—C1159.8 (2)C7—N1—C8—C9134.5 (3)
O1—Cu—N2—C10149.1 (4)Cu—N1—C8—C946.5 (4)
N1—Cu—N2—C1032.5 (3)N1—C8—C9—C1068.5 (4)
N3—Cu—N2—C10159.0 (2)C11—N2—C10—C9175.5 (3)
Br—Cu—N2—C1066.3 (2)Cu—N2—C10—C957.1 (4)
O1—Cu—N3—C13135.8 (2)C8—C9—C10—N275.6 (4)
N1—Cu—N3—C1378.7 (6)C10—N2—C11—C12157.6 (3)
N2—Cu—N3—C1332.4 (2)Cu—N2—C11—C1273.4 (3)
Br—Cu—N3—C13125.2 (2)N2—C11—C12—C1339.1 (4)
Cu—O1—C1—C611.3 (4)Cu—N3—C13—C1270.9 (3)
Cu—O1—C1—C2169.3 (2)C11—C12—C13—N334.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···Bri0.912.623.472 (3)157
N3—H3B···O1ii0.902.162.938 (3)144
N3—H3C···Brii0.902.653.488 (3)156
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cu(C13H20N3O)Br]
Mr377.77
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)173
a, b, c (Å)12.3272 (2), 11.34425 (19), 20.5729 (4)
V3)2876.98 (9)
Z8
Radiation typeCu Kα
µ (mm1)5.36
Crystal size (mm)0.44 × 0.23 × 0.07
Data collection
DiffractometerOxford Diffraction Xcalibur Ruby Gemini
diffractometer
Absorption correctionAnalytical
[CrysAlis RED (Oxford Diffraction, 2007); based on expressions derived by Clark & Reid (1995)]
Tmin, Tmax0.211, 0.697
No. of measured, independent and
observed [I > 2σ(I)] reflections
8196, 3021, 2939
Rint0.024
(sin θ/λ)max1)0.633
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.096, 1.09
No. of reflections3021
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.19, 0.77

Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Cu—O11.943 (2)Cu—N22.061 (3)
Cu—N11.998 (3)Cu—Br2.8555 (5)
Cu—N32.029 (3)
O1—Cu—N190.84 (10)N3—Cu—N288.36 (11)
O1—Cu—N382.43 (10)O1—Cu—Br99.26 (7)
N1—Cu—N3167.76 (11)N1—Cu—Br98.38 (8)
O1—Cu—N2165.04 (11)N3—Cu—Br92.81 (8)
N1—Cu—N295.97 (11)N2—Cu—Br92.92 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···Bri0.912.623.472 (3)156.7
N3—H3B···O1ii0.902.162.938 (3)144.3
N3—H3C···Brii0.902.653.488 (3)156.2
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x+1, y+1, z+1.
 

Acknowledgements

RJB wishes to acknowledge the NSF-MRI program (grant CHE-0619278) for funds to purchase the diffractometer.

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationOxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationPajunen, A., Cámara, F., Dominques-Vera, J. M. & Colacio, E. (2000). Acta Cryst. C56, e49–e50.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds