organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Eth­­oxy­carbon­yl-5-methyl-1H-1,2,3-triazol-1-yl)acetic acid mono­hydrate

aSchool of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: zhaohong@seu.edu.cn

(Received 20 October 2010; accepted 27 October 2010; online 31 October 2010)

The title compound, C8H11N3O4·H2O, was synthesized by reaction of 2-azido­acetic acid and ethyl acetyl­acetate. In the crystal packing, mol­ecules are linked by strong inter­molecular O—H⋯N and O—H⋯O hydrogen bonds into double layers parallel to the ab plane.

Related literature

For the biological activities of triazole derivatives, see: Olesen et al. (2003[Olesen, P. H., Sorensen, A. R., Urso, B., Kurtzhals, P., Bowler, A. N., Ehrbar, U. & Hansen, B. F. (2003). J. Med. Chem. 46, 3333-3341.]); Tian et al. (2005[Tian, L., Sun, Y., Li, H., Zheng, X., Cheng, Y., Liu, X. & Qian, B. (2005). J. Inorg. Biochem. 99, 1646-1652.]). For the synthesis, see: El Khadem et al. (1968[El Khadem, H., Mansour, H. A. R. & Meshreki, M. H. (1968). J. Chem. Soc. C, pp. 1329-1331.]). For related structures, see: Lin et al. (2008[Lin, J. R., Yao, J. Y. & Zhao, H. (2008). Acta Cryst. E64, o1843.]); Xiao et al. (2008[Xiao, J., Wang, W. X. & Zhao, H. (2008). Acta Cryst. E64, o2085.]); Zhao (2009[Zhao, H. (2009). Acta Cryst. E65, o1258.]).

[Scheme 1]

Experimental

Crystal data
  • C8H11N3O4·H2O

  • Mr = 231.21

  • Monoclinic, C 2/c

  • a = 18.6082 (15) Å

  • b = 8.2295 (15) Å

  • c = 14.986 (2) Å

  • β = 92.050 (5)°

  • V = 2293.4 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 295 K

  • 0.35 × 0.32 × 0.28 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.960, Tmax = 0.970

  • 10958 measured reflections

  • 2490 independent reflections

  • 1536 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.189

  • S = 1.09

  • 2490 reflections

  • 148 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1F⋯O2i 0.93 1.84 2.759 (3) 176
O1W—H1E⋯N3ii 0.92 1.96 2.879 (3) 173
O1—H1⋯O1Wiii 0.82 1.75 2.558 (3) 167
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (iii) x, y-1, z.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL/PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL/PC.

Supporting information


Comment top

Triazole derivatives have attracted considerable attention due to their biological activities (Olesen et al., 2003; Tian et al., 2005). Recently, we have reported the crystal structures of a few triazole compounds (Lin et al., 2008; Xiao et al., 2008; Zhao, 2009). As an extension of our work on the structural characterization of triazole derivatives, the crystal structure of the title compound is reported here.

In the molecule of the title compound (Fig. 1) bond lengths and angles have normal values. The crystal packing is stabilized by strong intermolecular O—H···N and O—H···O hydrogen bonds involving the triazole and water molecules (Fig. 2; Table 1) forming double layers parallel to the ab plane.

Related literature top

For the biological activities of triazole derivatives, see: Olesen et al. (2003); Tian et al. (2005). For the synthesis of the title compound, see: El Khadem et al. (1968). For the structure of related compounds, see: Lin et al. (2008); Xiao et al. (2008); Zhao (2009).

Experimental top

The title compound was prepared from 2-azidoacetic acid according to the reported method (El Khadem et al., 1968). Colourless prismatic crystal suitable for X-ray analysis were obtained by slow evaporation of a 95% ethanol/water solution.

Refinement top

The water H atoms were located from a difference Fourier map but not refined [Uiso(H) = 1.5Ueq(O)]. All other H atoms were fixed geometrically and treated as riding with C—H = 0.96–0.97 Å, O—H = 0.82 Å, and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C, O) for methyl and carboxy H atoms.

Structure description top

Triazole derivatives have attracted considerable attention due to their biological activities (Olesen et al., 2003; Tian et al., 2005). Recently, we have reported the crystal structures of a few triazole compounds (Lin et al., 2008; Xiao et al., 2008; Zhao, 2009). As an extension of our work on the structural characterization of triazole derivatives, the crystal structure of the title compound is reported here.

In the molecule of the title compound (Fig. 1) bond lengths and angles have normal values. The crystal packing is stabilized by strong intermolecular O—H···N and O—H···O hydrogen bonds involving the triazole and water molecules (Fig. 2; Table 1) forming double layers parallel to the ab plane.

For the biological activities of triazole derivatives, see: Olesen et al. (2003); Tian et al. (2005). For the synthesis of the title compound, see: El Khadem et al. (1968). For the structure of related compounds, see: Lin et al. (2008); Xiao et al. (2008); Zhao (2009).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Version 5.1; Sheldrick, 2008); software used to prepare material for publication: SHELXTL/PC (Version 5.1; Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atomic numbering scheme. The displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Packing diagram of the title compound, showing the structure along the c axis.
2-(4-Ethoxycarbonyl-5-methyl-1H-1,2,3-triazol-1-yl)acetic acid monohydrate top
Crystal data top
C8H11N3O4·H2OF(000) = 976
Mr = 231.21Dx = 1.339 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2099 reflections
a = 18.6082 (15) Åθ = 2.7–27.5°
b = 8.2295 (15) ŵ = 0.11 mm1
c = 14.986 (2) ÅT = 295 K
β = 92.050 (5)°Prism, colourless
V = 2293.4 (6) Å30.35 × 0.32 × 0.28 mm
Z = 8
Data collection top
Rigaku SCXmini
diffractometer
2490 independent reflections
Radiation source: fine-focus sealed tube1536 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
Detector resolution: 13.6612 pixels mm-1θmax = 27.0°, θmin = 2.7°
CCD_Profile_fitting scansh = 2323
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1010
Tmin = 0.960, Tmax = 0.970l = 1919
10958 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.189H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0861P)2 + 0.6922P]
where P = (Fo2 + 2Fc2)/3
2490 reflections(Δ/σ)max < 0.001
148 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C8H11N3O4·H2OV = 2293.4 (6) Å3
Mr = 231.21Z = 8
Monoclinic, C2/cMo Kα radiation
a = 18.6082 (15) ŵ = 0.11 mm1
b = 8.2295 (15) ÅT = 295 K
c = 14.986 (2) Å0.35 × 0.32 × 0.28 mm
β = 92.050 (5)°
Data collection top
Rigaku SCXmini
diffractometer
2490 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1536 reflections with I > 2σ(I)
Tmin = 0.960, Tmax = 0.970Rint = 0.051
10958 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0660 restraints
wR(F2) = 0.189H-atom parameters constrained
S = 1.09Δρmax = 0.28 e Å3
2490 reflectionsΔρmin = 0.20 e Å3
148 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.81442 (14)0.2524 (3)0.37722 (19)0.0552 (6)
C20.87508 (14)0.2098 (3)0.44180 (18)0.0611 (7)
H2A0.85540.18350.49910.073*
H2B0.90590.30410.45020.073*
C30.90266 (14)0.0868 (3)0.41202 (18)0.0557 (6)
C40.83230 (16)0.1554 (4)0.4359 (3)0.0936 (12)
H4A0.79810.14020.38710.140*
H4B0.83760.26940.44810.140*
H4C0.81560.10120.48800.140*
C50.96537 (13)0.1568 (3)0.38496 (18)0.0542 (6)
C60.98182 (15)0.3313 (3)0.3765 (2)0.0631 (7)
N10.91816 (11)0.0742 (2)0.41279 (14)0.0552 (6)
N20.98618 (12)0.1025 (3)0.38793 (17)0.0658 (6)
N31.01479 (11)0.0386 (2)0.37055 (17)0.0629 (6)
O10.77303 (11)0.3646 (2)0.41090 (13)0.0687 (6)
H10.74010.38610.37500.103*
O20.80534 (12)0.1933 (3)0.30435 (15)0.0828 (7)
O30.93857 (12)0.4367 (2)0.38956 (19)0.0963 (8)
O41.04841 (10)0.3565 (2)0.35401 (16)0.0787 (7)
O1W0.66222 (12)0.5429 (3)0.31857 (17)0.1016 (9)
H1E0.61570.53280.33660.152*
H1F0.67240.46730.27510.152*
C71.07274 (18)0.5254 (4)0.3491 (3)0.0975 (13)
H7A1.05590.57330.29310.117*
H7B1.05310.58770.39750.117*
C81.1478 (2)0.5300 (5)0.3554 (4)0.1357 (19)
H8A1.16450.46800.40630.204*
H8B1.16350.64060.36200.204*
H8C1.16690.48460.30220.204*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0569 (15)0.0444 (13)0.0649 (16)0.0084 (11)0.0111 (12)0.0044 (12)
C20.0590 (16)0.0525 (15)0.0720 (17)0.0113 (12)0.0030 (13)0.0027 (13)
C30.0483 (14)0.0482 (14)0.0705 (16)0.0026 (11)0.0034 (12)0.0085 (12)
C40.0614 (19)0.068 (2)0.154 (3)0.0031 (16)0.031 (2)0.017 (2)
C50.0462 (14)0.0448 (13)0.0713 (16)0.0019 (11)0.0012 (12)0.0070 (12)
C60.0556 (16)0.0482 (14)0.085 (2)0.0050 (13)0.0067 (14)0.0044 (13)
N10.0482 (12)0.0445 (11)0.0729 (14)0.0073 (9)0.0042 (10)0.0021 (10)
N20.0493 (13)0.0470 (12)0.1013 (18)0.0040 (10)0.0066 (12)0.0008 (12)
N30.0462 (12)0.0470 (12)0.0956 (17)0.0039 (9)0.0059 (11)0.0033 (11)
O10.0652 (12)0.0675 (12)0.0739 (12)0.0251 (10)0.0078 (9)0.0006 (10)
O20.0906 (16)0.0848 (15)0.0724 (13)0.0321 (12)0.0074 (11)0.0157 (12)
O30.0744 (15)0.0479 (11)0.167 (2)0.0032 (11)0.0108 (15)0.0080 (13)
O40.0532 (11)0.0499 (11)0.1330 (19)0.0134 (9)0.0037 (11)0.0032 (11)
O1W0.0557 (13)0.122 (2)0.128 (2)0.0154 (12)0.0168 (13)0.0639 (16)
C70.075 (2)0.0488 (17)0.168 (4)0.0179 (15)0.011 (2)0.014 (2)
C80.095 (3)0.094 (3)0.216 (5)0.049 (2)0.031 (3)0.050 (3)
Geometric parameters (Å, º) top
C1—O21.202 (3)C6—O31.204 (3)
C1—O11.315 (3)C6—O41.312 (3)
C1—C21.502 (4)N1—N21.352 (3)
C2—N11.450 (3)N2—N31.307 (3)
C2—H2A0.9700O1—H10.8200
C2—H2B0.9700O4—C71.465 (3)
C3—N11.356 (3)O1W—H1E0.9194
C3—C51.375 (3)O1W—H1F0.9251
C3—C41.481 (4)C7—C81.396 (5)
C4—H4A0.9600C7—H7A0.9700
C4—H4B0.9600C7—H7B0.9700
C4—H4C0.9600C8—H8A0.9600
C5—N31.361 (3)C8—H8B0.9600
C5—C61.475 (3)C8—H8C0.9600
O2—C1—O1124.6 (3)O3—C6—C5123.0 (3)
O2—C1—C2124.7 (2)O4—C6—C5112.1 (2)
O1—C1—C2110.7 (2)N2—N1—C3111.5 (2)
N1—C2—C1113.4 (2)N2—N1—C2118.9 (2)
N1—C2—H2A108.9C3—N1—C2129.4 (2)
C1—C2—H2A108.9N3—N2—N1107.1 (2)
N1—C2—H2B108.9N2—N3—C5108.7 (2)
C1—C2—H2B108.9C1—O1—H1109.5
H2A—C2—H2B107.7C6—O4—C7117.3 (2)
N1—C3—C5103.2 (2)H1E—O1W—H1F111.4
N1—C3—C4124.1 (2)C8—C7—O4109.4 (3)
C5—C3—C4132.7 (2)C8—C7—H7A109.8
C3—C4—H4A109.5O4—C7—H7A109.8
C3—C4—H4B109.5C8—C7—H7B109.8
H4A—C4—H4B109.5O4—C7—H7B109.8
C3—C4—H4C109.5H7A—C7—H7B108.2
H4A—C4—H4C109.5C7—C8—H8A109.5
H4B—C4—H4C109.5C7—C8—H8B109.5
N3—C5—C3109.4 (2)H8A—C8—H8B109.5
N3—C5—C6122.6 (2)C7—C8—H8C109.5
C3—C5—C6127.9 (2)H8A—C8—H8C109.5
O3—C6—O4124.8 (3)H8B—C8—H8C109.5
O2—C1—C2—N17.1 (4)C5—C3—N1—C2175.1 (3)
O1—C1—C2—N1173.6 (2)C4—C3—N1—C25.1 (4)
N1—C3—C5—N30.2 (3)C1—C2—N1—N2110.4 (3)
C4—C3—C5—N3179.6 (3)C1—C2—N1—C374.9 (3)
N1—C3—C5—C6176.4 (3)C3—N1—N2—N30.4 (3)
C4—C3—C5—C63.8 (5)C2—N1—N2—N3176.0 (2)
N3—C5—C6—O3179.6 (3)N1—N2—N3—C50.5 (3)
C3—C5—C6—O33.4 (5)C3—C5—N3—N20.4 (3)
N3—C5—C6—O40.1 (4)C6—C5—N3—N2176.4 (3)
C3—C5—C6—O4176.1 (3)O3—C6—O4—C73.4 (5)
C5—C3—N1—N20.1 (3)C5—C6—O4—C7176.1 (3)
C4—C3—N1—N2179.9 (3)C6—O4—C7—C8159.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1F···O2i0.931.842.759 (3)176
O1W—H1E···N3ii0.921.962.879 (3)173
O1—H1···O1Wiii0.821.752.558 (3)167
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x1/2, y+1/2, z; (iii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC8H11N3O4·H2O
Mr231.21
Crystal system, space groupMonoclinic, C2/c
Temperature (K)295
a, b, c (Å)18.6082 (15), 8.2295 (15), 14.986 (2)
β (°) 92.050 (5)
V3)2293.4 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.35 × 0.32 × 0.28
Data collection
DiffractometerRigaku SCXmini
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.960, 0.970
No. of measured, independent and
observed [I > 2σ(I)] reflections
10958, 2490, 1536
Rint0.051
(sin θ/λ)max1)0.638
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.189, 1.09
No. of reflections2490
No. of parameters148
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.20

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL/PC (Version 5.1; Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1F···O2i0.931.842.759 (3)175.7
O1W—H1E···N3ii0.921.962.879 (3)173.1
O1—H1···O1Wiii0.821.752.558 (3)166.9
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x1/2, y+1/2, z; (iii) x, y1, z.
 

Acknowledgements

This work was supported by financial support from Southeast University for young researchers (grant No. 4007041027).

References

First citationEl Khadem, H., Mansour, H. A. R. & Meshreki, M. H. (1968). J. Chem. Soc. C, pp. 1329–1331.  Google Scholar
First citationLin, J. R., Yao, J. Y. & Zhao, H. (2008). Acta Cryst. E64, o1843.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOlesen, P. H., Sorensen, A. R., Urso, B., Kurtzhals, P., Bowler, A. N., Ehrbar, U. & Hansen, B. F. (2003). J. Med. Chem. 46, 3333–3341.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTian, L., Sun, Y., Li, H., Zheng, X., Cheng, Y., Liu, X. & Qian, B. (2005). J. Inorg. Biochem. 99, 1646–1652.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationXiao, J., Wang, W. X. & Zhao, H. (2008). Acta Cryst. E64, o2085.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhao, H. (2009). Acta Cryst. E65, o1258.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds