organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 3-[(E,E)-3-phenyl­prop-2-enyl­­idene]di­thio­carbazate

aDepartment of Chemistry, Rajshahi University, Rajshahi 6205, Bangladesh, bDepartment of Chemistry, Rajshahi University of Engineering & Technology, Rajshahi 6204, Bangladesh, and cDipartimento di Scienze Chimiche, Via Licio Giorgieri 1, 34127 Trieste, Italy
*Correspondence e-mail: ttofazzal@yahoo.com

(Received 6 October 2010; accepted 13 October 2010; online 20 October 2010)

In the title compound, C11H12N2S2, the dithio­carbazate group adopts an EE configuration with respect to the C=C and C=N bonds of the propenyl­idene group. The atoms of the propenyl­idene and dithio­carbazate unit are essentially co-planar, with a maximum deviation of 0.058 (1) Å; the phenyl ring forms a dihedral angle of 18.3 (1)° with this fragment. In the crystal, mol­ecules form inversion dimers via pairs of N—H⋯S hydrogen bonds involving the terminal S atom.

Related literature

For the synthesis and a related structure, see: Tarafder et al. (2008[Tarafder, M. T. H., Crouse, K. A., Islam, M. T., Chantrapromma, S. & Fun, H.-K. (2008). Acta Cryst. E64, o1042-o1043.]).

[Scheme 1]

Experimental

Crystal data
  • C11H12N2S2

  • Mr = 236.35

  • Monoclinic, P 21 /c

  • a = 10.408 (2) Å

  • b = 5.4950 (9) Å

  • c = 20.988 (2) Å

  • β = 100.697 (10)°

  • V = 1179.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.42 mm−1

  • T = 293 K

  • 0.40 × 0.15 × 0.12 mm

Data collection
  • Enraf–Nonius DIP1030 image-plate diffractometer

  • 6316 measured reflections

  • 2048 independent reflections

  • 1569 reflections with I > 2.0σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.116

  • S = 1.04

  • 2048 reflections

  • 138 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯S1i 0.86 2.67 3.4086 (19) 145
Symmetry code: (i) -x+2, -y+1, -z+1.

Data collection: XPRESS (MacScience, 2002[MacScience (2002). XPRESS. MacScience Co. Ltd, Yokohama, Japan.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The molecule of the title compound is shown in Fig. 1. The atoms of propenylidene and dithiocarbazate moiety lie essentially in the same plane, with a maximum deviation from the mean plane of 0.058 (1) Å exhibited by S2, while the phenyl ring forms a dihedral angle of 18.3 (1)° with the cited fragment. The crystal packing evidences molecules connected in pairs about inversion centers and connected by N1—H1···S1 hydrogen bonds involving the terminal sulfur atom (Table 1). The structural features of the title compound are smilar to those observed in a benzyl derivative (Tarafder et al., 2008)). The Schiff base is potentially bidentate and coordinates via the β-nitrogen and the thiolate anion generated during complexation.

Related literature top

For the synthesis and a related structure, see: Tarafder et al. (2008).

Experimental top

The S-methyldithiocarbazate (2.44 g, 0.2 mol), prepared as previously described (Tarafder et al., 2008), was dissolved in hot absolute ethanol (30–40 ml). To this solution an equimolar amount of cinnamaldehyde in hot absolute ethanol (20 ml) was added and the mixture was heated for 20 min and then cooled. The orange precipitate thus formed was separated and dried in vacuo over anhydrous CaCl2. Orange needle shaped single crystals of the Schiff base were obtained after recrysallization from acetone over 15 days; M. p. 443 K (very sharp and abrupt).

Refinement top

All H atoms were located geometrically and treated as riding atoms, with N—H = 0.86 and C—H = 0.93 and 0.96 Å for aryl and methyl H-atoms with Uĩso~(H) = 1.2U~eq~(N or aryl-C) or 1.5U~eq~(methyl-C).

Structure description top

The molecule of the title compound is shown in Fig. 1. The atoms of propenylidene and dithiocarbazate moiety lie essentially in the same plane, with a maximum deviation from the mean plane of 0.058 (1) Å exhibited by S2, while the phenyl ring forms a dihedral angle of 18.3 (1)° with the cited fragment. The crystal packing evidences molecules connected in pairs about inversion centers and connected by N1—H1···S1 hydrogen bonds involving the terminal sulfur atom (Table 1). The structural features of the title compound are smilar to those observed in a benzyl derivative (Tarafder et al., 2008)). The Schiff base is potentially bidentate and coordinates via the β-nitrogen and the thiolate anion generated during complexation.

For the synthesis and a related structure, see: Tarafder et al. (2008).

Computing details top

Data collection: XPRESS (MacScience, 2002); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of the title molecule; thermal ellipsoids are drawn at the 40% probability level.
Methyl 3-[(E,E)-3-phenylprop-2-enylidene]dithiocarbazate top
Crystal data top
C11H12N2S2F(000) = 496
Mr = 236.35Dx = 1.331 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 275 reflections
a = 10.408 (2) Åθ = 3.6–20.7°
b = 5.4950 (9) ŵ = 0.42 mm1
c = 20.988 (2) ÅT = 293 K
β = 100.697 (10)°Needle, orange
V = 1179.5 (3) Å30.40 × 0.15 × 0.12 mm
Z = 4
Data collection top
Enraf–Nonius DIP1030 image-plate
diffractometer
1569 reflections with I > 2.0σ(I)
Radiation source: fine-focus sealed tubeRint = 0.037
Graphite monochromatorθmax = 25.3°, θmin = 3.1°
φ–scans with narrow framesh = 1212
6316 measured reflectionsk = 66
2048 independent reflectionsl = 2525
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.116 w = 1/[σ2(Fo2) + (0.0721P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
2048 reflectionsΔρmax = 0.14 e Å3
138 parametersΔρmin = 0.21 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.023 (4)
Crystal data top
C11H12N2S2V = 1179.5 (3) Å3
Mr = 236.35Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.408 (2) ŵ = 0.42 mm1
b = 5.4950 (9) ÅT = 293 K
c = 20.988 (2) Å0.40 × 0.15 × 0.12 mm
β = 100.697 (10)°
Data collection top
Enraf–Nonius DIP1030 image-plate
diffractometer
1569 reflections with I > 2.0σ(I)
6316 measured reflectionsRint = 0.037
2048 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.04Δρmax = 0.14 e Å3
2048 reflectionsΔρmin = 0.21 e Å3
138 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S11.15322 (6)0.68232 (10)0.57196 (3)0.0759 (2)
S21.08034 (6)0.51686 (10)0.69852 (3)0.0734 (2)
N10.99960 (18)0.3187 (3)0.58644 (8)0.0682 (5)
H10.99620.29150.54580.082*
N20.92717 (19)0.1751 (3)0.62061 (9)0.0680 (5)
C11.1813 (3)0.7789 (4)0.72034 (11)0.0791 (6)
H1A1.26530.75250.70890.119*
H1B1.19180.80590.76620.119*
H1C1.14070.91870.69760.119*
C21.0751 (2)0.4996 (3)0.61523 (10)0.0625 (5)
C30.8633 (2)0.0018 (3)0.58766 (11)0.0656 (5)
H30.87230.02250.54490.079*
C40.7788 (2)0.1538 (3)0.61562 (10)0.0670 (5)
H40.77180.12940.65870.080*
C50.7095 (2)0.3328 (3)0.58259 (10)0.0653 (5)
H50.72400.36130.54080.078*
C60.6139 (2)0.4880 (3)0.60503 (10)0.0634 (5)
C70.5705 (3)0.4487 (4)0.66304 (12)0.0750 (6)
H70.60530.32080.68980.090*
C80.4770 (3)0.5962 (5)0.68147 (14)0.0898 (7)
H80.44870.56590.72020.108*
C90.4250 (3)0.7874 (5)0.64316 (17)0.0963 (9)
H90.36230.88700.65600.116*
C100.4657 (3)0.8309 (4)0.58615 (16)0.0944 (8)
H100.43050.96030.56010.113*
C110.5596 (3)0.6831 (4)0.56675 (13)0.0799 (7)
H110.58660.71460.52770.096*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0761 (5)0.0872 (4)0.0662 (4)0.0152 (3)0.0178 (3)0.0061 (2)
S20.0809 (5)0.0799 (4)0.0592 (4)0.0143 (3)0.0122 (3)0.0035 (2)
N10.0743 (13)0.0726 (10)0.0600 (10)0.0089 (9)0.0181 (9)0.0002 (7)
N20.0681 (12)0.0698 (10)0.0670 (10)0.0066 (8)0.0150 (9)0.0030 (8)
C10.0811 (17)0.0813 (13)0.0730 (14)0.0110 (12)0.0092 (12)0.0046 (10)
C20.0574 (13)0.0664 (12)0.0636 (12)0.0012 (9)0.0112 (9)0.0024 (8)
C30.0686 (15)0.0647 (12)0.0631 (12)0.0011 (10)0.0111 (10)0.0014 (8)
C40.0698 (15)0.0673 (11)0.0631 (12)0.0028 (10)0.0104 (10)0.0010 (9)
C50.0682 (14)0.0658 (12)0.0611 (11)0.0013 (10)0.0099 (10)0.0002 (8)
C60.0633 (14)0.0560 (10)0.0683 (13)0.0023 (8)0.0057 (10)0.0036 (8)
C70.0799 (17)0.0700 (12)0.0756 (14)0.0059 (11)0.0160 (12)0.0006 (10)
C80.090 (2)0.0870 (15)0.0964 (18)0.0020 (14)0.0276 (15)0.0160 (13)
C90.0772 (18)0.0813 (16)0.129 (3)0.0085 (13)0.0151 (17)0.0274 (16)
C100.091 (2)0.0722 (15)0.114 (2)0.0154 (13)0.0022 (17)0.0017 (13)
C110.0866 (18)0.0680 (13)0.0813 (15)0.0038 (12)0.0061 (13)0.0054 (10)
Geometric parameters (Å, º) top
S1—C21.664 (2)C5—C61.454 (3)
S2—C21.741 (2)C5—H50.9300
S2—C11.791 (2)C6—C71.392 (3)
N1—C21.339 (3)C6—C111.395 (3)
N1—N21.381 (2)C7—C81.376 (3)
N1—H10.8600C7—H70.9300
N2—C31.287 (3)C8—C91.372 (4)
C1—H1A0.9600C8—H80.9300
C1—H1B0.9600C9—C101.363 (4)
C1—H1C0.9600C9—H90.9300
C3—C41.428 (3)C10—C111.388 (4)
C3—H30.9300C10—H100.9300
C4—C51.335 (3)C11—H110.9300
C4—H40.9300
C2—S2—C1102.02 (11)C4—C5—H5116.6
C2—N1—N2121.39 (18)C6—C5—H5116.6
C2—N1—H1119.3C7—C6—C11117.4 (2)
N2—N1—H1119.3C7—C6—C5123.05 (18)
C3—N2—N1114.92 (18)C11—C6—C5119.5 (2)
S2—C1—H1A109.5C8—C7—C6121.1 (2)
S2—C1—H1B109.5C8—C7—H7119.5
H1A—C1—H1B109.5C6—C7—H7119.5
S2—C1—H1C109.5C9—C8—C7120.6 (3)
H1A—C1—H1C109.5C9—C8—H8119.7
H1B—C1—H1C109.5C7—C8—H8119.7
N1—C2—S1120.44 (16)C10—C9—C8119.7 (3)
N1—C2—S2113.58 (15)C10—C9—H9120.1
S1—C2—S2125.98 (12)C8—C9—H9120.1
N2—C3—C4121.2 (2)C9—C10—C11120.4 (2)
N2—C3—H3119.4C9—C10—H10119.8
C4—C3—H3119.4C11—C10—H10119.8
C5—C4—C3122.8 (2)C10—C11—C6120.8 (3)
C5—C4—H4118.6C10—C11—H11119.6
C3—C4—H4118.6C6—C11—H11119.6
C4—C5—C6126.9 (2)
C2—N1—N2—C3177.27 (18)C4—C5—C6—C11173.6 (2)
N2—N1—C2—S1175.70 (15)C11—C6—C7—C80.5 (3)
N2—N1—C2—S24.4 (2)C5—C6—C7—C8178.1 (2)
C1—S2—C2—N1177.67 (16)C6—C7—C8—C90.6 (4)
C1—S2—C2—S12.41 (18)C7—C8—C9—C100.4 (4)
N1—N2—C3—C4176.76 (18)C8—C9—C10—C110.1 (4)
N2—C3—C4—C5178.9 (2)C9—C10—C11—C60.0 (4)
C3—C4—C5—C6174.93 (19)C7—C6—C11—C100.2 (3)
C4—C5—C6—C77.9 (3)C5—C6—C11—C10178.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S1i0.862.673.4086 (19)145
Symmetry code: (i) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC11H12N2S2
Mr236.35
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)10.408 (2), 5.4950 (9), 20.988 (2)
β (°) 100.697 (10)
V3)1179.5 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.42
Crystal size (mm)0.40 × 0.15 × 0.12
Data collection
DiffractometerEnraf–Nonius DIP1030 image-plate
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2.0σ(I)] reflections
6316, 2048, 1569
Rint0.037
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.116, 1.04
No. of reflections2048
No. of parameters138
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.21

Computer programs: XPRESS (MacScience, 2002), DENZO (Otwinowski & Minor, 1997), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S1i0.862.673.4086 (19)145
Symmetry code: (i) x+2, y+1, z+1.
 

Acknowledgements

MTHT, SSK and MAAAAI are grateful to the Department of Chemistry, Rajshahi University, for the provision of laboratory facilities. EZ thanks MIUR, Rome (PRIN No. 2007HMTJWP_002) for financial support.

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMacScience (2002). XPRESS. MacScience Co. Ltd, Yokohama, Japan.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTarafder, M. T. H., Crouse, K. A., Islam, M. T., Chantrapromma, S. & Fun, H.-K. (2008). Acta Cryst. E64, o1042–o1043.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds