organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Bromo-2-(4-chloro­phen­yl)-3-ethyl­sulfinyl-7-methyl-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 15 October 2010; accepted 21 October 2010; online 30 October 2010)

In the title compound, C17H14BrClO2S, the 4-chloro­phenyl ring makes a dihedral angle of 13.42 (4)° with the mean plane of the benzofuran ring. In the crystal, pairs of inter­molecular Br⋯O contacts [3.125 (1) Å] link the mol­ecules into centrosymmetric dimers, which are further linked via inter­molecular C—H⋯O hydrogen bonds.

Related literature

For the pharmacological activity of benzofuran compounds, see: Aslam et al. (2006[Aslam, S. N., Stevenson, P. C., Phythian, S. J., Veitch, N. C. & Hall, D. R. (2006). Tetrahedron, 62, 4214-4226.]); Galal et al. (2009[Galal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420-2428.]); Khan et al. (2005[Khan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796-4805.]). For natural products with benzofuran rings, see: Akgul & Anil (2003[Akgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939-943.]); Soekamto et al. (2003[Soekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831-834.]). For our previous structural studies of related 3-ethyl­sulfinyl-5-halo-2-(4-halophen­yl)-7-methyl-1-benzofuran derivatives, see: Choi et al. (2010a[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010a). Acta Cryst. E66, o629.],b[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010b). Acta Cryst. E66, o886.],c[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010c). Acta Cryst. E66, o1042.],d[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010d). Acta Cryst. E66, o2277.]). For a review of halogen bonding, see: Politzer et al. (2007[Politzer, P., Lane, P., Concha, M. C., Ma, Y. & Murray, J. S. (2007). J. Mol. Model. 13, 305-311.]).

[Scheme 1]

Experimental

Crystal data
  • C17H14BrClO2S

  • Mr = 397.70

  • Triclinic, [P \overline 1]

  • a = 7.3159 (1) Å

  • b = 10.3502 (2) Å

  • c = 11.8936 (2) Å

  • α = 68.690 (1)°

  • β = 89.223 (1)°

  • γ = 70.941 (1)°

  • V = 787.36 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.92 mm−1

  • T = 179 K

  • 0.29 × 0.28 × 0.25 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.485, Tmax = 0.524

  • 14107 measured reflections

  • 3657 independent reflections

  • 3342 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.066

  • S = 1.08

  • 3657 reflections

  • 201 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17B⋯O2i 0.98 2.62 3.488 (2) 148
Symmetry code: (i) x-1, y, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Many compounds involving a benzofuran ring have received particular attention in view of their potent pharmacological properties such as antifungal, antitumor and antiviral, antimicrobial activities (Aslam et al., 2006, Galal et al., 2009, Khan et al., 2005). These compounds widely occur in nature (Akgul & Anil, 2003; Soekamto et al., 2003). As a part of our continuing studies of the substituent effect on the solid state structures of 3-ethylsulfinyl-5-halo-2-(4-halophenyl)-7-methyl-1-benzofuran analogues (Choi et al., 2010a,b,c,d), we report herein on the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.019 (1) Å from the least-squares plane defined by the nine constituent atoms. The dihedral angle formed by the mean plane of the benzofuran ring and the 4-chlorophenyl ring is 13.42 (4)° . The molecular packing (Fig. 2) is stabilized by a Br···O halogen-bonding between the bromine and the oxygen of the SO unit [Br···O2ii = 3.125 (1) Å, C4—Br···O2ii = 167.44 (6)° .] (Politzer et al., 2007). The crystal packing (Fig. 2) is further stabilized by a weak intermolecular C—H···O hydrogen bond between the methyl H atom of the ethyl group and the SO unit (C17—H17B···O2i; Table 1).

Related literature top

For the pharmacological activity of benzofuran compounds, see: Aslam et al. (2006); Galal et al. (2009); Khan et al. (2005). For natural products with benzofuran rings, see: Akgul & Anil (2003); Soekamto et al. (2003). For our previous structural studies of related 3-ethylsulfinyl-5-halo-2-(4-halophenyl)-7-methyl-1-benzofuran derivatives, see: Choi et al. (2010a,b,c,d). For a review of halogen bonding, see: Politzer et al. (2007).

Experimental top

77% 3-chloroperoxybenzoic acid (179 mg, 0.8 mmol) was added in small portions to a stirred solution of 5-bromo-2-(4-chlorophenyl)-3-ethylsulfanyl-7-methyl-1-benzofuran (318 mg, 0.8 mmol) in dichloromethane (40 mL) at 273 K. After being stirred at room temperature for 3h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane-ethyl acetate, 2:1 v/v) to afford the title compound as a colorless solid [yield 79%, m.p. 443–444 K, Rf = 0.63 (hexane–ethyl acetate, 2:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in tetrahydrofuran at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å for aryl, 0.97 Å for methylene, and 0.96 Å for methyl H atoms. Uiso(H) = 1.2Ueq(C) for aryl and methylene H atoms, and 1.5Ueq(C) for methyl H atoms.

Structure description top

Many compounds involving a benzofuran ring have received particular attention in view of their potent pharmacological properties such as antifungal, antitumor and antiviral, antimicrobial activities (Aslam et al., 2006, Galal et al., 2009, Khan et al., 2005). These compounds widely occur in nature (Akgul & Anil, 2003; Soekamto et al., 2003). As a part of our continuing studies of the substituent effect on the solid state structures of 3-ethylsulfinyl-5-halo-2-(4-halophenyl)-7-methyl-1-benzofuran analogues (Choi et al., 2010a,b,c,d), we report herein on the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.019 (1) Å from the least-squares plane defined by the nine constituent atoms. The dihedral angle formed by the mean plane of the benzofuran ring and the 4-chlorophenyl ring is 13.42 (4)° . The molecular packing (Fig. 2) is stabilized by a Br···O halogen-bonding between the bromine and the oxygen of the SO unit [Br···O2ii = 3.125 (1) Å, C4—Br···O2ii = 167.44 (6)° .] (Politzer et al., 2007). The crystal packing (Fig. 2) is further stabilized by a weak intermolecular C—H···O hydrogen bond between the methyl H atom of the ethyl group and the SO unit (C17—H17B···O2i; Table 1).

For the pharmacological activity of benzofuran compounds, see: Aslam et al. (2006); Galal et al. (2009); Khan et al. (2005). For natural products with benzofuran rings, see: Akgul & Anil (2003); Soekamto et al. (2003). For our previous structural studies of related 3-ethylsulfinyl-5-halo-2-(4-halophenyl)-7-methyl-1-benzofuran derivatives, see: Choi et al. (2010a,b,c,d). For a review of halogen bonding, see: Politzer et al. (2007).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the Br···O and C—H···O interactions (dashed lines) in the crystal structure of the title compound. [Symmetry codes: (i) x - 1, y, z; (ii) - x +2, - y + 1, - z + 2; (iii) x + 1, y, z.]
5-Bromo-2-(4-chlorophenyl)-3-ethylsulfinyl-7-methyl-1-benzofuran top
Crystal data top
C17H14BrClO2SZ = 2
Mr = 397.70F(000) = 400
Triclinic, P1Dx = 1.677 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.3159 (1) ÅCell parameters from 8401 reflections
b = 10.3502 (2) Åθ = 2.3–27.6°
c = 11.8936 (2) ŵ = 2.92 mm1
α = 68.690 (1)°T = 179 K
β = 89.223 (1)°Block, colourless
γ = 70.941 (1)°0.29 × 0.28 × 0.25 mm
V = 787.36 (2) Å3
Data collection top
Bruker SMART APEXII CCD
diffractometer
3657 independent reflections
Radiation source: rotating anode3342 reflections with I > 2σ(I)
Graphite multilayer monochromatorRint = 0.028
Detector resolution: 10.0 pixels mm-1θmax = 27.6°, θmin = 1.9°
φ and ω scansh = 99
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1313
Tmin = 0.485, Tmax = 0.524l = 1515
14107 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: difference Fourier map
wR(F2) = 0.066H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0362P)2 + 0.2277P]
where P = (Fo2 + 2Fc2)/3
3657 reflections(Δ/σ)max = 0.001
201 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
C17H14BrClO2Sγ = 70.941 (1)°
Mr = 397.70V = 787.36 (2) Å3
Triclinic, P1Z = 2
a = 7.3159 (1) ÅMo Kα radiation
b = 10.3502 (2) ŵ = 2.92 mm1
c = 11.8936 (2) ÅT = 179 K
α = 68.690 (1)°0.29 × 0.28 × 0.25 mm
β = 89.223 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3657 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3342 reflections with I > 2σ(I)
Tmin = 0.485, Tmax = 0.524Rint = 0.028
14107 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.066H-atom parameters constrained
S = 1.08Δρmax = 0.44 e Å3
3657 reflectionsΔρmin = 0.44 e Å3
201 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br0.99643 (3)0.279456 (19)1.076951 (15)0.03226 (7)
Cl0.44218 (8)0.83326 (6)0.02326 (4)0.04120 (13)
S0.64454 (6)0.80596 (4)0.58771 (4)0.02307 (10)
O10.80545 (16)0.41969 (12)0.55116 (10)0.0217 (2)
O20.8019 (2)0.81168 (15)0.66239 (13)0.0357 (3)
C10.7086 (2)0.62059 (16)0.60048 (14)0.0203 (3)
C20.7957 (2)0.49198 (17)0.71094 (15)0.0207 (3)
C30.8333 (2)0.46726 (18)0.83324 (15)0.0232 (3)
H30.79410.54550.86200.028*
C40.9307 (2)0.32235 (19)0.91027 (15)0.0243 (3)
C50.9924 (2)0.20505 (18)0.87039 (16)0.0249 (3)
H51.06050.10810.92730.030*
C60.9561 (2)0.22752 (17)0.74956 (15)0.0225 (3)
C70.8541 (2)0.37343 (17)0.67424 (14)0.0202 (3)
C80.7168 (2)0.57118 (16)0.50771 (15)0.0206 (3)
C91.0223 (3)0.10666 (18)0.70187 (17)0.0289 (4)
H9A1.10850.01620.76570.043*
H9B1.09300.13590.63180.043*
H9C0.90890.08860.67690.043*
C100.6517 (2)0.63921 (17)0.37745 (15)0.0211 (3)
C110.5182 (2)0.78327 (18)0.32282 (16)0.0253 (3)
H110.47010.84010.37100.030*
C120.4555 (2)0.84388 (19)0.19966 (16)0.0280 (4)
H120.36660.94220.16280.034*
C130.5241 (3)0.7592 (2)0.13105 (15)0.0277 (4)
C140.6558 (3)0.6165 (2)0.18176 (16)0.0282 (4)
H140.70130.56020.13290.034*
C150.7202 (2)0.55713 (18)0.30474 (15)0.0251 (3)
H150.81180.45960.34030.030*
C160.4362 (3)0.81428 (19)0.67208 (17)0.0283 (4)
H16A0.46770.72320.74630.034*
H16B0.40540.89950.69740.034*
C170.2605 (3)0.8300 (2)0.59514 (19)0.0319 (4)
H17A0.22220.92450.52550.048*
H17B0.15220.82680.64420.048*
H17C0.29360.74890.56600.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br0.04398 (12)0.02976 (11)0.02033 (10)0.01382 (8)0.00429 (7)0.00526 (7)
Cl0.0456 (3)0.0526 (3)0.0191 (2)0.0187 (2)0.00070 (18)0.0048 (2)
S0.02667 (19)0.01856 (18)0.0238 (2)0.00802 (15)0.00110 (15)0.00753 (15)
O10.0249 (5)0.0178 (5)0.0201 (6)0.0043 (4)0.0014 (4)0.0073 (4)
O20.0393 (7)0.0338 (7)0.0379 (8)0.0181 (6)0.0048 (6)0.0127 (6)
C10.0203 (7)0.0179 (7)0.0206 (8)0.0052 (6)0.0015 (6)0.0061 (6)
C20.0185 (7)0.0198 (7)0.0224 (8)0.0061 (6)0.0017 (6)0.0067 (6)
C30.0248 (7)0.0228 (8)0.0222 (8)0.0082 (6)0.0009 (6)0.0087 (6)
C40.0248 (7)0.0270 (8)0.0201 (8)0.0099 (6)0.0007 (6)0.0068 (6)
C50.0238 (7)0.0198 (7)0.0253 (8)0.0054 (6)0.0016 (6)0.0037 (6)
C60.0200 (7)0.0192 (7)0.0256 (8)0.0054 (6)0.0012 (6)0.0068 (6)
C70.0195 (7)0.0208 (7)0.0190 (7)0.0061 (6)0.0005 (6)0.0068 (6)
C80.0191 (7)0.0173 (7)0.0233 (8)0.0053 (6)0.0022 (6)0.0063 (6)
C90.0305 (8)0.0222 (8)0.0299 (9)0.0039 (7)0.0014 (7)0.0099 (7)
C100.0210 (7)0.0226 (7)0.0205 (8)0.0104 (6)0.0028 (6)0.0064 (6)
C110.0242 (8)0.0261 (8)0.0233 (8)0.0074 (6)0.0018 (6)0.0080 (7)
C120.0250 (8)0.0277 (8)0.0252 (9)0.0085 (7)0.0008 (7)0.0038 (7)
C130.0293 (8)0.0364 (9)0.0167 (8)0.0171 (7)0.0022 (6)0.0040 (7)
C140.0347 (9)0.0330 (9)0.0223 (8)0.0164 (7)0.0080 (7)0.0124 (7)
C150.0286 (8)0.0233 (8)0.0234 (8)0.0102 (6)0.0044 (6)0.0080 (7)
C160.0308 (8)0.0249 (8)0.0272 (9)0.0046 (7)0.0060 (7)0.0120 (7)
C170.0288 (8)0.0286 (9)0.0413 (11)0.0105 (7)0.0088 (8)0.0163 (8)
Geometric parameters (Å, º) top
Br—C41.8987 (17)C9—H9A0.9800
Br—O2i3.1254 (14)C9—H9B0.9800
Cl—C131.7385 (17)C9—H9C0.9800
S—O21.4925 (13)C10—C111.400 (2)
S—C11.7683 (16)C10—C151.402 (2)
S—C161.8092 (18)C11—C121.383 (2)
O1—C71.3756 (19)C11—H110.9500
O1—C81.3792 (18)C12—C131.381 (3)
C1—C81.368 (2)C12—H120.9500
C1—C21.450 (2)C13—C141.383 (3)
C2—C71.386 (2)C14—C151.384 (2)
C2—C31.397 (2)C14—H140.9500
C3—C41.385 (2)C15—H150.9500
C3—H30.9500C16—C171.518 (3)
C4—C51.399 (2)C16—H16A0.9900
C5—C61.385 (2)C16—H16B0.9900
C5—H50.9500C17—H17A0.9800
C6—C71.392 (2)C17—H17B0.9800
C6—C91.495 (2)C17—H17C0.9800
C8—C101.460 (2)
C4—Br—O2i167.44 (6)H9A—C9—H9C109.5
O2—S—C1106.73 (7)H9B—C9—H9C109.5
O2—S—C16107.42 (9)C11—C10—C15118.61 (15)
C1—S—C1698.10 (8)C11—C10—C8122.03 (15)
C7—O1—C8106.72 (12)C15—C10—C8119.34 (14)
C8—C1—C2107.07 (14)C12—C11—C10120.86 (16)
C8—C1—S127.14 (12)C12—C11—H11119.6
C2—C1—S124.97 (12)C10—C11—H11119.6
C7—C2—C3119.41 (14)C13—C12—C11118.98 (16)
C7—C2—C1105.01 (14)C13—C12—H12120.5
C3—C2—C1135.55 (15)C11—C12—H12120.5
C4—C3—C2116.31 (15)C12—C13—C14121.83 (16)
C4—C3—H3121.8C12—C13—Cl119.27 (14)
C2—C3—H3121.8C14—C13—Cl118.90 (15)
C3—C4—C5123.16 (16)C13—C14—C15118.96 (17)
C3—C4—Br119.20 (13)C13—C14—H14120.5
C5—C4—Br117.57 (12)C15—C14—H14120.5
C6—C5—C4121.28 (15)C14—C15—C10120.75 (16)
C6—C5—H5119.4C14—C15—H15119.6
C4—C5—H5119.4C10—C15—H15119.6
C5—C6—C7114.60 (15)C17—C16—S110.69 (13)
C5—C6—C9123.38 (14)C17—C16—H16A109.5
C7—C6—C9122.01 (15)S—C16—H16A109.5
O1—C7—C2110.87 (13)C17—C16—H16B109.5
O1—C7—C6123.88 (14)S—C16—H16B109.5
C2—C7—C6125.19 (15)H16A—C16—H16B108.1
C1—C8—O1110.31 (13)C16—C17—H17A109.5
C1—C8—C10135.56 (14)C16—C17—H17B109.5
O1—C8—C10114.12 (13)H17A—C17—H17B109.5
C6—C9—H9A109.5C16—C17—H17C109.5
C6—C9—H9B109.5H17A—C17—H17C109.5
H9A—C9—H9B109.5H17B—C17—H17C109.5
C6—C9—H9C109.5
O2—S—C1—C8129.10 (15)C9—C6—C7—O10.0 (2)
C16—S—C1—C8119.89 (15)C5—C6—C7—C22.2 (2)
O2—S—C1—C239.12 (15)C9—C6—C7—C2177.01 (15)
C16—S—C1—C271.89 (15)C2—C1—C8—O10.72 (17)
C8—C1—C2—C71.23 (17)S—C1—C8—O1169.20 (11)
S—C1—C2—C7168.97 (12)C2—C1—C8—C10177.77 (16)
C8—C1—C2—C3179.21 (17)S—C1—C8—C1012.3 (3)
S—C1—C2—C39.0 (3)C7—O1—C8—C10.09 (16)
C7—C2—C3—C40.8 (2)C7—O1—C8—C10178.93 (12)
C1—C2—C3—C4176.99 (17)C1—C8—C10—C1114.7 (3)
C2—C3—C4—C50.8 (2)O1—C8—C10—C11163.78 (14)
C2—C3—C4—Br177.69 (11)C1—C8—C10—C15167.14 (18)
O2i—Br—C4—C3115.1 (3)O1—C8—C10—C1514.4 (2)
O2i—Br—C4—C562.0 (3)C15—C10—C11—C120.3 (2)
C3—C4—C5—C61.0 (3)C8—C10—C11—C12178.48 (15)
Br—C4—C5—C6177.90 (12)C10—C11—C12—C131.1 (3)
C4—C5—C6—C70.5 (2)C11—C12—C13—C141.0 (3)
C4—C5—C6—C9178.70 (16)C11—C12—C13—Cl178.70 (13)
C8—O1—C7—C20.92 (16)C12—C13—C14—C150.1 (3)
C8—O1—C7—C6176.43 (15)Cl—C13—C14—C15179.60 (13)
C3—C2—C7—O1179.71 (13)C13—C14—C15—C100.7 (3)
C1—C2—C7—O11.33 (17)C11—C10—C15—C140.7 (2)
C3—C2—C7—C62.4 (2)C8—C10—C15—C14177.61 (15)
C1—C2—C7—C6175.98 (15)O2—S—C16—C17172.31 (12)
C5—C6—C7—O1179.15 (14)C1—S—C16—C1777.25 (13)
Symmetry code: (i) x+2, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17B···O2ii0.982.623.488 (2)148
Symmetry code: (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC17H14BrClO2S
Mr397.70
Crystal system, space groupTriclinic, P1
Temperature (K)179
a, b, c (Å)7.3159 (1), 10.3502 (2), 11.8936 (2)
α, β, γ (°)68.690 (1), 89.223 (1), 70.941 (1)
V3)787.36 (2)
Z2
Radiation typeMo Kα
µ (mm1)2.92
Crystal size (mm)0.29 × 0.28 × 0.25
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.485, 0.524
No. of measured, independent and
observed [I > 2σ(I)] reflections
14107, 3657, 3342
Rint0.028
(sin θ/λ)max1)0.652
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.066, 1.08
No. of reflections3657
No. of parameters201
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.44

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17B···O2i0.982.623.488 (2)147.8
Symmetry code: (i) x1, y, z.
 

Acknowledgements

This work was supported by Blue-Bio Industry RIC at Dongeui University as an RIC programme under the Ministry of Knowledge Economy and Busan city.

References

First citationAkgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939–943.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAslam, S. N., Stevenson, P. C., Phythian, S. J., Veitch, N. C. & Hall, D. R. (2006). Tetrahedron, 62, 4214–4226.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010a). Acta Cryst. E66, o629.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010b). Acta Cryst. E66, o886.  Web of Science CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010c). Acta Cryst. E66, o1042.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010d). Acta Cryst. E66, o2277.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGalal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420–2428.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796–4805.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPolitzer, P., Lane, P., Concha, M. C., Ma, Y. & Murray, J. S. (2007). J. Mol. Model. 13, 305–311.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831–834.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds